Envis Bulletin ______
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimum Dietary Diversity for Women a Guide to Measurement
FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S. -
Phytochemicals Are Natural Resources of Food Supplement for Happier People
Horticulture International Journal Review Article Open Access Phytochemicals are natural resources of food supplement for happier people Abstract Volume 3 Issue 6 - 2019 Cacao plants are used for a widespread range of diseases and used in different forms such 1 2 as the full of magnesium for a healthy heart, brain for human, highest plant-based source Fakhrul Islam Sukorno, Shariful Islam, Ak of iron and used as mood elevator like a natural mood elevator and anti-depressant. Maca Lutful Kabir,3 Celia Vargas de la Cruz,4 Sakila are widely used in increases energy level and stamina. It is effectively used in women’s Zaman,5 Gali Adamu Ishaku6 health and mood like alleviates menstrual and menopause issues. Quinoa contains all the 1Department of Pharmacy, North south University, Bangladesh nine essential amino acids, almost twice as much fiber as most other grains and perfect 2Department of Pharmacy, Southeast University, Bangladesh for people with gluten intolerance. Goldenberry helps to prevent certain chronic diseases; 3Faculty of Pharmaceutical Technology, University of Dhaka, low in calories only has about 53 calories per 100 grams and modulates immune function. Bangladesh 4 Lucuma contains beneficial nutrients that sugar lacks. It can help the digestive system Faculty of Pharmacy and Biochemistry - Centro work properly and improves the transportation of oxygen into cells. Purple Corn helps Latinoamericano de Enseñanza e Investigación en Bacteriología the regeneration of cells and connective tissues. Could reduce cancer risk as anthocyanins Alimentaria, Universidad Nacional Mayor de San Marcos, Perú 5Department of Pharmacy, Daffodil International University, could kill cancer cells. Prevents degeneration of cells and slows aging process. -
Fatty Acid-Amino Acid Conjugates Diversification in Lepidopteran Caterpillars
J Chem Ecol (2010) 36:319–325 DOI 10.1007/s10886-010-9764-8 Fatty Acid-amino Acid Conjugates Diversification in Lepidopteran Caterpillars Naoko Yoshinaga & Hans T. Alborn & Tomoaki Nakanishi & David M. Suckling & Ritsuo Nishida & James H. Tumlinson & Naoki Mori Received: 30 September 2009 /Revised: 29 January 2010 /Accepted: 11 February 2010 /Published online: 27 February 2010 # Springer Science+Business Media, LLC 2010 Abstract Fatty acid amino acid conjugates (FACs) have the presence of FACs in lepidopteran species outside these been found in noctuid as well as sphingid caterpillar oral families of agricultural interest is not well known. We con- secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)- ducted FAC screening of 29 lepidopteran species, and found L-glutamine] and its biochemical precursor, N-linolenoyl-L- them in 19 of these species. Thus, FACs are commonly glutamine, are known elicitors of induced volatile emissions synthesized through a broad range of lepidopteran cater- in corn plants. These induced volatiles, in turn, attract natural pillars. Since all FAC-containing species had N-linolenoyl-L- enemies of the caterpillars. In a previous study, we showed glutamine and/or N-linoleoyl-L-glutamine in common, and that N-linolenoyl-L-glutamine in larval Spodoptera litura the evolutionarily earliest species among them had only plays an important role in nitrogen assimilation which might these two FACs, these glutamine conjugates might be the be an explanation for caterpillars synthesizing FACs despite evolutionarily older FACs. Furthermore, some species had an increased risk of attracting natural enemies. However, glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylog- eny indicates that glutamic acid conjugates can be synthe- N. -
Trichosanthes Dioica Roxb.: an Overview
PHCOG REV. REVIEW ARTICLE Trichosanthes dioica Roxb.: An overview Nitin Kumar, Satyendra Singh, Manvi, Rajiv Gupta Department of Pharmacognosy, Faculty of Pharmacy, Babu Banarasi Das National Institute of Technology and Management, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, India Submitted: 01-08-2010 Revised: 05-08-2011 Published: 08-05-2012 ABSTRACT Trichosanthes, a genus of family Cucurbitaceae, is an annual or perennial herb distributed in tropical Asia and Australia. Pointed gourd (Trichosanthes dioica Roxb.) is known by a common name of parwal and is cultivated mainly as a vegetable. Juice of leaves of T. dioica is used as tonic, febrifuge, in edema, alopecia, and in subacute cases of enlargement of liver. In Charaka Samhita, leaves and fruits find mention for treating alcoholism and jaundice. A lot of pharmacological work has been scientifically carried out on various parts of T. dioica, but some other traditionally important therapeutical uses are also remaining to proof till now scientifically. According to Ayurveda, leaves of the plant are used as antipyretic, diuretic, cardiotonic, laxative, antiulcer, etc. The various chemical constituents present in T. dioica are vitamin A, vitamin C, tannins, saponins, alkaloids, mixture of noval peptides, proteins tetra and pentacyclic triterpenes, etc. Key words: Cucurbitacin, diabetes, hepatoprotective, Trichosanthes dioica INRODUCTION parmal, patol, and potala in different parts of India and Bangladesh and is one of the important vegetables of this region.[3] The fruits The plants in Cucurbitaceae family is composed of about 110 and leaves are the edible parts of the plant which are cooked in genera and 640 species. The most important genera are Cucurbita, various ways either alone or in combination with other vegetables Cucumis, Ecballium, Citrullus, Luffa, Bryonia, Momordica, Trichosanthes, or meats.[4] etc (more than 30 species).[1] Juice of leaves of T. -
Some Biological Observations on Pale Fruit, a Viroid-Incited Disease of Cucumber
Neth.J . PI.Path . 80(1974 )85-9 6 Some biological observations on pale fruit, a viroid-incited disease of cucumber H. J. M. VAN DORST1 and D. PETERS2 1 Glasshouse CropsResearc han d Experiment Station, Naaldwijlk 2 Laboratory ofVirology ,Agricultura l University, Wageningen Accepted 13 December 1973 Abstract A viroid-incited disease characterized by palefruits , crumpledflowers, an d rugosity and chlorosis on the leaves of cucumber, occurs occasionally in cucumber crops grown in glasshouses in the Nether lands. The disease is found primarily in crops planted in spring, rarely in those planted in summer but not in those planted in late summer. The pathogen can be transmitted with sap, during pruning, bygraftin g and with dodder to cucumber and a number of other cucurbitaceous species,but not with M. persicae.Ther e is no evidence for seed or nematode transmission. The incubation period js 21 daysa thig htemperature s(3 0°C )bu tshorte r after inoculationb yrazorblad eslashing . The number of glasshouses with the disease has increased since 1965,bu t the number of diseased plants is usually low. The initial distribution of diseased plants in the glasshouses suggests that the pathogeni sintroduce db ya ninsect . Introduction In 1963a disease in cucumber especially attracting attention by a light green colour on the fruits, but also with affectedflowers an d young leaves, occurred in two glass houses in the western part of the Netherlands. The disease, now calledpal efrui t dis ease,ha ssinc ebee n observed indifferen t places overth ewhol e country. The number ofaffecte d plantsi na glasshous ei smostl yles stha n0. -
Snake Gourd and Pointed Gourd: Botany and Horticulture
9 Snake Gourd and Pointed Gourd: Botany and Horticulture L. K. Bharathi Central Horticultural Experiment Station Bhubaneswar 751019, Odisha, India T. K. Behera and A. K. Sureja Division of Vegetable Science Indian Agricultural Research Institute New Delhi 110012, India K. Joseph John National Bureau of Plant Genetic Resources KAU (P.O.), Thrissur 680656, Kerala, India Todd C. Wehner Department of Horticultural Science North Carolina State University Raleigh, North Carolina 27695-7609, USA ABSTRACT Trichosanthes is the largest genus of the family Cucurbitaceae. Its center of diversity exists in southern and eastern Asia from India to Taiwan, The Philippines, Japan, and Australia, Fiji, and Pacific Islands. Two species, T. cucumerina (snake gourd) and T. dioica (pointed gourd), are widely cultivated in tropical regions, mainly for the culinary use of their immature fruit. The fruit of these two species are good sources of minerals and dietary fiber. Despite their economic importance and nutritive values, not much effort has been invested toward genetic improvement of these crops. Only recently efforts have been directed toward systematic improvement strategies of these crops in India. Horticultural Reviews, Volume 41, First Edition. Edited by Jules Janick. Ó 2013 Wiley-Blackwell. Published 2013 by John Wiley & Sons, Inc. 457 458 L. K. BHARATHI ET AL. KEYWORDS: cucurbits; Trichosanthes; Trichosanthes cucumerina; Tricho- santhes dioica I. INTRODUCTION II. THE GENUS TRICHOSANTES A. Origin and Distribution B. Taxonomy C. Cytogenetics D. Medicinal Use III. SNAKE GOURD A. Quality Attributes and Human Nutrition B. Reproductive Biology C. Ecology D. Culture 1. Propagation 2. Nutrient Management 3. Water Management 4. Training 5. Weed Management 6. -
Envis Bulletin ______
ISSN : 0971-7447 ENVIS BULLETIN ________________________________________________________________________ HIMALAYAN ECOLOGY Volume 12, No. 2, 2004 G.B. Pant Institute of Himalayan Environment and Development (An autonomous Institute of Ministry of Environment and Forests, Government of India) Kosi-Katarmal, Almora - 263 643, Uttaranchal, India ENVIS Bulletin : Himalayan Ecology 12(2), 2004 1 About the Bulletin ENVIS Bulletin on Himalayan Ecology is a biannual non-priced publication of the ENVIS Centre that was established in the headquarters of the G.B. Pant Institute of Himalayan Environment and Development (GBPIHED) in 1992 with the financial support from the Ministry of Environment and Forests, Government of India, New Delhi. The present volume of the ENVIS Bulletin is twelfth in a series of its biannual publication and contains papers on various aspects of horticulture, animal husbandry, forest fragmentation, power generation, etc. The news and views offered in the papers in this publication are the views of the concerned authors. Therefore, they do not necessarily reflect the views of the editors, the ENVIS Centre or the Institute. The content of the Bulletin may be quoted or reproduced for non-commercial use provided the source is duly acknowledged. The contributions to the next issue of the Bulletin in a form of research paper, popular article, news item, technical report, etc., related to the aspects of Himalayan Ecology, are always welcome. However, the matter supplied by the individual/organization may be edited for length and clarity. Request for institutional subscription of the Bulletin may be sent to the Scientist-in-Charge of the ENVIS Centre. The comments/suggestions for further improvement of the Bulletin are welcome. -
Cucurbit Genetic Resources in Europe
Cucurbit Genetic Resources in Europe Ad hoc meeting, 19 January 2002, Adana, Turkey M.J. Díez, B. Picó and F. Nuez, compilers <www.futureharvest.org> IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) Cucurbit Genetic ECP GR Resources in Europe Ad hoc meeting, 19 January 2002, Adana, Turkey M.J. Díez, B. Picó and F. Nuez, compilers ii FIRST AD HOC MEETING ON CUCURBIT GENETIC RESOURCES The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRI is conferred under an Establishment Agreement which, by January 2002, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, -
A Revision of the Chinese Trigonalyidae (Hymenoptera, Trigonalyoidea)
A peer-reviewed open-access journal ZooKeys 385: 1–207 (2014) Chinese Trigonalyidae 1 doi: 10.3897/zookeys.385.6560 MONOGRAPH www.zookeys.org Launched to accelerate biodiversity research A revision of the Chinese Trigonalyidae (Hymenoptera, Trigonalyoidea) Hua-yan Chen1,2,†, Cornelis van Achterberg3,‡, Jun-hua He4,§, Zai-fu Xu1,| 1 Department of Entomology, College of Natural Resources and Environment, South China Agricultural Uni- versity, Guangzhou 510640, P. R. China 2 Department of Entomology, The Ohio State University, 1315 Kinnear Road, Columbus, Ohio 43212, U.S.A. 3 Department of Terrestrial Zoology, Naturalis Biodiversi- ty Center, Postbus 9517, 2300 RA Leiden, Netherlands 4 Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China † http://zoobank.org/CDB89961-BBC3-412B-BE7F-B3B9E290B991 ‡ http://zoobank.org/D6374CF4-8F07-4FA8-8C55-9335FD19CECD § http://zoobank.org/CDFF38D9-E9AE-4C8F-99CE-23151D3878F3 | http://zoobank.org/A2A78F02-B9EC-46F7-AEB3-EC5F819CC117 Corresponding author: Zai-fu Xu ([email protected]) Academic editor: M. Engel | Received 25 December 2013 | Accepted 17 February 2014 | Published 28 February 2014 http://zoobank.org/0203ECD5-5D61-4E39-8CDD-5608B626E184 Citation: Chen H-y, Achterberg C van, He J-h, Xu Z-f (2014) A revision of the Chinese Trigonalyidae (Hymenoptera, Trigonalyoidea). ZooKeys 385: 1–207. doi: 10.3897/zookeys.385.6560 Abstract The Chinese fauna of the family Trigonalyidae Cresson, 1887, is revised, keyed and fully illustrated for the first time. Eight genera of this family (Bakeronymus Rohwer, 1922, Bareogonalos Schulz, 1907, Jezonog- onalos Tsuneki, 1991, re-instated, Lycogaster Shuckard, 1841, Orthogonalys Schulz, 1905, Pseudogonalos Schulz, 1906, Taeniogonalos Schulz, 1906 and Teranishia Tsuneki, 1991) are recorded from China. -
Antioxidant and Nutritional Analysis of Edible Cucurbitaceae Vegetables Of
International Journal of Bioassays ISSN: 2278-778X www.ijbio.com Research Article ANTOXIDANT AND NUTRITIONAL ANALYSIS OF EDIBLE CUCURBITACEAE VEGETABLES OF INDIA Chunduri JR Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of commerce and Economics, Bhakti Vedanta Marg, Vile Parle (W), Mumbai-400063, India Received for publication: June 23, 2013; Accepted : July 17, 2013 Abstract: Nutrition related problems are on rise in the under developed and developing countries and require immediate attention. The physical and mental health of a person solely lies on the consumption of nutritious food. Vegetables are rich source of carbohydrates, proteins, vitamins, fats, and minerals and also good antioxidants. Momardica charantia (Descourt), Momardica dioica (Roxb) , Trichosanthes dioica (Roxb) and Coccinia indica (Wight & Arn) are considered for studying their nutritional composition by using standard analytical procedures due to their availability all over India. The proximate and ultimate analyses such as moisture, ash content, fats, proteins, reduced sugars, dietary fibres, minerals (Calcium, Magnesium, Iron and Phosphorus), vitamins ( folic acid and vitamin C) and total phenols have been assessed. Considerable variations have been noticed in their nutritive values, minerals (Calcium, Magnesium, Iron, Phosphorus) and vitamin C, Folic acid compositions. Good concentrations of Pectin (5.04g/100g), Magnesium (48.6mg/100g), and Vitamin C (16.6mg/100g) were observed in M. charantia and of fats (2.28g/100g) and Total phenols (2,15x10GAE/l) in M. dioica . T. dioica had high concentration of minerals such as Iron (218mg/100g), and Calcium (115.7x10mg/100g) and good concentrations of protein (1.17g/100g). High concentrations of Phosphorous (24.11mg/100g) were observed in C. -
Survey of Marketable Vegetables and Edible Fruits in Dharan, Eastern Nepal
Nepalese Journal of Biosciences 2: 134-147 (2012) Survey of marketable vegetables and edible fruits in Dharan, eastern Nepal Sabitri Shrestha 1* and Shiva Kumar Rai 2 1Department of Biology, Central Campus of Technology, Dharan, T.U., Nepal 2Department of Botany, P.G. Campus, T.U., Biratnagar, Nepal *E-mail : [email protected] Abstract A total 77 types of vegetables and 33 fruits were recorded from the markets of Dharan during the period of one year. Among them, 11 vegetables viz . Agaricus bisporus, Allium cepa, A. sativum, Capsicum annum, Coriandrum sativum, Dolichos lablab, Lycopersicon esculentum, Solanum melongena, S. tuberosum, Vigna sinensis and Zingiber officinale and 5 fruits viz ., Citrus aruntifolia, Coccus nucifera, Musa paradisiaca, Punica granatum and Pyrus malus were found in all months. Nineteen vegetables appeared only in winter, 21 only in summer and 30 in both winter and summer seasons but not throughout the year. Similarly, 11 fruits were available in winter, 9 in summer and 8 fruits occurred in both seasons but not throughout the year. Forty seven vegetables and 14 fruits were cultivated locally and 31 vegetables and 5 fruits were procured from other places. Fourteen vegetables and 8 fruits were brought to the market from wild habitats. Vegetables and fruits supplied from Hilly area and Terai plains were also noted. The most expensive vegetable and fruit were Mushrooms and pomegranate, respectively. Vegetable prices started to decrease from December and remained low during January, February and March; started to increase from April and reached at climax in May and June. Generally, the price of fruits was high from April to July. -
その他の昆虫類 Other Miscellaneous Insects 高橋和弘 1) Kazuhiro Takahashi
丹沢大山総合調査学術報告書 丹沢大山動植物目録 (2007) その他の昆虫類 Other Miscellaneous Insects 高橋和弘 1) Kazuhiro Takahashi 要 約 今回の目録に示した各目ごとの種数は, 次のとおりである. カマアシムシ目 10 種 ナナフシ目 5 種 ヘビトンボ目 3 種 トビムシ目 19 種 ハサミムシ目 5 種 ラクダムシ目 2 種 イシノミ目 1 種 カマキリ目 3 種 アミメカゲロウ目 55 種 カゲロウ目 61 種 ゴキブリ目 4 種 シリアゲムシ目 13 種 トンボ目 62 種 シロアリ目 1 種 チョウ目 (ガ類) 1756 種 カワゲラ目 52 種 チャタテムシ目 11 種 トビケラ目 110 種 ガロアムシ目 1 種 カメムシ目 (異翅亜目除く) 501 種 バッタ目 113 種 アザミウマ目 19 種 凡 例 清川村丹沢山 (Imadate & Nakamura, 1989) . 1. 本報では、 カゲロウ目を石綿進一、 カワゲラ目を石塚 新、 トビ ミヤマカマアシムシ Yamatentomon fujisanum Imadate ケラ目を野崎隆夫が執筆し、 他の丹沢大山総合調査報告書生 清川村丹沢堂平 (Imadate, 1994) . 物目録の昆虫部門の中で諸般の事情により執筆者がいない分類 群について,既存の文献から,データを引用し、著者がまとめた。 文 献 特に重点的に参照した文献は 『神奈川県昆虫誌』(神奈川昆虫 Imadate, G., 1974. Protura Fauna Japonica. 351pp., Keigaku Publ. 談話会編 , 2004)※である. Co., Tokyo. ※神奈川昆虫談話会編 , 2004. 神奈川県昆虫誌 . 1438pp. 神 Imadate, G., 1993. Contribution towards a revision of the Proturan 奈川昆虫談話会 , 小田原 . Fauna of Japan (VIII) Further collecting records from northern 2. 各分類群の記述は, 各目ごとに分け, 引用文献もその目に関 and eastern Japan. Bulletin of the Department of General するものは, その末尾に示した. Education Tokyo Medical and Dental University, (23): 31-65. 2. 地名については, 原則として引用した文献に記されている地名 Imadate, G., 1994. Contribution towards a revision of the Proturan とした. しがって, 同一地点の地名であっても文献によっては異 Fauna of Japan (IX) Collecting data of acerentomid and なった表現となっている場合があるので, 注意していただきたい. sinentomid species in the Japanese Islands. Bulletin of the Department of General Education Tokyo Medical and Dental カマアシムシ目 Protura University, (24): 45-70. カマアシムシ科 Eosentomidae Imadate, G. & O. Nakamura, 1989. Contribution towards a revision アサヒカマアシムシ Eosentomon asahi Imadate of the Proturan Fauna of Japan (IV) New collecting records 山 北 町 高 松 山 (Imadate, 1974) ; 清 川 村 宮 ヶ 瀬 (Imadate, from the eastern part of Honshu.