The Expectancy Dynamics of Anti-Tonal Twelve-Tone Rows: a Commentary and Reanalysis of Von Hippel & Huron (2020)

Total Page:16

File Type:pdf, Size:1020Kb

The Expectancy Dynamics of Anti-Tonal Twelve-Tone Rows: a Commentary and Reanalysis of Von Hippel & Huron (2020) The Expectancy Dynamics of Anti-Tonal Twelve-Tone Rows: A Commentary and Reanalysis of von Hippel & Huron (2020) NIELS CHR. HANSEN[1] Aarhus Institute of Advanced Studies & Center for Music in the Brain, Aarhus University ABSTRACT: This commentary provides two methodological expansions of von Hippel and Huron’s (2020) empirical report on (anti-)tonality in twelve-tone rows by Arnold Schoenberg, Anton Webern, and Alban Berg. First, motivated by the theoretical importance of equality between all pitch classes in twelve-tone music, a full replication of their findings of “anti-tonality” in rows by Schoenberg and Webern is offered using a revised tonal fit measure which is not biased towards row-initial and row-final sub- segments. Second, motivated by a long-standing debate in music cognition research between distributional and sequential/dynamic tonality concepts, information-theoretic measures of entropy and information content are estimated by a computational model and pitted against distributional tonal fit measures. Whereas Schoenberg’s rows are characterized by low distributional tonal fit, but do not strongly capitalize on tonal expectancy dynamics, Berg’s rows exhibit tonal traits in terms of low unexpectedness, and Webern’s rows achieve anti-tonal traits by combining high uncertainty and low unexpectedness through prominent use of the semitone interval. This analysis offers a complementary–and arguably more nuanced–picture of dodecaphonic compositional practice. Submitted 2020 August 21; accepted 2020 August 25. Published 2020 October 22; https://doi.org/10.18061/emr.v15i1-2.7806 KEYWORDS: dodecaphony, twelve-tone music, tonality, expectation, entropy, probability, information theory DESPITE Arnold Schoenberg’s (1941/1950) proclamation that “[c]omposition with twelve tones has no other aim than comprehensibility” (p. 103), dodecaphonic (i.e., twelve-tone) music has failed to reach the level of widespread popularity that he and his followers from the Second Viennese School had originally hoped for. As we approach the centennial for the discovery of Schoenberg's “method of composing with twelve tones,” discussions about its comprehensibility continue to resurface in academic circles. Music cognition researchers, in particular, have contributed to this debate and sometimes provided important empirical corroboration (see, e.g., Brown, 2016; Dibben, 1994; Dienes & Longuet-Higgins, 2004; de Lannoy, 1972; Krumhansl, Sandell, & Sergeant, 1987; Ockelford & Sergeant, 2013; Pedersen, 1975). The authors of the current target article, Paul von Hippel and David Huron, made an essential contribution to this endeavor when they presented their initial analysis of anti-tonal (or “contra-tonal”) traits in Schoenberg’s twelve-tone rows in an unpublished conference paper about 20 years ago (Huron & von Hippel, 2000). Although Huron briefly revisited these results in the penultimate chapter of his Sweet Anticipation (Huron, 2006), the recent paper by von Hippel and Huron (2020) provides the first detailed account in journal publication format and, furthermore, consolidates the original findings by expanding them to Anton Webern’s and Alban Berg’s rows and by incorporating a set of control variables and a larger control corpus. A major methodological innovation of this research project is the procedure for quantifying the tonality of twelve-tone rows. Specifically, tonal fit is operationalized as the average of 44 Pearson correlations between the highest-scoring major/minor key profile (see their Figure 2) and sub-segments of cardinality one to eleven—always including the first pitch in the row—of the prime (P), retrograde (R), inversion (I), and retrograde-inversion (RI) forms of each twelve-tone row. In this way, von Hippel and Huron (2020) were able to demonstrate that segments from twelve-tone rows by Arnold Schoenberg (n = 42) and Anton Webern (n = 21) achieved significantly lower tonal fit than segments from randomly © 2020 Hansen. This article is published under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) Empirical Musicology Review Vol. 15, No. 1-2, 2020 generated twelve-tone rows (n = 1,000). There was, on the other hand, no significant difference in tonal fit between the random sample and twelve-tone rows by another famous Schoenberg student, Alban Berg (n = 23), who is known for adhering more closely to tonal traits in his dodecaphonic works (Jarman, 1985). These findings were interpreted to mean that Schoenberg’s and Webern’s twelve-tone rows are in fact “anti-tonal,” i.e. actively composed to avoid tonal features and thus presumably also to circumvent tonal listening schemata. As it provides a methodologically sound empirical basis for discussions about tonality (and absence thereof) in dodecaphonic composition, von Hippel and Huron’s (2020) paper was most certainly worth the long wait. At the same time, their choice of method—which is clearly only one amongst many possible ones—invites for replication using alternative procedures. This may challenge or indeed further substantiate their claims regarding anti-tonality in Schoenberg and Webern (and tonality in Berg for that matter). To that end, below, I offer two methodological expansions of von Hippel and Huron’s (2020) analysis. First, I present a close replication of their analysis using a modified operationalization of tonal fit that considers all sub-segments of twelve-tone rows on equal terms rather than having a bias towards initial and final tones of the rows. Second, I quantify the sequential expectancy dynamics of twelve-tone row forms using a computational model of melodic expectation. As will be evident, some of these analyses are consistent with von Hippel and Huron’s (2020) findings while others deviate slightly and thus may offer a more nuanced picture of anti-tonal and tonal twelve-tone composition in Schoenberg’s, Webern’s, and Berg’s oeuvres. CONSIDERING ALL POSSIBLE SUB-SEGMENTS OF ROWS As mentioned above, von Hippel and Huron’s (2020) operationalization of tonal fit averages 44 correlations corresponding to the highest numerical Pearson correlation with any of the 12 major or 12 minor key profiles (cf. Krumhansl & Kessler, 1982) for the 1 to 11 first tones of the P, I, R, and RI forms of each row. Because peripheral (i.e., initial or final) tones of the row are more likely than medial tones to be featured in sub-segments computed in this way, this automatically leads to an imbalance in favor of the former over the latter. This resulting row-initial and row-final bias may indeed be justified in terms of general psychological mechanisms where primacy and recency effects are well-established (Lewandowsky & Murdock, 1989) and in musical practice where themes are often identified by their beginning, as exemplified by dictionaries of musical themes (e.g., Barlow & Morgenstern, 1983). Musical serial order effects also appear, for example, in the reconstruction of order for verses in church hymns (Maylor, 2002). Yet, the current operationalization of tonal fit seems somewhat at odds with dodecaphonic principles of equality between all twelve pitch classes, such as expressed in Josef Matthias Hauer’s (1920) “law of the twelve tones” which inspired subsequent dodecaphonic compositional practice. Thus, it seems relevant to test if von Hippel and Huron’s (2020) findings hold true with an alternative operationalization of tonal fit that considers all possible sub-segments of the rows. Methods All the twelve-tone rows used in the original study by von Hippel and Huron (2020) were obtained in the humdrum **kern format. Specifically, 42, 21, and 23 rows composed by Arnold Schoenberg, Anton Webern, and Alban Berg, respectively, were downloaded from the website of the Center for Computer Assisted Research in the Humanities (London et al., 2002). The authors of the target article, moreover, provided a link to the 1,000 random rows used in their study. All available files were imported into R (R Core Team, 2018) and processed there. First, a **kern spine was added to the random row files who previously only contained a **pc spine with numerals 0-11 to designate 12-tet pitch classes. The **kern spine was created by (arbitrarily) mapping 0 to C, 1 to C#, 2 to D etc. Second, an arbitrary quarter-note duration was added to all note events (this was required for import into the computational model used below). Third, retrograde (R), inversion (I), and retrograde inversion (RI) forms of each row were generated from the imported prime (P) forms. Specifically, the order of pitches of the P form was reversed to obtain the R form. To obtain the I form, the intervals of the P form were first inverted after which the new row was transposed up or down in its entirety to comprise the exact same pitch set as the P form (i.e., all pitches from C3 to B3). For consistency, the **pc spine was updated 129 Empirical Musicology Review Vol. 15, No. 1-2, 2020 accordingly. Finally, the RI form was obtained by reversing the order of pitches in this newly obtained I form. Next, for replication purposes, von Hippel and Huron’s (2020) original measure of tonal fit was computed. This was done by extracting the 11 sub-segments of cardinality 1 to 11 (i.e., comprising the first tone, the first two tones, the first three tones etc.) of each of the four P, R, I, RI forms of each twelve-tone row. The Krumhansl-Schmuckler key-finding algorithm (Krumhansl & Schmuckler, 1986; Krumhansl, 1990) was then applied to each of these 44 sub-segments to identify the highest scoring Pearson correlation with any of the 12 major and 12 minor key profiles (Krumhansl & Kessler, 1982). Tonal fit was finally calculated by averaging these 44 values. Finally, an alternative operationalization of tonal fit was computed that equally considers all possible sub-segments of rows, thus avoiding the bias for peripheral over medial tones in von Hippel and Huron's (2020) original measure.
Recommended publications
  • The Order of Numbers in the Second Viennese School of Music
    The order of numbers in the Second Viennese School of Music Carlota Sim˜oes Department of Mathematics University of Coimbra Portugal Mathematics and Music seem nowadays independent areas of knowledge. Nevertheless, strong connections exist between them since ancient times. Twentieth-century music is no exception, since in many aspects it admits an obvious mathematical formalization. In this article some twelve-tone music rules, as created by Schoenberg, are presented and translated into math- ematics. The representation obtained is used as a tool in the analysis of some compositions by Schoenberg, Berg, Webern (the Second Viennese School) and also by Milton Babbitt (a contemporary composer born in 1916). The Second Viennese School of Music The 12-tone music was condemned by the Nazis (and forbidden in the occupied Europe) because its author was a Jew; by the Stalinists for having a bourgeois cosmopolitan formalism; by the public for being different from everything else. Roland de Cand´e[2] Arnold Schoenberg (1874-1951) was born in Vienna, in a Jewish family. He lived several years in Vienna and in Berlin. In 1933, forced to leave the Academy of Arts of Berlin, he moved to Paris and short after to the United States. He lived in Los Angeles from 1934 until the end of his life. In 1923 Schoenberg presented the twelve-tone music together with a new composition method, also adopted by Alban Berg (1885-1935) and Anton Webern (1883-1945), his students since 1904. The three composers were so closely associated that they became known as the Second Viennese School of Music.
    [Show full text]
  • A Heretic in the Schoenberg Circle: Roberto Gerhard's First Engagement with Twelve-Tone Procedures in Andantino
    Twentieth-Century Music 16/3, 557–588 © Cambridge University Press 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi: 10.1017/S1478572219000306 A Heretic in the Schoenberg Circle: Roberto Gerhard’s First Engagement with Twelve-Tone Procedures in Andantino DIEGO ALONSO TOMÁS Abstract Shortly before finishing his studies with Arnold Schoenberg, Roberto Gerhard composed Andantino,a short piece in which he used for the first time a compositional technique for the systematic circu- lation of all pitch classes in both the melodic and the harmonic dimensions of the music. He mod- elled this technique on the tri-tetrachordal procedure in Schoenberg’s Prelude from the Suite for Piano, Op. 25 but, unlike his teacher, Gerhard treated the tetrachords as internally unordered pitch-class collections. This decision was possibly encouraged by his exposure from the mid- 1920s onwards to Josef Matthias Hauer’s writings on ‘trope theory’. Although rarely discussed by scholars, Andantino occupies a special place in Gerhard’s creative output for being his first attempt at ‘twelve-tone composition’ and foreshadowing the permutation techniques that would become a distinctive feature of his later serial compositions. This article analyses Andantino within the context of the early history of twelve-tone music and theory. How well I do remember our Berlin days, what a couple we made, you and I; you (at that time) the anti-Schoenberguian [sic], or the very reluctant Schoenberguian, and I, the non-conformist, or the Schoenberguian malgré moi.
    [Show full text]
  • Kostka, Stefan
    TEN Classical Serialism INTRODUCTION When Schoenberg composed the first twelve-tone piece in the summer of 192 1, I the "Pre- lude" to what would eventually become his Suite, Op. 25 (1923), he carried to a conclusion the developments in chromaticism that had begun many decades earlier. The assault of chromaticism on the tonal system had led to the nonsystem of free atonality, and now Schoenberg had developed a "method [he insisted it was not a "system"] of composing with twelve tones that are related only with one another." Free atonality achieved some of its effect through the use of aggregates, as we have seen, and many atonal composers seemed to have been convinced that atonality could best be achieved through some sort of regular recycling of the twelve pitch class- es. But it was Schoenberg who came up with the idea of arranging the twelve pitch classes into a particular series, or row, th at would remain essentially constant through- out a composition. Various twelve-tone melodies that predate 1921 are often cited as precursors of Schoenberg's tone row, a famous example being the fugue theme from Richard Strauss's Thus Spake Zararhustra (1895). A less famous example, but one closer than Strauss's theme to Schoenberg'S method, is seen in Example IO-\. Notice that Ives holds off the last pitch class, C, for measures until its dramatic entrance in m. 68. Tn the music of Strauss and rves th e twelve-note theme is a curiosity, but in the mu sic of Schoenberg and his fo ll owers the twelve-note row is a basic shape that can be presented in four well-defined ways, thereby assuring a certain unity in the pitch domain of a composition.
    [Show full text]
  • Pitch-Class Set Theory: an Overture
    Chapter One Pitch-Class Set Theory: An Overture A Tale of Two Continents In the late afternoon of October 24, 1999, about one hundred people were gathered in a large rehearsal room of the Rotterdam Conservatory. They were listening to a discussion between representatives of nine European countries about the teaching of music theory and music analysis. It was the third day of the Fourth European Music Analysis Conference.1 Most participants in the conference (which included a number of music theorists from Canada and the United States) had been looking forward to this session: meetings about the various analytical traditions and pedagogical practices in Europe were rare, and a broad survey of teaching methods was lacking. Most felt a need for information from beyond their country’s borders. This need was reinforced by the mobility of music students and the resulting hodgepodge of nationalities at renowned conservatories and music schools. Moreover, the European systems of higher education were on the threshold of a harmoni- zation operation. Earlier that year, on June 19, the governments of 29 coun- tries had ratifi ed the “Bologna Declaration,” a document that envisaged a unifi ed European area for higher education. Its enforcement added to the urgency of the meeting in Rotterdam. However, this meeting would not be remembered for the unusually broad rep- resentation of nationalities or for its political timeliness. What would be remem- bered was an incident which took place shortly after the audience had been invited to join in the discussion. Somebody had raised a question about classroom analysis of twentieth-century music, a recurring topic among music theory teach- ers: whereas the music of the eighteenth and nineteenth centuries lent itself to general analytical methodologies, the extremely diverse repertoire of the twen- tieth century seemed only to invite ad hoc approaches; how could the analysis of 1.
    [Show full text]
  • INVARIANCE PROPERTIES of SCHOENBERG's TONE ROW SYSTEM by James A. Fill and Alan J. Izenman Technical·Report No. 328 Department
    INVARIANCE PROPERTIES OF SCHOENBERG'S TONE ROW SYSTEM by James A. Fill and Alan J. Izenman Technical·Report No. 328 Department of Applied Statistics School of Statistics University of Minnesota Saint Paul, MN 55108 October 1978 ~ 'It -: -·, ........ .t .. ,.. SUMMARY -~ This paper organizes in a ~ystematic manner the major features of a general theory of m-tone rows. A special case of this development is the twelve-tone row system of musical composition as introduced by Arnold Schoenberg and his Viennese school. The theory as outlined here applies to tone rows of arbitrary length, and can be applied to microtonal composition for electronic media. Key words: 12-tone rows, m-tone rows, inversion, retrograde, retrograde-inversion, transposition, set-complex, permutations. Short title: Schoenberg's Tone .Row System. , - , -.-· 1. Introduction. Musical composition in the twentieth century has been ~ enlivened by Arnold Schoenberg's introduction of a structured system which em­ phasizes.its serial and atonal nature. Schoenberg called his system "A Method of Composing with Twelve Tones which are Related Only with One Another" (12, p. 107]. Although Schoenberg himself regarded his work as the logical outgrowth of tendencies inherent in the development of Austro-German music during the previous one hundred years, it has been criticized as purely "abstract and mathematical cerebration" and a certain amount of controversy still surrounds the method. The fundamental building-block in Schoenberg's system is the twelve-tone !2!!, a specific linear ordering of all twelve notes--C, CU, D, Eb, E, F, FU, G, G#, A, Bb, and B--of the equally tempered chromatic scale, each note appearing once and only once within the row.
    [Show full text]
  • Thesis Submission
    Rebuilding a Culture: Studies in Italian Music after Fascism, 1943-1953 Peter Roderick PhD Music Department of Music, University of York March 2010 Abstract The devastation enacted on the Italian nation by Mussolini’s ventennio and the Second World War had cultural as well as political effects. Combined with the fading careers of the leading generazione dell’ottanta composers (Alfredo Casella, Gian Francesco Malipiero and Ildebrando Pizzetti), it led to a historical moment of perceived crisis and artistic vulnerability within Italian contemporary music. Yet by 1953, dodecaphony had swept the artistic establishment, musical theatre was beginning a renaissance, Italian composers featured prominently at the Darmstadt Ferienkurse , Milan was a pioneering frontier for electronic composition, and contemporary music journals and concerts had become major cultural loci. What happened to effect these monumental stylistic and historical transitions? In addressing this question, this thesis provides a series of studies on music and the politics of musical culture in this ten-year period. It charts Italy’s musical journey from the cultural destruction of the post-war period to its role in the early fifties within the meteoric international rise of the avant-garde artist as institutionally and governmentally-endorsed superman. Integrating stylistic and aesthetic analysis within a historicist framework, its chapters deal with topics such as the collective memory of fascism, internationalism, anti- fascist reaction, the appropriation of serialist aesthetics, the nature of Italian modernism in the ‘aftermath’, the Italian realist/formalist debates, the contradictory politics of musical ‘commitment’, and the growth of a ‘new-music’ culture. In demonstrating how the conflict of the Second World War and its diverse aftermath precipitated a pluralistic and increasingly avant-garde musical society in Italy, this study offers new insights into the transition between pre- and post-war modernist aesthetics and brings musicological focus onto an important but little-studied era.
    [Show full text]
  • Segall, Prokofiev's Symphony ..., and the Theory Of
    Prokofiev’s Symphony no. 2, Yuri Kholopov, and the Theory of Twelve-Tone Chords Christopher Segall NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.18.24.2/mto.18.24.2.segall.php KEYWORDS: Sergei Prokofiev, twelve-tone technique, twelve-tone chord, aggregate chord, Russian music theory, Yuri Kholopov ABSTRACT: A small collection of works, including Prokofiev’s Symphony no. 2 (1924), include chords with all twelve pitch classes. Yuri Kholopov, the foremost late-Soviet theorist, considered twelve-tone chords a branch of twelve-tone technique. Taking Prokofiev and Kholopov as a starting point, and building on prior scholarship by Martina Homma, I assemble a history and theory of twelve-tone chords. The central theoretical problem is that of differentiation: as all twelve-tone chords contain the same twelve pitch classes, there is essentially only one twelve-tone chord. Yet twelve-tone chords can be categorized on the basis of their deployment in pitch space. Twelve-tone chords tend to exhibit three common features: they avoid doublings, they have a range of about 3 to 5.5 octaves, and their vertical interval structure follows some sort of pattern. This article contextualizes twelve-tone chords within the broader early-twentieth-century experimentation with aggregate-based composition. Received May 2017 Volume 24, Number 2, July 2018 Copyright © 2018 Society for Music Theory Introduction [1] This paper bases a history and theory of twelve-tone chords around an unlikely starting point: Sergei Prokofiev, whose Symphony no. 2 (1924) features a chord with all twelve pitch classes.(1) Scholars have developed sophisticated models for various aspects of twelve-tone technique—such as tone-row structure, invariance, hexachordal combinatoriality, and rotation—but with isolated exceptions have not to date examined the phenomenon of twelve-tone verticals.
    [Show full text]
  • WHAT USE IS MUSIC in an OCEAN of SOUND? Towards an Object-Orientated Arts Practice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Oxford Brookes University: RADAR WHAT USE IS MUSIC IN AN OCEAN OF SOUND? Towards an object-orientated arts practice AUSTIN SHERLAW-JOHNSON OXFORD BROOKES UNIVERSITY Submitted for PhD DECEMBER 2016 Contents Declaration 5 Abstract 7 Preface 9 1 Running South in as Straight a Line as Possible 12 2.1 Running is Better than Walking 18 2.2 What You See Is What You Get 22 3 Filling (and Emptying) Musical Spaces 28 4.1 On the Superficial Reading of Art Objects 36 4.2 Exhibiting Boxes 40 5 Making Sounds Happen is More Important than Careful Listening 48 6.1 Little or No Input 59 6.2 What Use is Art if it is No Different from Life? 63 7 A Short Ride in a Fast Machine 72 Conclusion 79 Chronological List of Selected Works 82 Bibliography 84 Picture Credits 91 Declaration I declare that the work contained in this thesis has not been submitted for any other award and that it is all my own work. Name: Austin Sherlaw-Johnson Signature: Date: 23/01/18 Abstract What Use is Music in an Ocean of Sound? is a reflective statement upon a body of artistic work created over approximately five years. This work, which I will refer to as "object- orientated", was specifically carried out to find out how I might fill artistic spaces with art objects that do not rely upon expanded notions of art or music nor upon explanations as to their meaning undertaken after the fact of the moment of encounter with them.
    [Show full text]
  • The Computational Attitude in Music Theory
    The Computational Attitude in Music Theory Eamonn Bell Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Eamonn Bell All rights reserved ABSTRACT The Computational Attitude in Music Theory Eamonn Bell Music studies’s turn to computation during the twentieth century has engendered particular habits of thought about music, habits that remain in operation long after the music scholar has stepped away from the computer. The computational attitude is a way of thinking about music that is learned at the computer but can be applied away from it. It may be manifest in actual computer use, or in invocations of computationalism, a theory of mind whose influence on twentieth-century music theory is palpable. It may also be manifest in more informal discussions about music, which make liberal use of computational metaphors. In Chapter 1, I describe this attitude, the stakes for considering the computer as one of its instruments, and the kinds of historical sources and methodologies we might draw on to chart its ascendance. The remainder of this dissertation considers distinct and varied cases from the mid-twentieth century in which computers or computationalist musical ideas were used to pursue new musical objects, to quantify and classify musical scores as data, and to instantiate a generally music-structuralist mode of analysis. I present an account of the decades-long effort to prepare an exhaustive and accurate catalog of the all-interval twelve-tone series (Chapter 2). This problem was first posed in the 1920s but was not solved until 1959, when the composer Hanns Jelinek collaborated with the computer engineer Heinz Zemanek to jointly develop and run a computer program.
    [Show full text]
  • Modern Art Music Terms
    Modern Art Music Terms Aria: A lyrical type of singing with a steady beat, accompanied by orchestra; a songful monologue or duet in an opera or other dramatic vocal work. Atonality: In modern music, the absence (intentional avoidance) of a tonal center. Avant Garde: (French for "at the forefront") Modern music that is on the cutting edge of innovation.. Counterpoint: Combining two or more independent melodies to make an intricate polyphonic texture. Form: The musical design or shape of a movement or complete work. Expressionism: A style in modern painting and music that projects the inner fear or turmoil of the artist, using abrasive colors/sounds and distortions (begun in music by Schoenberg, Webern and Berg). Impressionism: A term borrowed from 19th-century French art (Claude Monet) to loosely describe early 20th- century French music that focuses on blurred atmosphere and suggestion. Debussy "Nuages" from Trois Nocturnes (1899) Indeterminacy: (also called "Chance Music") A generic term applied to any situation where the performer is given freedom from a composer's notational prescription (when some aspect of the piece is left to chance or the choices of the performer). Metric Modulation: A technique used by Elliott Carter and others to precisely change tempo by using a note value in the original tempo as a metrical time-pivot into the new tempo. Carter String Quartet No. 5 (1995) Minimalism: An avant garde compositional approach that reiterates and slowly transforms small musical motives to create expansive and mesmerizing works. Glass Glassworks (1982); other minimalist composers are Steve Reich and John Adams. Neo-Classicism: Modern music that uses Classic gestures or forms (such as Theme and Variation Form, Rondo Form, Sonata Form, etc.) but still has modern harmonies and instrumentation.
    [Show full text]
  • An Examination of Jerry Goldsmith's
    THE FORBIDDEN ZONE, ESCAPING EARTH AND TONALITY: AN EXAMINATION OF JERRY GOLDSMITH’S TWELVE-TONE SCORE FOR PLANET OF THE APES VINCENT GASSI A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN MUSIC YORK UNIVERSITY TORONTO, ONTARIO MAY 2019 © VINCENT GASSI, 2019 ii ABSTRACT Jerry GoldsMith’s twelve-tone score for Planet of the Apes (1968) stands apart in Hollywood’s long history of tonal scores. His extensive use of tone rows and permutations throughout the entire score helped to create the diegetic world so integral to the success of the filM. GoldsMith’s formative years prior to 1967–his training and day to day experience of writing Music for draMatic situations—were critical factors in preparing hiM to meet this challenge. A review of the research on music and eMotion, together with an analysis of GoldsMith’s methods, shows how, in 1967, he was able to create an expressive twelve-tone score which supported the narrative of the filM. The score for Planet of the Apes Marks a pivotal moment in an industry with a long-standing bias toward modernist music. iii For Mary and Bruno Gassi. The gift of music you passed on was a game-changer. iv ACKNOWLEDGEMENTS Heartfelt thanks and much love go to my aMazing wife Alison and our awesome children, Daniela, Vince Jr., and Shira, without whose unending patience and encourageMent I could do nothing. I aM ever grateful to my brother Carmen Gassi, not only for introducing me to the music of Jerry GoldsMith, but also for our ongoing conversations over the years about filM music, composers, and composition in general; I’ve learned so much.
    [Show full text]
  • Theory IV – Study Guide Dr. Amy Dunker Clarke College Dubuque, IA 52001 Classical Serialism Arnold Schoenb
    Theory IV – Study Guide Dr. Amy Dunker Clarke College Dubuque, IA 52001 www.amydunker.com Classical Serialism Arnold Schoenberg composed the first twelve-tone piece in the summer of 1921 (Suite, Op. 25 (completed in 1923). Schoenberg had developed a method of composing with twelve tones that are related only with one another. He saw twelve-tone or serial composition as the natural extension of chromaticism on the tonal system. Anton Webern and Alban Berg: Schoenberg’s two pupils who composed in the twelve- tone method. Tone Row (also called , Row, Set, Basic Set, Series): an arrangement of the twelve pitches of the chromatic scale so that no notes repeat (except immediately after it is heard and trills/tremolos) until all pitches of the row have sounded in order. Dodecaphonic Scale: Twelve tone scale Four Forms of the Tone Row: Prime: The original set (do not confuse this with the terms use in Non-Serial Atonality) Retrograde: The original set in reverse order (i.e. backwards) Inversion: The mirror inversion of the original set Retrograde Inversion: The inversion in reverse order Abbreviations: P=Prime R=Retrograde I=Inversion RI=Retrograde Inversion *In addition, each of the four basic forms has twelve transpositions Order Numbers: numbers assigned to the row which indicate each notes intervallic distance from the first note of the row. The first note of the row is assigned the number zero (0). Twelve-Tone Matrix (“Magic Square”): a method of determining all 48 possible versions of the tone row. To construct a Twelve-Tone Matrix do the following: 1.) Fill in the Prime or Original row across the top ( from left to right) using the row’s order numbers.
    [Show full text]