American Recent Eulipotyphla Nesophontids, Solenodons, Moles, and Shrews in the New World

Total Page:16

File Type:pdf, Size:1020Kb

American Recent Eulipotyphla Nesophontids, Solenodons, Moles, and Shrews in the New World Smithsonian Institution Scholarly Press smithsonian contributions to zoology • number 650 Smithsonian Institution Scholarly Press American Recent Eulipotyphla Nesophontids, Solenodons, Moles, and Shrews in the New World Neal Woodman SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years in thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Smithsonian Institution Scholarly Press (SISP) publishes small papers and full-scale monographs that report on research and collections of the Institution’s museums and research centers. The Smithsonian Contributions Series are distributed via exchange mailing lists to libraries, universities, and similar institutions throughout the world. Manuscripts intended for publication in the Contributions Series undergo substantive peer review and evalu- ation by SISP’s Editorial Board, as well as evaluation by SISP for compliance with manuscript preparation guidelines (available at https://scholarlypress.si.edu). For fully searchable PDFs of all open access series and publications of the Smithsonian Institution Scholarly Press, visit Open SI at https://opensi.si.edu. smithsonian contributions to zoology • numb e r 6 5 0 American Recent Eulipotyphla Nesophontids, Solenodons, Moles, and Shrews in the New World Neal Woodman WASHINGTON, D.C. 2018 ABSTRACT Woodman, Neal. American Recent Eulipotyphla: Nesophontids, Solenodons, Moles, and Shrews in the New World. Smithsonian Contributions to Zoology, number 650, vi + 107 pages, 27 figures, 1 table, 4 appendixes, 2 indexes, 2018. — The mammalian taxonomic order Eulipotyphla comprises the living families Erinaceidae (gymnures, hedgehogs, and moonrats), Solenodontidae (solenodons), Soricidae (shrews), and Talpidae (desmans and moles), as well as the recently extinct Nesophontidae (nesophontids). Morphological and molecular studies continue to alter our view of relationships within and among these families, and this research has added considerably to our understanding of the diversity, distribu- tions, and relationships of many of the New World (i.e., North and South America and associated islands) species that comprise them. Currently, there are more than 450 recognized living species worldwide, making the Eulipotyphla the third most speciose order of mammals. In this work, I attempt to summarize the taxonomic results of recent studies, provide a guide to the most appropriate current applications of New World taxonomic names and their synonyms, and indicate current understanding of their distributions. The eulipotyphlans of this region currently include 111 recognized species of shrews, seven species of moles, and both living species of solenodons. Cover images, from left to right: Solenodon cubanus (Figure 7, top), Neurotrichus gibbsii (Figure 12), Sorex brevicaudatus (detail from Figure 17). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957, Washington, D.C. 20013-7012 https://scholarlypress.si.edu Compilation copyright © 2018 Smithsonian Institution The text and certain figures in this publication are in the public domain. The rights to credited images in this publication, including cover and interior designs, are owned either by the Smithsonian Institution or by third parties. Fair use of materi- als is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify copyrighted content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. Library of Congress Cataloging-in-Publication Data Names: Woodman, Neal, author. | Smithsonian Institution Scholarly Press, publisher. Title: American recent Eulipotyphla : Nesophontids, Solenodons, Moles, and Shrews in the New World / Neal Woodman. Other titles: Smithsonian contributions to zoology ; no. 650. 0081-0282 Description: Washington, D.C. : Smithsonian Institution Scholarly Press, 2018. | Series: Smithsonian contributions to zoology, ISSN 0081-0282 ; number 650 | Includes bibliographical references and index. | Smithsonian Institution Compilation copyright 2018 Identifiers: LCCN 2018038627 Subjects: LCSH: Solenodontidae—North America. | Solenodontidae—South America. | Moles (Animals)—North America. | Moles (Animals)—South America. | Shrews—North America. | Shrews—South America. Classification: LCC QL737.S7 W66 2018 | DDC 599.33097—dc23 | SUDOC SI 1.27:650 LC record available at https://lccn.loc.gov/2018038627 ISSN: 1943-6696 (online); 0081-0282 (print) Publication date (online): 16 November 2018 Ó The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials Z39.48–1992. Contents LIST OF FIGURES v INTRODUCTION 1 Phylogenetic Relationships of the Eulipotyphla 2 What Happened to the “Insectivora”? 3 Organization of the List 4 EARLY NAMES FOR NORTH AMERICAN EULIPOTYPHLANS 5 RECENT AMERICAN EULIPOTYPHLA 10 Order Eulipotyphla 10 Family Nesophontidae Anthony, 1916 10 Genus Nesophontes Anthony, 1916 10 Family Solenodontidae Gill, 1872 12 Genus Solenodon Brandt, 1833 12 Family Talpidae G. Fischer, 1814 14 Tribe Condylurini Gill, 1875 14 Genus Condylura Illiger, 1811 14 Tribe Neurotrichini Hutterer, 2005 17 Genus Neurotrichus Günther, 1880 17 Tribe Scalopini Gill, 1875 19 Genus Parascalops True, 1894 19 Genus Scalopus É. Geoffroy Saint-Hilaire, 1803 20 Genus Scapanus Pomel, 1848 25 Family Soricidae G. Fischer, 1814 28 Subfamily Soricinae G. Fischer, 1814 28 Tribe Blarinini Kretzoi, 1965 28 Genus Blarina Gray, 1838 28 Genus Cryptotis Pomel, 1848 34 Tribe Notiosoricini Reumer, 1984 45 Genus Megasorex Hibbard, 1950 45 Genus Notiosorex Coues, 1877 45 Tribe Soricini G. Fischer, 1814 46 Genus Sorex Linnaeus, 1758 46 Acknowledgments 76 iv • SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY APPENDIX A: PHYLOGENETIC LISTING OF SPECIES 77 APPENDIX B: LITERATURE ABBREVIATIONS 81 APPENDIX C: INSTITUTIONAL ABBREVIATIONS 87 APPENDIX D: DISTRIBUTION OF TYPE LOCALITIES 89 REFERENCES 91 TAXONOMIC INDEX 101 AUTHORITY INDEX 105 Figures 1. Numbers of recognized species of New World Soricidae through time 2 2. Phylogenetic relationships of the families of Eulipotyphla 3 3. Sorex avellanarum É. Geoffroy Saint-Hilaire, 1803 7 4. John Bachman’s (1837) shrews: Sorex richardsonii Bachman, 1837 (=Sorex arcticus Kerr, 1792); Sorex forsteri Richardson, 1828 (=Sorex cinereus Kerr, 1792); Sorex cooperi Bachman, 1837 (=Sorex cinereus Kerr, 1792); Sorex fimbripes Bachman, 1837 8 5. Pen-over-pencil sketch of the “black-eared shrew” or “corn mouse,” Sorex melanotis Rafinesque, 1818b 9 6. The “red mole,” Seba’s (1734) Talpa, rubra, Americana 10 7. The Cuban solenodon, Solenodon cubanus Peters, 1861 13 8. The Hispaniolan solenodon, Solenodon paradoxus Brandt, 1833 14 9. “La Taupe du Canada,” Talpa canadensis De la Faille, 1769 (=Condylura cristata (Linnaeus 1758)) 15 10. Condylura macroura Harlan, 1825 (=Condylura cristata (Linnaeus, 1758)) 16 11. Spencer Baird’s shrews and mole: Blarina exilipes Baird, 1857 (=Sorex parvus Say, 1822 = Cryptotis parvus); Blarina berlandieri Baird, 1857 (=Cryptotis berlandieri); Sorex hoyi Baird, 1857; Sorex platyrhinus De Kay, 1842 (=Sorex cinereus Kerr, 1792); Urotrichus gibbsii Baird, 1857 (=Neurotrichus gibbsii) 18 12. Neurotrichus gibbsii (Baird, 1857) 19 13. Thomas Pennant’s (1771) “radiated mole” (=Sorex cristatus Linnaeus, 1758 = Condylura cristata) and “long-tailed mole” (=Scalops breweri Bachman, 1841= Parascalops breweri) 21 14. Ventral view of the “purple mole,” Seba’s (1734) Talpa, Virginianus, niger, supinus (=Sorex aquaticus Linnaeus, 1758 = Scalopus aquaticus) 23 15. Sorex aquaticus Linnaeus, 1758 (=Scalopus aquaticus) 23 16. Sorex brevicaudus Say, 1822 (=Blarina brevicauda) and Sorex parvus Say, 1822 (=Cryptotis parvus) 29 17. Sorex brevicaudatus Duvernoy, 1842 (=Sorex brevicaudus Say, 1842 = Blarina brevicauda) 30 18. Benjamin Barton’s (1806) “black shrew” from the vicinity of Philadelphia, the basis for Sorex niger Ord, 1815 (=Sorex talpoides Gapper, 1830 = Blarina brevicauda talpoides) 31 vi • SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY 19. Sorex talpoides Gapper, 1830 (=Blarina brevicauda talpoides) 31 20. John Bachman’s (1837) shrews: Sorex carolinensis Bachman, 1837 (=Blarina carolinensis); Sorex longirostris Bachman, 1837; Sorex cinereus Bachman, 1837 (=Blarina floridana Merriam, 1895 = Cryptotis parvus floridanus); Sorex dekayi Bachman, 1837 (=Sorex talpoides Gapper, 1830 = Blarina brevicauda talpoides) 33 21. Sorex harlani Duvernoy, 1842 (=Cryptotis parvus (Say, 1822)) 42 22. Sorex veraepacis Alston,
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Fossil Micromammals of the Early Pliocene Locality of Almenara MB: Biostratigraphical and Palaeoecological Implications
    SPANISH JOURNAL OF PALAEONTOLOGY Fossil micromammals of the early Pliocene locality of Almenara MB: biostratigraphical and palaeoecological implications Samuel MANSINO1,2*, Vicente Daniel CRESPO1,2, María LÁZARO1, Francisco Javier RUIZ- SÁNCHEZ1,2,3, Juan ABELLA3,4 & Plinio MONTOYA1 1 Departament de Geologia, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain; [email protected]; [email protected]; [email protected]; [email protected], [email protected] [email protected] 2 Museu Valencià d’Història Natural, L’Hort de Feliu, P.O. Box 8460, 46018 Alginet, Valencia, Spain 3 INCYT-UPSE, Universidad Estatal Península de Santa Elena, 7047, Santa Elena, Ecuador 4 Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifi ci ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain * Corresponding author Mansino, S., Crespo, V.D., Lázaro, M., Ruiz-sánchez, F.J., Abella, J. & Montoya, P. 2016. Fossil micromammals of the early Pliocene locality of Almenara MB: biostratigraphical and palaeoecological implications. [Micromamíferos fósiles de la localidad del Plioceno inferior de Almenara MB: implicaciones bioestratigráfi cas y paleoecológicas]. Spanish Journal of Palaeontology, 31 (2), 253-270. Manuscript received 20 October 2015 © Sociedad Española de Paleontología ISSN 2255-0550 Manuscript accepted 04 March 2016 ABSTRACT RESUMEN In this work, we have studied the fossil rodent, insectivore En este trabajo hemos estudiado los roedores, insectívoros and chiropteran faunas, of a new locality from the Almenara- y quirópteros fósiles de una nueva localidad del complejo Casablanca karstic complex, named ACB MB (Castellón, kárstico de Almenara-Casablanca, denominada ACB east Spain).
    [Show full text]
  • Late Miocene Soricidae (Mammalia) Fauna from Tardosbánya (Western Hungary)
    Hantkeniana 2, 103-125 (1998) Budapest Late Miocene Soricidae (Mammalia) fauna from Tardosbánya (Western Hungary) Lukács Gy. MÉszÁRos Eötvös Loránd University, Department ofPalaeontology H-I083 Budapest, Ludovika tér 2, Hungary (Wi th 5 figures, 6 tables and 4 plates) The Soricidae (Mamrnalia, Insectivora) elements of the rich and well preserved fossil vertebrate fauna from Tardosbánya limestone quarry (Western Hungary, Gerecse Mountains) are presented. Five species could have been identified from the material: Amblycoptus oligodon KORMOS 1926, Crusafontina konnosi (BACHMAYER& WILSON, 1970), Blarinella dubia (BACHMAYERand WILSON, 1970), Episoricuius gibberodon (PETÉNYI, 1864) and Paenelimnoecus repenningi (BACHMAYER & WILSON, 1970). The occurrence of Crusafantina, B. dubia and P. repenningi indicates that the age of the sarnple is Late Miocene. The morphometrical studies on C. konnosi, and the morphology and the low relative frequency of A. oligodon suggest that the fauna is correlative with the Turolian MN 12 Zone. The occurrence of A. oligodon, C. konnosi and E. gibberodon indicates well watered, forested environment. Introduction The Late Miocene vertebrate fauna from Tardosbánya quarry was colleeted by D. JÁNOSSY Locality (Hungarian Natural History Museum) in 1975. He gave a prelinúnary faunal list of the sample (1981, Tardosbánya is situated at the northern margin only in manuscript form) and deposited the material of the Transdanubian Central Range (Western in the Geological Museum of Hungary (GMH) (in Hungary), about 10 km north from Tatabánya (see the Geological Institute of Hungary). JÁNOSSYlisted Fig. 1). The remains have been found in a sediment- the following soricids: filled fossil shaft in the Jurassic limestone of the Gerecse Mountains, excavated by exploitation in the - "Petenyia" "red marble" quarry near Tardosbánya.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • The Genome of the Pyrenean Desman and the Effects of Bottlenecks and Inbreeding on the Genomic Landscape of an Endangered Species
    Received: 18 August 2020 | Revised: 19 March 2021 | Accepted: 27 April 2021 DOI: 10.1111/eva.13249 ORIGINAL ARTICLE The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species Lídia Escoda | Jose Castresana Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain Abstract The Pyrenean desman (Galemys pyrenaicus) is a small semiaquatic mammal endemic Correspondence Jose Castresana, Institute of Evolutionary to the Iberian Peninsula. Despite its limited range, this species presents a strong ge- Biology (CSIC- Universitat Pompeu Fabra), netic structure due to past isolation in glacial refugia and subsequent bottlenecks. Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain. Additionally, some populations are highly fragmented today as a consequence of river Email: [email protected] barriers, causing substantial levels of inbreeding. These features make the Pyrenean Funding information desman a unique model in which to study the genomic footprints of differentiation, Plan Nacional I+D+i del Ministerio de bottlenecks and extreme isolation in an endangered species. To understand these Ciencia e Innovación, Grant/Award Number: CGL2017- 84799- P (MINECO/AEI/FEDER, UE) processes, the complete genome of the Pyrenean desman was sequenced and as- sembled using a Bloom filter- based approach. An analysis of the 1.83 Gb reference genome and the sequencing of five additional individuals from different evolutionary units allowed us to detect its main genomic characteristics. The population differen- tiation of the species was reflected in highly distinctive demographic trajectories. In addition, a severe population bottleneck during the postglacial recolonization of the eastern Pyrenees created one of the lowest genomic heterozygosity values recorded in a mammal.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Suncus Lixus – Greater Dwarf Shrew
    Suncus lixus – Greater Dwarf Shrew transformed landscapes. It occurs in a number of protected areas and can be locally common in suitable habitat, such as riverine woodland, sandveld and moist grasslands. There is no evidence to suggest a net population decline. However, we caution that molecular data, coupled with further field surveys to delimit Photograph distribution more accurately, are needed to determine whether the highveld grassland and subtropical wanted grasslands subpopulations comprise separate species. If so, both species will need to be reassessed as high rates of grassland habitat loss in both regions may qualify one or both species for a threatened status. Key interventions include protected area expansion of moist grassland and riverine woodland habitats, as well as providing incentives for landowners to sustain natural Regional Red List status (2016) Least Concern* vegetation around wetlands and keep livestock or wildlife at ecological carrying capacity. National Red List status (2004) Data Deficient Regional population effects: There is a disjunct Reasons for change Non-genuine change: distribution between populations in the assessment region Change in risk and the rest of its range. This species is also a poor tolerance disperser. Thus there is not suspected to be a significant Global Red List status (2008) Least Concern rescue effect. TOPS listing (NEMBA) None CITES listing None Distribution Throughout the global range of the Greater Dwarf Shrew Endemic No there are only a few scattered records (Skinner & *Watch-list Data Chimimba 2005). However, it is a widespread species that ranges through East Africa, Central Africa and southern As the colloquial name indicates, although this is Africa.
    [Show full text]
  • Mammals Enhanced Study Guide 7 2018
    Tennessee Naturalist Program Tennessee Mammals Creatures of Habitat Enhanced Study Guide 12/2015 Tennessee Naturalist Program www.tnnaturalist.org Inspiring the desire to learn and share Tennessee’s nature These study guides are designed to reflect and reinforce the Tennessee Naturalist Program’s course curriculum outline, developed and approved by the TNP Board of Directors, for use by TNP instructors to plan and organize classroom discussion and fieldworK components and by students as a meaningful resource to review and enhance class instruction. This guide was compiled specifically for the Tennessee Naturalist Program and reviewed by experts in this discipline. It contains copyrighted worK from other authors and publishers, used here by permission. No part of this document may be reproduced or shared without consent of the Tennessee Naturalist Program and appropriate copyright holders. 2 Tennessee Mammals Creatures of Habitat Objectives Present an overview of mammals including characteristics particular to this class of animals and the different groups of mammals found in Tennessee. Explore their behavior, physiology, and ecology, relating these to habitat needs, environmental adaptations, and ecosystem roles, including human interactions. Time Minimum 4 hours – 2 in class, 2 in field Suggested Materials ( * recommended but not required, ** TNP flash drive) • Mammals of North America, Fourth Edition (Peterson Field Guides), Fiona Reid * • Mammals of North America, Second Edition, (Princeton Field Guides), Roland W. Keys and Don E. Wilson • Tennessee Mammals Enhanced Study Guide, TNP ** • TWRA Bone Box Expected Outcomes Students will gain a basic understanding of 1. the diversity and distribution of mammals in Tennessee, including rare species 2. the major groups of mammals and their systematic relationships 3.
    [Show full text]
  • Solenodon Genome Reveals Convergent Evolution of Venom in Eulipotyphlan Mammals
    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals Nicholas R. Casewella,1, Daniel Petrasb,c, Daren C. Cardd,e,f, Vivek Suranseg, Alexis M. Mychajliwh,i,j, David Richardsk,l, Ivan Koludarovm, Laura-Oana Albulescua, Julien Slagboomn, Benjamin-Florian Hempelb, Neville M. Ngumk, Rosalind J. Kennerleyo, Jorge L. Broccap, Gareth Whiteleya, Robert A. Harrisona, Fiona M. S. Boltona, Jordan Debonoq, Freek J. Vonkr, Jessica Alföldis, Jeremy Johnsons, Elinor K. Karlssons,t, Kerstin Lindblad-Tohs,u, Ian R. Mellork, Roderich D. Süssmuthb, Bryan G. Fryq, Sanjaya Kuruppuv,w, Wayne C. Hodgsonv, Jeroen Kooln, Todd A. Castoed, Ian Barnesx, Kartik Sunagarg, Eivind A. B. Undheimy,z,aa, and Samuel T. Turveybb aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom; bInstitut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany; cCollaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093; dDepartment of Biology, University of Texas at Arlington, Arlington, TX 76010; eDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; fMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; gEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India; hDepartment of Biology, Stanford University, Stanford, CA 94305; iDepartment of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles,
    [Show full text]
  • Moles, Shrews, Mice and More
    Moles, RESEARCHERS FOCUS IN ON Shrews, NEW HAMPSHIRE’S MANY SMALL Mice MAMMALS and more 8 NovemberSeptember / / December October 2016 2016 by ELLEN SNYDER mall mammals – those weighing less than six ounces – are a surprisingly diverse group. In New England, they include mice, voles, bog lemmings, flying squir- Srels, chipmunks, moles and shrews. Researchers study small mammals because they are common, widespread, diverse, easily handled and reproduce often. My father, Dana Snyder, was one of those researchers. In the 1960s, when I was just four years old, he began a long-term study of the ecology of the eastern chipmunk in the Green Mountains of southern Vermont. Our summer camping trips to his study site infused me with a fondness for small mammals, especially chipmunks. Chipmunks are one of those small mammals that both entertain and annoy. Colorful in their brown and white stripes, they are lively and active during the day. When star- tled, they emit a high-pitched “chip” before darting off to a hideout; their low chuck, chuck, chuck is a common summer sound in our woods. They can stuff huge numbers of seeds into their cheek pouches. Despite their prevalence, chipmunks live solitary lives and are highly territorial. In winter, they take a long nap, waking occasionally to eat stored seeds or emerge above ground on a warm winter day. When I was in elementary school, my dad brought home an orphaned flying squirrel. We were enthralled with its large, dark eyes and soft fur. It would curl up in my shirt pocket, and I took it to school for show-and-tell.
    [Show full text]
  • Northern Short−Tailed Shrew (Blarina Brevicauda)
    FIELD GUIDE TO NORTH AMERICAN MAMMALS Northern Short−tailed Shrew (Blarina brevicauda) ORDER: Insectivora FAMILY: Soricidae Blarina sp. − summer coat Credit: painting by Nancy Halliday from Kays and Wilson's Northern Short−tailed Shrews have poisonous saliva. This enables Mammals of North America, © Princeton University Press them to kill mice and larger prey and paralyze invertebrates such as (2002) snails and store them alive for later eating. The shrews have very limited vision, and rely on a kind of echolocation, a series of ultrasonic "clicks," to make their way around the tunnels and burrows they dig. They nest underground, lining their nests with vegetation and sometimes with fur. They do not hibernate. Their day is organized around highly active periods lasting about 4.5 minutes, followed by rest periods that last, on average, 24 minutes. Population densities can fluctuate greatly from year to year and even crash, requiring several years to recover. Winter mortality can be as high as 90 percent in some areas. Fossils of this species are known from the Pliocene, and fossils representing other, extinct species of the genus Blarina are even older. Also known as: Short−tailed Shrew, Mole Shrew Sexual Dimorphism: Males may be slightly larger than females. Length: Range: 118−139 mm Weight: Range: 18−30 g http://www.mnh.si.edu/mna 1 FIELD GUIDE TO NORTH AMERICAN MAMMALS Least Shrew (Cryptotis parva) ORDER: Insectivora FAMILY: Soricidae Least Shrews have a repertoire of tiny calls, audible to human ears up to a distance of only 20 inches or so. Nests are of leaves or grasses in some hidden place, such as on the ground under a cabbage palm leaf or in brush.
    [Show full text]