1918‒1925 Wybitni Absolwenci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe
Vita Mathematica 18 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Vita Mathematica Volume 18 Edited by Martin MattmullerR More information about this series at http://www.springer.com/series/4834 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Author Hugo Steinhaus (1887–1972) Translator Abe Shenitzer Brookline, MA, USA Editors Robert G. Burns York University Dept. Mathematics & Statistics Toronto, ON, Canada Irena Szymaniec Wrocław, Poland Aleksander Weron The Hugo Steinhaus Center Wrocław University of Technology Wrocław, Poland Vita Mathematica ISBN 978-3-319-21983-7 ISBN 978-3-319-21984-4 (eBook) DOI 10.1007/978-3-319-21984-4 Library of Congress Control Number: 2015954183 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
My Dear Colleague! [1/2] Thank You for the Cards and Congratulations
Ithaca, N.Y. 6.I.1940 [1/1] My Dear Colleague! [1/2] Thank you for the cards and congratulations. I [1/3] have not written you in for a long while because I did not receive [1/4] any answers to two letters [1/5] and I did not know what that meant. To Bloch [1/6] I wrote often and without results. I even had [1/7] the impression that he went back to Poland. [1/8] With me everything is in the best order. [1/9] I have familiarized myself with the regulations [1/10] and shortly I will begin applying for a non-quota visa. [1/11] I was told by the National Refugee Service that the matter is [1/12] easy. I only have to sign a few papers, [1/13] but that usually takes a while. [1/14] My parents sent me news that they are alive [1/15] and healthy. They are in the Russian portion. In Warsaw and [1/16] in the German part in general there are supposedly [1/17] some horrific things happening. [1/18] I have nothing from Steinhaus. Zygmund1 will probably [1/19] arrive at M.I.T. for next [1/20] semester. I was told2 that Marcinkiewicz and Kaczmarz3 [1/21] were shot because they were officers.4 [2/1] All of it is monstrous and sometimes5 I just don’t want to [2/2] think about it. [2/3] I hope that you are doing well [2/4] and that you are satisfied like I am. -
L. Maligranda REVIEW of the BOOK by ROMAN
Математичнi Студiї. Т.46, №2 Matematychni Studii. V.46, No.2 УДК 51 L. Maligranda REVIEW OF THE BOOK BY ROMAN DUDA, “PEARLS FROM A LOST CITY. THE LVOV SCHOOL OF MATHEMATICS” L. Maligranda. Review of the book by Roman Duda, “Pearls from a lost city. The Lvov school of mathematics”, Mat. Stud. 46 (2016), 203–216. This review is an extended version of my two short reviews of Duda's book that were published in MathSciNet and Mathematical Intelligencer. Here it is written about the Lvov School of Mathematics in greater detail, which I could not do in the short reviews. There are facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach's book and also books by Mazur, Schauder and Tarski. My two short reviews of Duda’s book were published in MathSciNet [16] and Mathematical Intelligencer [17]. Here I write about the Lvov School of Mathematics in greater detail, which was not possible in the short reviews. I will present the facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach’s book and also books by Mazur, Schauder and Tarski. So let us start with a discussion about Duda’s book. In 1795 Poland was partioned among Austria, Russia and Prussia (Germany was not yet unified) and at the end of 1918 Poland became an independent country. -
L. Maligranda REVIEW of the BOOK BY
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
W Ladys Law Orlicz
WLADYS LAW ORLICZ Born: 24 May 1903 in Okocim, Galicia, Austria-Hungary (now Poland) Died: 9 August 1990 in Pozna´n,Poland W ladyslaw Roman Orlicz was born in Okocim, a village in the district of Brzesko, province of Cracow. His parents, Franciszek and Maria n´ee Rossknecht, had five sons. Father died when he was only four years old. In 1919 Orlicz's family moved to Lw´ow,where he completed his secondary education and then studied mathematics at the Jan Kazimierz University in Lw´owhaving as teachers Stefan Banach, Hugo Steinhaus and Antoni Lomnicki. In the years 1922-1929 he worked as a teaching assistent at the Depart- ment of Mathematics of Jan Kazimierz University. In 1928 he received doctor's degree upon presenting a thesis \Some prob- lems in the theory of orthogonal series" under the supervision of Eustachy Zyli´nski.In_ the same year he married Zofia Krzysik (born: 26 Sept. 1898, Foca, Bosnia { died: 5 Nov. 1999, Pozna´n). In the late twenties and early thirties Orlicz worked as a teacher in private secondary schools and in a military school. Academic year 1929/30 Orlicz spent at the G¨ottingenUniversity on a scholarship in theoretical physics, not in mathematics. During his stay in G¨ottingenhe started his collaboration with Zygmunt Wilhelm Birnbaum (also from Lw´ow). They published two papers in Studia Mathematica in 1930 and 1931 whose results became a starting point for Orlicz to consider and investigate in 1932 and 1936 function spaces more general than Lp spaces which later on became known as Orlicz spaces. -
Samuel Fogelson (1902 – Po 1941) Streszczenie
ANTIQUITATES MATHEMATICAE Vol. 10(1) 2016, p. 19–43 doi: 10.14708/am.v10i0.1549 Lech Maligranda (Lule˚a) Walerian Piotrowski (Warszawa) Samuel Fogelson (1902 – po 1941) Streszczenie. Samuel Fogelson to zapomniany w Polsce matematyk i statystyk warszawski oraz agent wywiadu sowieckiego. Brak o nim wzmianki w Słowniku Biograficznym Matematyków Polskich (2003) i w Polskim Słowniku Biograficznym; jest informacja w Wikipedii [3], ale opisana została tam głównie jego działalność szpiegowska, przed- stawiona w artykułach A. Poczobuta [6]–[8]. My chcemy przybliżyć osobę Fogelsona jako matematyka i statystyka warszawskiego, który opublikował wiele prac, zwłaszcza ze statystyki opisowej. Staraliśmy się dotrzeć do jego publikacji i osiągnięć w matematyce i statystyce. Wspomnimy też krótko o jego działalności szpiegowskiej na rzecz pań- stwa sowieckiego. 2010 Klasyfikacja tematyczna AMS (2010): 01A72; 01A60. Słowa kluczowe: matematyka dwudziestego wieku, matematycy w Eu- ropie, polska matematyka. 1. Biografia Fogelsona. Samuel Fogelson [Fogielson, Fogel- sohn, Fogielsohn], pseudonim „St. Manert”, urodził się 20 paździer- nika 1902 roku w Warszawie w rodzinie Moszka Fogielsona i Chai-Sary z domu Halbrajch. Nauki początkowe otrzymał w domu, a w 1912 roku wstąpił do siedmioklasowej Szkoły Handlowej Zgromadzenia Kup- ców miasta Warszawy („Handlówki”). W 1915 roku otrzymał pro- mocję do czwartej klasy i wraz z rodzicami wyjechał do Rosji, gdzie w 1918 roku ukończył ośmioklasową szkołę handlową w Rostowie nad Donem. W tym samym roku wstąpił jako słuchacz rzeczywisty na Wy- dział Matematyczno-Fizyczny Uniwersytetu Dońskiego (były rosyjski Uniwersytet Warszawski, ewakuowany został w 1915 roku do Rostowa nad Donem). W 1920 roku wraz z rodzicami powrócił do Warszawy i zapisał się na Wydział Przyrodniczo-Matematyczny Wolnej Wszechnicy Polskiej (WWP). -
The Legacy of Jozef Marcinkiewicz: Four Hallmarks of Genius
The legacy of Jozef´ Marcinkiewicz: four hallmarks of genius Nikolay Kuznetsov In memoriam of an extraordinary analyst This article is a tribute to one of the most prominent Pol- ish mathematicians Jozef´ Marcinkiewicz who perished 80 years ago in the Katyn´ massacre. He was one of nearly 22000 Polish officers interned by the Red Army in Septem- ber 1939 and executed in April–May 1940 in the Katyn´ forest near Smolensk and at several locations elsewhere. One of these places was Kharkov (Ukraine), where more than 3800 Polish prisoners of war from the Starobelsk camp were executed. One of them was Marcinkiewicz; the plaque with his name (see photo at the bottom) is on the Memo- rial Wall at the Polish War Cemetery in Kharkov.∗ This industrial execution was authorized by Stalin’s secret order dated 5 March 1940, and organised by Beria, who headed the People’s Commissariat for Internal Affairs (the interior ministry of the Soviet Union) known as NKVD. Turning to the personality and mathematical achieve- ments of Marcinkiewicz, it is appropriate to cite the article [24] of his superviser Antoni Zygmund (it is published in the Collected Papers [13] of Marcinkiewicz; see p. 1): Considering what he did during his short life its proceedings, L. Maligranda published the detailed article and what he might have done in normal circum- [9] about Marcinkiewicz’s life and mathematical results; 16 stances one may view his early death as a great pages of this paper are devoted to his biography, where one blow to Polish Mathematics, and probably its finds the following about his education and scientific career. -
Solution, Extensions and Applications of the Schauder's 54Th Problem In
Mathematica Moravica Vol. 20:1 (2016), 145–190 Solution, Extensions and Applications of the Schauder’s 54th Problem in Scottish Book Milan R. Tasković∗ Abstract. This paper presents the Axiom of Infinite Choice: Given any set P , there exist at least countable choice functions or there exist at least finite choice functions. The author continues herein with the further study of two papers of the Axiom of Choice in order by E. Z e r - m e l o [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. An- nalen, 65 (1908), 107–128; translated in van Heijenoort 1967, 183–198], and by M. Ta s kov i ć [The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897–904]. Fredholm and Leray-Schauder alternatives are two direct consequences of the Axiom of Infinite Choice! This paper presents applications of the Axiom of Infinite Choice to the Fredholm and Leray-Schauder the- ory. In this sense, I give a solution and some extensions of Schauder’s problem (in Scottish book, problem 54). This paper presents some new mathematical n-person games. In the theory of n-person games, there have been some further developments in the direction of transversal games and mathematical alternative theory. 1. History and origins We shall first discuss an assumption that appears to be independent of, and yet consistent with, the usual logical assumptions regarding classes and correspondences, but whose absolute validity has been seriously questioned by many authors. This is the so-called Axiom of Choice, which has excited more controversy than any other axiom of set theory since its formulation by Ernst Zermelo in 1908. -
Arxiv:1804.02448V1 [Math.HO] 6 Apr 2018 OIHMTEAIIN N AHMTC in MATHEMATICS and MATHEMATICIANS POLISH E Od N Phrases
POLISH MATHEMATICIANS AND MATHEMATICS IN WORLD WAR I STANISLAW DOMORADZKI AND MALGORZATA STAWISKA Contents 1. Introduction 2 2. Galicja 7 2.1. Krak´ow 7 2.2. Lw´ow 14 3. The Russian empire 20 3.1. Warsaw 20 3.2. St. Petersburg (Petrograd) 28 3.3. Moscow 29 3.4. Kharkov 32 3.5. Kiev 33 3.6. Yuryev(Dorpat;Tartu) 36 4. Poles in other countries 37 References 40 Abstract. In this article we present diverse experiences of Pol- ish mathematicians (in a broad sense) who during World War I fought for freedom of their homeland or conducted their research and teaching in difficult wartime circumstances. We first focus on those affiliated with Polish institutions of higher education: the ex- isting Universities in Lw´ow in Krak´ow and the Lw´ow Polytechnics arXiv:1804.02448v1 [math.HO] 6 Apr 2018 (Austro-Hungarian empire) as well as the reactivated University of Warsaw and the new Warsaw Polytechnics (the Polish Kingdom, formerly in the Russian empire). Then we consider the situations of Polish mathematicians in the Russian empire and other coun- tries. We discuss not only individual fates, but also organizational efforts of many kinds (teaching at the academic level outside tradi- tional institutions– in Society for Scientific Courses in Warsaw and in Polish University College in Kiev; scientific societies in Krak´ow, Lw´ow, Moscow and Kiev; publishing activities) in order to illus- trate the formation of modern Polish mathematical community. Date: April 10, 2018. 2010 Mathematics Subject Classification. 01A60; 01A70, 01A73, 01A74. Key words and phrases. Polish mathematical community, World War I. -
Lwów I Wilno W Matematyce Międzywojennej Polski
Przegląd Wschodni, t. XIV, z. 1 (53), s. , ISSN 0867–5929 © Przegląd Wschodni 2015 Roman Duda Wrocław LWÓW I WILNO W MATEMATYCE MIĘDZYWOJENNEJ POLSKI Wstęp dzyskanie przez Polskę niepodległości w 1918 r. wyzwoliło falę entuzjazmu i wolę wyróżnienia się na każdym polu, także Onaukowym. Międzywojenna Polska powołała 5 uniwersytetów i 3 politechniki, w tym Uniwersytet Jana Kazimierza i Politechnikę we Lwowie oraz Uniwersytet Stefana Batorego w Wilnie, co oznaczało, że blisko 40% akademickiego stanu posiadania mieściło się na Kresach Wschodnich. Nie było to mało, ale i wkład uczelni kresowych do nauki też okazał się niemały. Przedwojenna matematyka polska, oparta o tych 8 uczelni, szyb- ko zyskała międzynarodowe znaczenie, a jej ówczesne osiągnięcia należą do największych osiągnięć nauki polskiej w całym okresie jej dziejów. Śmiało można powiedzieć, że matematyka polska była wówczas trampoliną torującą drogę całej nauce polskiej do uznania w świecie. Celem tego artykułu jest przedstawienie roli ośrodków matematycznych Lwowa i Wilna w międzywojennym życiu matema- tycznym Polski i świata. Początki Sytuacja wyjściowa w obu miastach, Wilnie i Lwowie, była skrajnie różna. Oba szczyciły się wprawdzie parowiekową tradycją uniwer- sytecką (uniwersytet wileński powołał król Stefan Batory w 1579 r., a uniwersytet lwowski król Jan Kazimierz w 1661 r.), ale w Wilnie tradycja ta została brutalnie przerwana, kiedy władze carskie po zdławieniu powstania listopadowego zamknęły tamtejszy uniwersy- tet, natomiast uczelnia lwowska miała wprawdzie trudne okresy, ale 2 ROMAN DUDA była czynna niemal bez przerwy, a od jej repolonizacji w 1870 r. rola uniwersytetu lwowskiego w polskim życiu narodowym szybko rosła1. W przededniu I wojny światowej sytuacja w obu tych miastach była więc różna. -
Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron
Vita Mathematica 19 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 2 (1945–1968) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Vita Mathematica Volume 19 Edited by Martin MattmullerR More information about this series at http://www.springer.com/series/4834 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 2 (1945–1968) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Author Hugo Steinhaus (1887–1972) Translator Abe Shenitzer Brookline, MA, USA Editors Robert G. Burns Department of Mathematics and Statistics York University Toronto, Ontario, Canada Irena Szymaniec Wrocław, Poland Aleksander Weron The Hugo Steinhaus Center Wrocław University of Technology Wrocław, Poland Vita Mathematica ISBN 978-3-319-23101-3 ISBN 978-3-319-23102-0 (eBook) DOI 10.1007/978-3-319-23102-0 Library of Congress Control Number: 2015954183 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.