A New Trigger of Morbilliform Eruption in the Setting of Atypical Infectious
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antimicrobial Stewardship Guidance
Antimicrobial Stewardship Guidance Federal Bureau of Prisons Clinical Practice Guidelines March 2013 Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document: http://www.bop.gov/news/medresources.jsp Federal Bureau of Prisons Antimicrobial Stewardship Guidance Clinical Practice Guidelines March 2013 Table of Contents 1. Purpose ............................................................................................................................................. 3 2. Introduction ...................................................................................................................................... 3 3. Antimicrobial Stewardship in the BOP............................................................................................ 4 4. General Guidance for Diagnosis and Identifying Infection ............................................................. 5 Diagnosis of Specific Infections ........................................................................................................ 6 Upper Respiratory Infections (not otherwise specified) .............................................................................. -
Penicillin Allergy Guidance Document
Penicillin Allergy Guidance Document Key Points Background Careful evaluation of antibiotic allergy and prior tolerance history is essential to providing optimal treatment The true incidence of penicillin hypersensitivity amongst patients in the United States is less than 1% Alterations in antibiotic prescribing due to reported penicillin allergy has been shown to result in higher costs, increased risk of antibiotic resistance, and worse patient outcomes Cross-reactivity between truly penicillin allergic patients and later generation cephalosporins and/or carbapenems is rare Evaluation of Penicillin Allergy Obtain a detailed history of allergic reaction Classify the type and severity of the reaction paying particular attention to any IgE-mediated reactions (e.g., anaphylaxis, hives, angioedema, etc.) (Table 1) Evaluate prior tolerance of beta-lactam antibiotics utilizing patient interview or the electronic medical record Recommendations for Challenging Penicillin Allergic Patients See Figure 1 Follow-Up Document tolerance or intolerance in the patient’s allergy history Consider referring to allergy clinic for skin testing Created July 2017 by Macey Wolfe, PharmD; John Schoen, PharmD, BCPS; Scott Bergman, PharmD, BCPS; Sara May, MD; and Trevor Van Schooneveld, MD, FACP Disclaimer: This resource is intended for non-commercial educational and quality improvement purposes. Outside entities may utilize for these purposes, but must acknowledge the source. The guidance is intended to assist practitioners in managing a clinical situation but is not mandatory. The interprofessional group of authors have made considerable efforts to ensure the information upon which they are based is accurate and up to date. Any treatments have some inherent risk. Recommendations are meant to improve quality of patient care yet should not replace clinical judgment. -
EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance . -
E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/ -
ESBL Disc Tests - Rev.2 / 19.06.2014 ESBL Disc Tests Disc Tests for Detection of ESBL-Producing Enterobacteriaceae
© Liofilchem® - ESBL Disc Tests - Rev.2 / 19.06.2014 ESBL Disc Tests Disc tests for detection of ESBL-producing Enterobacteriaceae. DESCRIPTION Extended-spectrum β-lactamases (ESBLs) are enzymes hydrolyzing most penicillins and cephalosporins, including oxyimino- β-lactam compunds but not cephamycins and carbapenems. Most ESBLs belong to the Amber class A of β-lactamases and are inhibited by β-lactamases inhibitors: clavulanic acid, sulbatam and tazobactam. ESBL production has been observed mostly in Enterobacteriaceae, particularly Escherichia coli and Klebsiella pnuemoniae, but all other clinically-relevant Enterobacteriaceae species are also common ESBL-producers. In many areas, ESBL detection and characterization is recommended or mandatory for infection control purpose. ESBL detection involves two important steps. The first is a screening test with an indicator cephalosporin which looks for resistance or diminished susceptibility, thus identifying isolates likely to be harboring ESBLs. The second step is a confirmation test which evaluates the synergy between an oxyimino cephalosporin and clavulanic acid, distinguishing isolates with ESBLs from those that are resistant for other reasons. METHOD PRINCIPLE ESBL Disc Screening Disk-diffusion method for ESBL screening can be performed using cefpodoxime, ceftazidime, aztreonam, cefotaxime and ceftriaxone, according to EUCAST and/or CLSI guidelines (table 1). Since the affinity of ESBLs for different substrates is variable, the use of more than one of these agents for screening improves the sensitivity of detection. However, it is adequate to use the couple cefotaxime (or ceftriaxone) and ceftazidime. If only one drug can be used, cefpodoxime is the most sensitive indicator cephalosporin for detection of ESBL production may be used for screening. -
MICU Antibiotics and Associated Drug Interactions
MICU Antibiotics and Associated Drug Interactions Resistant Bacteria ► MICU patient are at risk for resistant organisms: § Recent hospitalizations § From a skilled nursing facility § Immunocompromised patients ►Transplant population ►Chronic steroid use Organisms of Concern ► Gram Negative organisms § Pseudomonas aeruginosa § Acinetobacter § Klebsiella pneumoniae ► ESBL § E.Coli ► ESBL ► Staph Aureus § MRSA ► Enterococcus faecalis & faecium § VRE Antibiotic Management Program (AMP) ► Patient safety initiative to address: § The infections related to C. difficile § Increasing antimicrobial resistance § Increasing antimicrobial cost Commonly Used Restricted Antibiotics ► Must call AMP to get an approval code (Full list on page 12 of Guide to Antimicrobial Chemotherapy) § Commonly used agents ► Ciprofloxacin ► Moxifloxacin ► Linezolid ► Ceftriaxone ► Ceftazidime ► Aztreonam ► Daptomycin ► Clindamycin ► Meropenem ► Imipenem ► Oral Vancomycin—unless you fill out a C.diff order set Not Restricted in the ICU ► Vancomycin ► Zosyn (piperacilin/tazobactam) ► Cefepime ► Aminoglycosides § Gentamicin § Tobramycin Pharmacodynamics ► Concentration dependant killing ► Goal: maximize the concentration § AUC/MIC ratio and Peak/MIC are predictors of efficacy § Antibiotics kill with increasing antibiotic concentrations at a greater rate and extent § Aminoglycosides ►Fluoroquinolones ►Metronidazole Pharmacodynamics ► Time dependent killing ► Goal: Maximize duration of exposure § T > MIC correlates best with efficacy ►Antibiotics kill bacteria at the same rate -
Reflection Paper on the Use of Aminopenicillins and Their Beta
1 13 September 2018 2 EMA/CVMP/AWP/842786/2015 3 Committee for Medicinal Products for Veterinary Use (CVMP) 4 Reflection paper on the use of aminopenicillins and their 5 beta-lactamase inhibitor combinations in animals in the 6 European Union: development of resistance and impact 7 on human and animal health 8 Draft Draft agreed by Antimicrobials Working Party (AWP) 9 July 2018 Adopted by CVMP for release for consultation 13 September 2018 Start of public consultation 21 September 2018 End of consultation (deadline for comments) 21 December 2018 9 Comments should be provided using this template. The completed comments form should be sent to [email protected] 10 Keywords aminopenicillins, antimicrobial resistance 11 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. 12 13 Table of contents 14 Executive summary ..................................................................................... 4 15 CVMP Recommendations for action ............................................................. 6 16 1. Background ............................................................................................. 7 17 2. General drug characteristics .................................................................... 8 18 2.1. Structure and mechanism of action ...................................................................... -
Pharmacy Update: Truth and Consequences of Beta-Lactam Allergy Management
Pharmacy Update: Truth and Consequences of Beta-Lactam Allergy Management Penicillin (PCN) Allergy Background o PCN allergy is the most common drug-class allergy reported - ~8-12% of patients self-report a PCN allergy - Reported anaphylactic reaction to PCN commonly precludes prescribers from using β-lactams in these patients o 80-90% of patients reporting a PCN allergy will have a negative response to PCN skin testing Impact of Penicillin Allergies o Penicillin “allergies” lead to: - More costly, less effective therapy o Longer length of stay, more medications used, more treatment failures - Worse clinical outcomes o Increased mortality, more treatment failures - 2nd and 3rd line antibiotics commonly substituted for β-lactams in patients with a penicillin “allergy” o Suboptimal use of fluoroquinolones, clindamycin, vancomycin, and aztreonam (e.g. vancomycin for MSSA) o Macy et al. J Allergy Clin Immunol: - Significantly more fluoroquinolone, clindamycin, and vancomycin use - 23.4% more C. difficile (95% CI: 15.6%-31.7%) - 14.1% more MRSA (95% CI: 7.1%-21.6%) - 30.1% more VRE infections (95% CI: 12.5%-50.4%) The Myth of Cross-Reactivity between Penicillins & Cephalosporins o The widely quoted cross-reactivity rate of 10% was originally reported in the 1960s, studies were flawed due to cephalosporins being frequently contaminated with penicillin o More recent observational studies have Table 1. FDA-approved Beta-lactam Antibiotics with Similar Side Chainsa found cross-reactivity rates between 0.17% Agent Agents with Similar Side Chains -
INFORMATION to USERS the Most Advanced
INFORMATION TO USERS The most advanced technology has been used to photo graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Accessing the World’sUMI Information since 1938 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8804083 Drug stabilization through molecular modification: Hydrolysis kinetics of ampicillin prodrugs and nucleoside analogs Nguyen, Ngoc-Anh Thi, Ph.D. The Ohio State University, 1987 UMI 300 N. Zccb Rd. Ann Arbor, MI 48106 DRUG STABILIZATION THROUGH MOLECULAR MODIFICATION: HYDROLYSIS KINETICS OF AMPICILLIN PRODRUGS AND NUCLEOSIDE ANALOGS DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ngoc-Anh T. -
European Surveillance of Healthcare-Associated Infections in Intensive Care Units
TECHNICAL DOCUMENT European surveillance of healthcare-associated infections in intensive care units HAI-Net ICU protocol Protocol version 1.02 www.ecdc.europa.eu ECDC TECHNICAL DOCUMENT European surveillance of healthcare- associated infections in intensive care units HAI-Net ICU protocol, version 1.02 This technical document of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Carl Suetens. In accordance with the Staff Regulations for Officials and Conditions of Employment of Other Servants of the European Union and the ECDC Independence Policy, ECDC staff members shall not, in the performance of their duties, deal with a matter in which, directly or indirectly, they have any personal interest such as to impair their independence. This is version 1.02 of the HAI-Net ICU protocol. Differences between versions 1.01 (December 2010) and 1.02 are purely editorial. Suggested citation: European Centre for Disease Prevention and Control. European surveillance of healthcare- associated infections in intensive care units – HAI-Net ICU protocol, version 1.02. Stockholm: ECDC; 2015. Stockholm, March 2015 ISBN 978-92-9193-627-4 doi 10.2900/371526 Catalogue number TQ-04-15-186-EN-N © European Centre for Disease Prevention and Control, 2015 Reproduction is authorised, provided the source is acknowledged. TECHNICAL DOCUMENT HAI-Net ICU protocol, version 1.02 Table of contents Abbreviations ............................................................................................................................................... -
Off-Label Use of Ceftaroline Fosamil: a Systematic Review
International Journal of Antimicrobial Agents 54 (2019) 562–571 Contents lists available at ScienceDirect International Journal of Antimicrobial Agents journal homepage: www.elsevier.com/locate/ijantimicag Review Off-label use of ceftaroline fosamil: A systematic review ∗ Arianna Pani a,e, , Fabrizio Colombo b, Francesca Agnelli b, Viviana Frantellizzi c, Francesco Baratta d, Daniele Pastori d, Francesco Scaglione a,e a Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Italy b Internal Medicine Department, ASST Grande Ospedale Metropolitano Niguarda, Italy c Department of Radiological, Oncological and Anatomical Pathological Sciences, University of Rome Sapienza, Italy d Department of Internal Medicine and Medical Specialties, University of Rome Sapienza, Italy e Department of Oncology and Onco-Hematology, Postgraduate School of Clinical Pharmacology and Toxicology University of Milan Statale, Italy a r t i c l e i n f o a b s t r a c t Article history: Ceftaroline fosamil is a fifth-generation cephalosporin with anti-methicillin-resistant Staphylococcus au- Received 14 December 2018 reus (MRSA) activity. It has been approved by the EMA and FDA for the treatment of adults and children Accepted 28 June 2019 with community-acquired bacterial pneumonia (CABP) and acute bacterial skin and skin structure in- fections (ABSSSI). However, ceftaroline fosamil has a broad spectrum of activity, and a good safety and Editor: Stefania Stefani tolerability profile, so is frequently used off-label. The aim of this systematic review was to summarize the safety and efficacy of off-label use of cef- Keywords: Ceftaroline fosamil taroline. MRSA The review was conducted according to PRISMA guidelines. MEDLINE, EMBASE and CENTRAL Bacteremia databases (2010-2018) were searched using as the main term ceftaroline fosamil and its synonyms in Endocarditis combination with names of infectious diseases of interest. -
Antibacterial Prodrugs to Overcome Bacterial Resistance
molecules Review Antibacterial Prodrugs to Overcome Bacterial Resistance Buthaina Jubeh , Zeinab Breijyeh and Rafik Karaman * Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; [email protected] (B.J.); [email protected] (Z.B.) * Correspondence: [email protected] or rkaraman@staff.alquds.edu Academic Editor: Helen Osborn Received: 10 March 2020; Accepted: 26 March 2020; Published: 28 March 2020 Abstract: Bacterial resistance to present antibiotics is emerging at a high pace that makes the development of new treatments a must. At the same time, the development of novel antibiotics for resistant bacteria is a slow-paced process. Amid the massive need for new drug treatments to combat resistance, time and effort preserving approaches, like the prodrug approach, are most needed. Prodrugs are pharmacologically inactive entities of active drugs that undergo biotransformation before eliciting their pharmacological effects. A prodrug strategy can be used to revive drugs discarded due to a lack of appropriate pharmacokinetic and drug-like properties, or high host toxicity. A special advantage of the use of the prodrug approach in the era of bacterial resistance is targeting resistant bacteria by developing prodrugs that require bacterium-specific enzymes to release the active drug. In this article, we review the up-to-date implementation of prodrugs to develop medications that are active against drug-resistant bacteria. Keywords: prodrugs; biotransformation; targeting; β-lactam antibiotics; β-lactamases; pathogens; resistance 1. Introduction Nowadays, the issue of pathogens resistant to drugs and the urgent need for new compounds that are capable of eradicating these pathogens are well known and understood.