LOWER CAMBRIAN OLENELLUS ZONE of . the APPALACHIANS by CHARLES ELMER RESSER and BENJAMIN FRANKLIN HOWELL CONTENTS Page Introduction

Total Page:16

File Type:pdf, Size:1020Kb

LOWER CAMBRIAN OLENELLUS ZONE of . the APPALACHIANS by CHARLES ELMER RESSER and BENJAMIN FRANKLIN HOWELL CONTENTS Page Introduction BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 49. PP. 195-248. 13 PLS., 1 FIG. FEBRUARY I. 1938 LOWER CAMBRIAN OLENELLUS ZONE OF . THE APPALACHIANS BY CHARLES ELMER RESSER AND BENJAMIN FRANKLIN HOWELL CONTENTS Page Introduction........................................................................................................................... 196 The Appalachians................................................................................................................. 197 Historical summary.............................................................................................................. 197 Material available for this study....................................................................................... 198 Stratigraphic units of the Lower Cambrian..................................................................... 198 Stratigraphic position of the OleneUua zone..................................................................... 200 Distribution of Lower Cambrian strata in the Appalachians....................................... 200 General statement......................................................................................................... 200 Straits of Belle Isle....................................................................................................... 200 Labrador series..................................................................................................... 200 Bradore formation................................................................................................ 201 Forteau formation................................................................................................ 201 Highlands of St. John and Hawke Bay.................................................................... 201 St. Lawrence Valley..................................................................................................... 201 Western Vermont.......................................................................................................... 201 Five sequences....................................................................................................... 201 Monkton quartzite............................................................................................... 202 Winooski dolomite................................................................................................ 202 Mallet dolomite..................................................................................................... 202 Parker shale........................................................................................................... 202 Rugg Brook dolomite........................................................................................... 203 Southern Vermont and eastern New York.............................................................. 203 General statement................................................................................................ 203 Bomoseen grit........................................................................................................ 203 Schodack formation.............................................................................................. 204 Southeastern New York.............................................................................................. 204 Poughquag quartzite............................................................................................ 204 Stissing dolomite................................................................................................... 204 Lancaster and York basins.......................................................................................... 204 General statement................................................................................................ 204 Antietam sandstone.............................................................................................. 205 Vintage dolomite................................................................................................... 205 Kinzers formation................................................................................................. 205 Ledger dolomite.................................................................................................... 205 Appalachian Valley between the Hudson and the Susquehanna rivers............. 206 Appalachian Valley between the Susquehanna and the Potomac rivers......... 206 General statement................................................................................................ 206 Antietam sandstone.............................................................................................. 206 Tomstown formation............................................................................................ 206 Waynesboro formation........................................................................................ 206 (195) Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/49/2/195/3430769/BUL49_2-0195.pdf by guest on 27 September 2021 196 BESSER AND HOWELL----LOWER CAMBRIAN OLENELLUS ZONE Page Appalachian Valley in southwestern Virginia.........................................................206 Erwin sandstone....................................................................................................206 Shady dolomite.....................................................................................................207 Rome formation....................................................................................................207 Olenellus fauna...................................................................................................................... 207 Characteristics...............................................................................................................207 Preservation of the fossils........................................................................................... 207 Composition of the fauna............................................................................................208 Relationships of the fauna.......................................................................................... 208 Description of genera and species......................................................................................209 Localities........................................................................................................................209 Algae............................................................................................................................... 209 Porifera...........................................................................................................................210 Coelenterata ?............................................................................................................... 211 Echinodermata..............................................................................................................212 Brachiopoda.................................................................................................................. 213 Gastropoda....................................................................................................................214 Annelida ?...................................................................................................................... 215 Undetermined forms.................................................................................................... 216 Agnostia.......................................................................................................................... 216 Trilobita.........................................................................................................................217 Undetermined trilobite................................................................................................ 230 Other crustacea.............................................................................................................231 Undetermined crustaceans.........................................................................................233 Works to which reference is made.....................................................................................234 ILLUSTRATIONS Figure Page 1. Hall’s drawings of Olenellus ...................................................................................... 219 Plate Facing page 1. Algae, sponges, and coelenterates............................................................................. 236 2. Coelenterates, gastropods, and echinoderms.......................................................... 237 3. Annelids ?, gastropods, and trilobites...................................................................... 238 4. Gastropods, trilobites, brachiopods, and cystids................................................... 239 5. Trilobites and other crustacea................................................................................... 240 6. Trilobites....................................................................................................................... 241 7. Trilobites....................................................................................................................... 242 8. Trilobites....................................................................................................................... 243 9. Trilobites and undetermined organisms.................................................................... 244 10. Trilobites and other crustacea..................................................................................
Recommended publications
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • Guidebook for Field Trip to Precambrian-Cam8ri An
    GUIDEBOOK FOR FIELD TRIP TO PRECAMBRIAN-CAM8RI AN SUCCESSION WHITE-INYO MOUNTAINS, CALIFORNIA By C. A. Nelson and J. Wyatt Durham Thursday-Sunday, November 17-20, 1966 CONTENTS .°age General Introduction 1 Road log and trip guide . 1 Figure 1. - Columnar section, following page, .... 1 Figure 2. - Reed Flat map, following page ...... 5 Figure 3. - Cedar Flat map, following page 12 Fossil Plates, following page ... 15 General Index map - "The Bristlecone Pine Recreation Area," USFS unbound Geologic Map of the Blanco Mountain Quadrangle, Inyo and Mono Counties, California, USGS GQ-529 unbound GENERAL INTRODUCTION In addition to the Precambrian and Cambrian strata to be seen, the White-Inyo region and its environs affords a wide variety of geo- logic features. Although we will concentrate on the principal objectives of the trip, we will have the opportunity to observe many features of the structure, geomorpnology, and Cenozoic history of the region as well. Travel will be by bus from San Francisco to Bishop, California on Thursday, November 17. For this segment of the trip, and the re- turn to San Francisco from Bishop, no guidebook has been prepared. We are fortunate, however, to have Mr. Bennie Troxel of the Cali- fornia Division of Mines and Geology with us.. Together we will try to provide you with some of the highlights of the trans-Sierran route. Field gear, including sturdy shoes and warm clothing is essential. Stops at the higher elevations are likely to be cold ones. As is true of all too many field trips, especially those using bus transportation, many of the best localities for collecting Cambrian fossils and for viewing features of the Precambrian and Cambrian succession are in areas too remote or too inaccessible to be visited.
    [Show full text]
  • Chemostratigraphic Correlations Across the First Major Trilobite
    www.nature.com/scientificreports OPEN Chemostratigraphic correlations across the frst major trilobite extinction and faunal turnovers between Laurentia and South China Jih-Pai Lin 1*, Frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & Thomas Wotte5 During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the frst major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the frst appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions. Te international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difcult primarily due to apparent diachroniety of the datum species used to defne the boundary refecting the endemic faunas.
    [Show full text]
  • I.—THE FAUNA of the LOWER CAMBRIAN OR OLENELLUS ZONE. by CHARLES DOOLITTLE WALCOTT, F.G.S., of the Smithsonian Institution, Washington, D.C., U.S.A
    32 Reviews—Walcott's Lower Cambrian or Olenellus Fauna. 1 distinct (Lagena) and 5 indistinct sections of Foraminifera. The distribution of these species in the Upper-Silurian formations of Siberia, Estland and Oesel, Scandinavia, Britain, China, and America is shown in a table at p. 55. Strophomena euglypha, Phacops quadri- lineata, Favosites Qotlandica, F. Forbesi, Alveolites Labechei, Heliolites interstinctus, and Bali/sites catenularia have the widest range. Five quarto plates of numerous figures illustrate this interesting memoir. T. E. J. EEVIB W S. I.—THE FAUNA OF THE LOWER CAMBRIAN OR OLENELLUS ZONE. By CHARLES DOOLITTLE WALCOTT, F.G.S., of the Smithsonian Institution, Washington, D.C., U.S.A. Extract from the Tenth Annual Eeport of the Director (1888-89). Washington, 1890 (issued 1891). U. S. Geological Survey. 4to. pp. 511-774, Plates xliii.-xcviii. HE publications of the Geological Survey of the United States of America have long been famous for their illustrations and Ttheir typography ; for the vast amount of economic information they contain as regards the stratigraphical geology, the physical features, the agricultural and mineral resources contained in each State. Nor has science been neglected, for there are but few volumes, out of the long and splendid series already issued, which have not contained most valuable contributions to the palasontology of some group of organisms, or the fauna of some series of rocks. This is all the more honourable to the present Director, Major J. W. Powell, because it is an open secret that, like Gallio, " he cares for none of these things," and might, if ungenerously disposed, have placed great obstacles in the way of the progress of palaeontology.
    [Show full text]
  • Systematic Revision of the Trilobite Genera Laudonia and Lochmanolenellus (Olenelloidea) from the Lower Dyeran (Cambrian Series 2) of Western Laurentia
    Zootaxa 3824 (1): 001–066 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3824.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:023D78D0-4182-48D2-BAEB-CDA6473CF585 ZOOTAXA 3824 Systematic revision of the trilobite genera Laudonia and Lochmanolenellus (Olenelloidea) from the lower Dyeran (Cambrian Series 2) of western Laurentia MARK WEBSTER1 & LISA L. BOHACH2 1Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637. E-mail: [email protected] 2Stantec Consulting Ltd., 200, 1719-10th Ave SW, Calgary, AB T3C 0K1. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by J. Paterson: 3 Mar. 2014; published: 26 Jun. 2014 References Bergström, J. (1973) Organization, life, and systematics of trilobites. Fossils and Strata, 2, 1–69. Bohach, L.L. (1997) Systematics and biostratigraphy of Lower Cambrian trilobites of western Laurentia. Unpublished Ph.D. thesis, University of Victoria, 491 pp. Bordonaro, O.L. (1978) Sobre la presencia de la “Zona de Antagmus-Onchocephalus” del Cámbrico inferior en la quebrada de Zonda, Provincia de San Juan. Acta Geológica Lilloana, 14 (Supplement), 1–3. Cooper, G.A., Arellano, A.R.V., Johnson, J.H., Okulitch, V.J., Stoyanow, A. & Lochman, C. (1952) Cambrian stratigraphy and paleontology near Caborca, northwestern Sonora, Mexico. Smithsonian Miscellaneous Collections, 119 (1), 1–184. Deiss, C. (1939) Cambrian formations of southwestern Alberta and southeastern British Columbia. Bulletin of the Geological Society of America, 50, 951–1026. Emmons, E. (1844) The Taconic System; based on observations in New-York, Massachusetts, Maine, Vermont and Rhode- Island.
    [Show full text]
  • New Olenelloid Trilobites from the Northwest Territories, Canada
    Zootaxa 3866 (4): 479–498 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3866.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:D06E5477-4D5C-4402-B909-09A2AAFFB556 New olenelloid trilobites from the Northwest Territories, Canada I. WESLEY GAPP1,2 & BRUCE S. LIEBERMAN2 1Chevron U. S. A., Inc., 1400 Smith Street, Houston, TX 77002, USA. E-mail: [email protected] 2Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Dyche Hall, Lawrence, KS 66045, USA. E-mail: [email protected] Abstract The Olenelloidea are a superfamily of early Cambrian trilobites, which have been the subject of several phylogenetic anal- yses and also used to address macroevolutionary questions regarding the nature and timing of the Cambrian radiation. The Sekwi Formation of the Mackenzie Mountains, Northwest Territories, Canada, has yielded numerous species from this clade, and here we present new information that expands on the diversity known from this biogeographically and biostrati- graphically important region. In particular, we describe seven new species, (Olenellus baileyi, Mesonacis wileyi, Ellipto- cephala jaredi, Holmiella taurus, H. domackae, Mummaspis delgadoae, and Bristolia colberti). Also recovered are specimens of Elliptocephala logani, specimens that shared affinities with Olenellus clarki, O. getzi, O. fowleri, and Fri- zolenellus hanseni, and one partial specimen, which appears to be a new species of Bolbolenellus. Key words: Cambrian, Trilobita, Olenelloidea, Northwest Territories Introduction The Olenelloidea Walcott, 1890 is a diverse superfamily of early Cambrian trilobites referable to the suborder Olenellina Walcott, 1890 and have been the focus of much attention in the study of evolutionary tempo and mode during the Cambrian radiation (Fortey et al.
    [Show full text]
  • Geological Guide to the Bird Cove Region, Great Northern Peninsula
    Author’s Address I. Knight W.D. Boyce Department of Natural Resources Department of Natural Resources Geological Survey Geological Survey P.O. Box 8700 P.O. Box 8700 St. John’s, NL, A1E 2H7 St. John’s, NL, A1E 2H7 Tel. 709-729-4119 Tel. 709-729-2163 E-mail: [email protected] E-mail: [email protected] NOTE Open File reports and maps issued by the Geological Survey Division of the Newfoundland and Labrador Department of Natural Resources are made available for public use. They have not been formally edited or peer reviewed, and are based upon preliminary data and evaluation. The purchaser agrees not to provide a digital reproduction or copy of this product to a third party. Derivative products should acknowledge the source of the data. DISCLAIMER The Geological Survey, a division of the Department of Natural Resources (the “authors and publish- ers”), retains the sole right to the original data and information found in any product produced. The authors and publishers assume no legal liability or responsibility for any alterations, changes or misrep- resentations made by third parties with respect to these products or the original data. Furthermore, the Geological Survey assumes no liability with respect to digital reproductions or copies of original prod- ucts or for derivative products made by third parties. Please consult with the Geological Survey in order to ensure originality and correctness of data and/or products. SAFETY CAUTION Many of the localities discussed in this guide can be visited along roadsides, in quarries and along the shore. In each case, care should be exercised to avoid injury by moving vehicles, falling rocks (use hard hats if possible in quarries) and rough seas.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 5 Cfjarle* £. anb Jfflarp "^Xaux flKHalcott 3Resiearcf) Jf tmb MIDDLE CAMBRIAN STRATIGRAPHY AND FAUNAS OF THE CANADIAN ROCKY MOUNTAINS (With 34 Plates) BY FRANCO RASETTI The Johns Hopkins University Baltimore, Maryland SEP Iff 1951 (Publication 4046) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 18, 1951 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 5 Cfjarie* B. anb Jfflarp "^Taux OTalcott &egearcf) Jf unb MIDDLE CAMBRIAN STRATIGRAPHY AND FAUNAS OF THE CANADIAN ROCKY MOUNTAINS (With 34 Plates) BY FRANCO RASETTI The Johns Hopkins University Baltimore, Maryland (Publication 4046) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 18, 1951 BALTIMORE, MD., U. 8. A. CONTENTS PART I. STRATIGRAPHY Page Introduction i The problem I Acknowledgments 2 Summary of previous work 3 Method of work 7 Description of localities and sections 9 Terminology 9 Bow Lake 11 Hector Creek 13 Slate Mountains 14 Mount Niblock 15 Mount Whyte—Plain of Six Glaciers 17 Ross Lake 20 Mount Bosworth 21 Mount Victoria 22 Cathedral Mountain 23 Popes Peak 24 Eiffel Peak 25 Mount Temple 26 Pinnacle Mountain 28 Mount Schaffer 29 Mount Odaray 31 Park Mountain 33 Mount Field : Kicking Horse Aline 35 Mount Field : Burgess Quarry 37 Mount Stephen 39 General description 39 Monarch Creek IS Monarch Mine 46 North Gully and Fossil Gully 47 Cambrian formations : Lower Cambrian S3 St. Piran sandstone 53 Copper boundary of formation ?3 Peyto limestone member 55 Cambrian formations : Middle Cambrian 56 Mount Whyte formation 56 Type section 56 Lithology and thickness 5& Mount Whyte-Cathedral contact 62 Lake Agnes shale lentil 62 Yoho shale lentil "3 iii iv SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL.
    [Show full text]
  • Early Cambrian Trilobite Faunas and Correlations, Labrador Group, Southern Labrador—Western Newfoundland
    EARLY CAMBRIAN TRILOBITE FAUNAS AND CORRELATIONS, LABRADOR GROUP, SOUTHERN LABRADOR—WESTERN NEWFOUNDLAND Douglas Boyce1, Ian Knight1, Christian Skovsted2 and Uwe Balthasar3 1 - GSNL; 2 - Swedish Museum of Natural History; 3 – University of Plymouth, England. Paleontological, lithological and mapping studies of mixed siliciclastic‒carbonate rocks of the Labrador Group have been ongoing, since 1976, by the GSNL. Recent systematic litho- and bio-stratigraphic studies with Drs. Skovsted and Balthasar focus on trilobite and small shelly fossils (SSF), mostly in the Forteau Formation. At least 34 co-eval sections have been measured, and 434 fossiliferous samples have been collected; publication of trilobite and SSF systematics is in preparation. Dyeran to Topazan biostratigraphy, southern Labrador and western Newfoundland. Early Cambrian and early Middle Cambrian global and Laurentian series and stages (Hollingsworth, 2011). Distribution of the Trilobite Faunas Early Cambrian trilobite faunas occur throughout the Forteau Formation and in the lowest strata of the overlying Hawke Bay Formation. They divide into two broad faunas – Olenelloidea, mostly occur in deep-water shale and mudrocks, and Corynexochida, are hosted in shallow-water limestone, including archeocyathid reefs. The Devils Cove member, basal Forteau Formation - a regionally widespread pink Bonnia sp. nov. Boyce: latex replica of limestone - hosts Calodiscus lobatus (Hall, 1847), Elliptocephala logani (Walcott, partial, highly ornamented, spinose 1910), and Labradoria misera (Billings, 1861a). Calodiscus lobatus and E. logani range cranidium, Route 432, Great Northern Zacanthopsis sp. A Boyce: latex replica of Peninsula (GNP); it also occurs in the Deer high in the formation regionally, but L. misera is restricted to the lower 20 m of the partial cranidium, Mackenzie Mill member, Arm limestone, Mackenzie Mill member, formation in Labrador (includes archeocyathid reefs).
    [Show full text]
  • Contents of Volume 52 831
    Issue 1 (published March 2007) Oliver Wings A review of gastrolith function with implications for fossil vertebrates and a revised classification . 1–16 Elise Nardin New occurrence of the Ordovician eocrinoid Cardiocystites: Palaeogeographical and palaeoecological implications . 17–26 Leonid E. Popov, Jan Ove R. Ebbestad, Amanbek Mambetov, and Farid Kh. Apayarov A low diversity shallow water lingulid brachiopod−gastropod association from the Upper Ordovician of Kyrgyz Range. 27–40 Steffen Kiel and James L. Goedert New mollusks associated with biogenic substrates in Cenozoic deep−water sediments of Washington State. 41–52 Jin−Hua Chen and Frank Stiller The halobiid bivalve genus Enteropleura and a new species from the Middle Anisian of Guangxi, southern China. 53–61 Mariusz Niechwedowicz and Jerzy Trammer Hydrodynamically controlled anagenetic evolution of Famennian goniatites from Poland. 63–75 Ryoji Wani Differential preservation of the Upper Cretaceous ammonoid Anagaudryceras limatum with corrugated shell in central Hokkaido, Japan . 77–84 Yannicke Dauphin, C. Terry Williams, and Igor S. Barskov Aragonitic rostra of the Turonian belemnitid Goniocamax: Arguments from diagenesis . 85–97 Romain Vullo, Henri Cappetta, and Didier Néraudeau New sharks and rays from the Cenomanian and Turonian of Charentes, France . 99–116 Rainer R. Schoch, Michael Fastnacht, Jürgen Fichter, and Thomas Keller Anatomy and relationships of the Triassic temnospondyl Sclerothorax. 117–136 Torsten M. Scheyer and Marcelo R. Sánchez−Villagra Carapace bone histology in the giant pleurodiran turtle Stupendemys geographicus: Phylogeny and function . 137–154 Federico Fanti and François Therrien Theropod tooth assemblages from the Late Cretaceous Maevarano Formation and the possible presence of dromaeosaurids in Madagascar. 155–166 Daniela Schwarz, Eberhard Frey, and Christian A.
    [Show full text]
  • Small Shelly Fossils from the Argillaceous Facies of the Lower Cambrian Forteau Formation of Western Newfoundland
    Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau Formation of western Newfoundland CHRISTIAN B. SKOVSTED and JOHN S. PEEL Skovsted, C.B. and Peel, J.S. 2007. Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau For− mation of western Newfoundland. Acta Palaeontologica Polonica 52 (4): 729–748. A diverse fauna of helcionelloid molluscs, hyoliths, and other small shelly fossils is described from limestone layers within the Forteau Formation of the Bonne Bay region in western Newfoundland. The fauna is dominated by internal moulds of various molluscs and tubular problematica, but also includes hyolith opercula, echinoderm ossicles, and other calcareous small shelly fossils preserved by phosphatisation. Originally organophosphatic shells are comparatively rare, but are represented by brachiopods, hyolithelminths, and tommotiids. The fauna is similar to other late Early Cambrian faunas from slope and outer shelf settings along the eastern margin of Laurentia and may be of middle Dyeran age. The similarity of these faunas indicates that at least by the late Early Cambrian, a distinctive and laterally continuous outer shelf fauna had evolved. The Forteau Formation also shares elements with faunas from other Early Cambrian provinces, strengthening ties between Laurentia and Australia, China, and Europe during the late Early Cambrian. Two new taxa of problematic fossil organisms are described, the conical Clavitella curvata gen. et sp. nov. and the wedge−shaped Sphenopteron boomerang gen. et sp. nov. Key words: Helcionellidae, Hyolitha, Brachiopoda, small shelly fossils, Cambrian, Laurentia, Newfoundland. Christian B. Skovsted [[email protected]], Centre for Ecostratigraphy and Palaeobiology, Macquarie University, NSW 2109, Marsfield, Sydney, Australia.
    [Show full text]