Stefan Kaczmarz (1895 -1939)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe
Vita Mathematica 18 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Vita Mathematica Volume 18 Edited by Martin MattmullerR More information about this series at http://www.springer.com/series/4834 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 1 (1887–1945) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Author Hugo Steinhaus (1887–1972) Translator Abe Shenitzer Brookline, MA, USA Editors Robert G. Burns York University Dept. Mathematics & Statistics Toronto, ON, Canada Irena Szymaniec Wrocław, Poland Aleksander Weron The Hugo Steinhaus Center Wrocław University of Technology Wrocław, Poland Vita Mathematica ISBN 978-3-319-21983-7 ISBN 978-3-319-21984-4 (eBook) DOI 10.1007/978-3-319-21984-4 Library of Congress Control Number: 2015954183 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
L. Maligranda REVIEW of the BOOK BY
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron
Vita Mathematica 19 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 2 (1945–1968) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Vita Mathematica Volume 19 Edited by Martin MattmullerR More information about this series at http://www.springer.com/series/4834 Hugo Steinhaus Mathematician for All Seasons Recollections and Notes, Vol. 2 (1945–1968) Translated by Abe Shenitzer Edited by Robert G. Burns, Irena Szymaniec and Aleksander Weron Author Hugo Steinhaus (1887–1972) Translator Abe Shenitzer Brookline, MA, USA Editors Robert G. Burns Department of Mathematics and Statistics York University Toronto, Ontario, Canada Irena Szymaniec Wrocław, Poland Aleksander Weron The Hugo Steinhaus Center Wrocław University of Technology Wrocław, Poland Vita Mathematica ISBN 978-3-319-23101-3 ISBN 978-3-319-23102-0 (eBook) DOI 10.1007/978-3-319-23102-0 Library of Congress Control Number: 2015954183 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Heft 1 Obersichtsartikel Historischebeitrtlge Berichte Ausder Forschung Buchbesprechungen
Vorwort Jahresbericht der Deutschen Mathematiker-Vereinigung, 112. Bd. 2010, Nr. 1 Vorwort In seinem mathematisch und menschlich sehr bewegenden historischen Beitrag uber die Lemberger Mathematikerschule beschreibt Roman Duda, wie sich dort zwischen 1920 und 1940eine hinsiehtlich ihrer GroBe, Bedeutung und Wirksamkeit ganz aulierordent liche Gruppe von Mathematikern gefunden hat. Insbesondere, aber nicht nur in der linearen wie nichtlinearen Funktionalanalysis sind viele Wurzeln in Lemberg (damals Polen, Lwow, heute Ukraine) zu finden. Namen wie Banach, Steinhaus und Schauder machen das exemplarisch deutlich, allerdings geht die Lemberger Schule ganz wesent lich uber diese drei groBen Vertreter hinaus. In Deutschland muss die Beschaftigung mit dieser Schule eine besondere Betroffenheit hervorrufen. Nicht so sehr deswegen, weil mit Steinhaus einer ihrer Kristallisationspunkte in Gottingen bei Hilbert pro moviert hat, sondern vielmehr, weil mit dem zweiten Weltkrieg, dem deutschen Uberfall aufPolen und die Sowjetunion und 1941 der Eroberung des zunachst sowjetisch besetz ten Lemberg diese bliihende Mathematikerschule ihr brutales Ende fand. Mehr als die Halfte deren Mitglieder hat den zweiten Weltkrieg nieht uberlebt; viele von ihnen wur den von Deutschen ermordet. Steinhaus konnte sich gerade noch rechtzeitig verbergen, hat den Krieg unter falschem Namen und mit falschen Papieren iiberlebt und war anschlieBend noch lange Zeit in Breslau aktiv. Am 25. November 2008 verstarb in Zurich im Alter von 91 Jahren Beno Eckmann, ein groBer Vertreter der Algebra und Topologie, dessen Schaffensperiode weit mehr als ein halbes Jahrhundert umfasst. In ihrem Nachruf stellen Max-Albert Knus, Guido Mislin und Urs Stammbach Eckmanns Wirken an der und fur die ETH Zurich dar und beleuchten einige von Eckmanns Arbeitsschwerpunkten und wichtigsten Ergebnissen. -
Józef Marcinkiewicz (1910–1940) – on the Centenary of His Birth
MARCINKIEWICZ CENTENARY VOLUME BANACH CENTER PUBLICATIONS, VOLUME 95 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011 JÓZEF MARCINKIEWICZ (1910–1940) – ON THE CENTENARY OF HIS BIRTH LECH MALIGRANDA Department of Engineering Sciences and Mathematics Luleå University of Technology, SE-971 87 Luleå, Sweden E-mail: [email protected] Abstract. Józef Marcinkiewicz’s (1910–1940) name is not known by many people, except maybe a small group of mathematicians, although his influence on the analysis and probability theory of the twentieth century was enormous. This survey of his life and work is in honour of the 100th anniversary of his birth and 70th anniversary of his death. The discussion is divided into two periods of Marcinkiewicz’s life. First, 1910–1933, that is, from his birth to his graduation from the University of Stefan Batory in Vilnius, and for the period 1933–1940, when he achieved sci- entific titles, was working at the university, did his army services and was staying abroad. Part 3 contains a list of different activities to celebrate the memory of Marcinkiewicz. In part 4, scien- tific achievements in mathematics, including the results associated with his name, are discussed. Marcinkiewicz worked in functional analysis, probability, theory of real and complex functions, trigonometric series, Fourier series, orthogonal series and approximation theory. He wrote 55 sci- entific papers in six years (1933–1939). Marcinkiewicz’s name in mathematics is connected with the Marcinkiewicz interpolation theorem, Marcinkiewicz spaces, the Marcinkiewicz integral and function, Marcinkiewicz–Zygmund inequalities, the Marcinkiewicz–Zygmund strong law of large numbers, the Marcinkiewicz multiplier theorem, the Marcinkiewicz–Salem conjecture, the Mar- cinkiewicz theorem on the characteristic function and the Marcinkiewicz theorem on the Perron integral. -
Polish Statisticians. Biographical Notes
Library ISBN 978-83-7027-686-7 Price 20,00 zl of the Statistical News POLISH STATISTICIANS BIOGRAPHICAL NOTES POLISH ST A TISTICIANS BIOGRAPHIC AL NO TES Warsaw 2018 Library of the Statistical News POLISH STATISTICIANS BIOGRAPHICAL NOTES Warsaw 2018 Editorial Board Mirosław Krzyśko (chairman), Wojciech Adamczewski, Jan Berger, Elżbieta Gołata, Kazimierz Kruszka, Bożena Łazowska Language consultation Włodzimierz Okrasa Typesetting Beata Lipińska, Paweł Luty Publication available on website stat.gov.pl ISBN 978-83-7027-686-7 00-925 WARSZAWA, AL. NIEPODLEGŁOŚCI 208. Zakład Wydawnictw Statystycznych Information on sales of the publication – phone +48 (22) 608 32 10, 608 38 10 Zam. 197/2018/nakł. 800 Dear Readers Breakthroughs in the life of a nation always provoke thoughts on its past, economic, social and scientific achievements. This year’s centenary of regaining independence by Poland and the 100th anniversary of the establishment of Statistics Poland provide an opportunity to remind and popularise pioneers and outstanding Polish statisticians. With this in mind, a publication entitled Polish statisticians was created. The aim of the publication is to preserve the memory of the people who contributed to the organisation, development and popularisation of statistics in Poland and in the international arena. The publication presents biographies of thirty persons – eminent scientists and educators, discoverers of new methods and theories – who made a significant contribution to the development of statistics. Reading the biograms brings closer the evolution of statistical thought and helps to understand its universality, indicating the links with other disciplines of science. We hope that this publication will be a valuable item in the library of every reader interested in statistics as a science describing the world around us and the phenomena occurring in it. -
Legacies from a Holocaust of the Mind
Review of European Studies; Vol. 11, No. 1; 2019 ISSN 1918-7173 E-ISSN 1918-7181 Published by Canadian Center of Science and Education Legacies From a Holocaust of the Mind Joanna Diane Caytas Correspondence: Joanna Diane Caytas, University of Oxford, St. Catherine's College, Manor Road, Oxford, Oxfordshire OX1 3UJ, United Kingdom. E-mail: [email protected] Received: December 26, 2018 Accepted: January 22, 2019 Online Published: February 1, 2019 doi:10.5539/res.v11n1p86 URL: https://doi.org/10.5539/res.v11n1p86 Abstract In the Molotov-Ribbentrop Pact, Hitler and Stalin devised to partition Poland for all future. Toward their goal of enslaving the nation, the Nazis systematically exterminated the Polish intelligentsia and prohibited tertiary education to create a nation of serfs. Still, the Soviets and their lieutenants continued a policy with similar if largely non-lethal effects for another 45 years under the banner of social engineering. The fate of the Lwów School of Mathematics is a prominent example of brute atrocities but also of great resilience, enduring creativity and irrepressible revival. Among the world‟s most advanced biotopes of mathematics in the interwar period, the Lwów School suffered debilitating losses from Hitler‟s genocide, wartime emigration, and the post-war brain drain of defections inspired by communism. The Scottish Café was perhaps the best-known liberal scholarly hotbed of cutting-edge mathematical ideas east of Göttingen, the caliber of its patrons reflective of the most noteworthy mine of mathematical talent outside of Oxford, Cambridge, Paris and Moscow in its day. It is a conclusion strikingly evidenced by the Scottish Book: three-quarters of a century later, a quarter of the mathematical challenges described therein is still awaiting resolution. -
The Lvov School of Mathematics
The Global and the Local: The History of Science and the Cultural Integration of Europe. nd Proceedings of the 2 ICESHS (Cracow, Poland, September 6–9, 2006) / Ed. by M. Kokowski. Roman Duda * The Lvov School of mathematics IN THE ANCIENT POLISH CITY OF LWÓW (in other languages Leopolis, Lvov, Lemberg, Lviv) there was an old university, founded 1661 by the king Jan Kazimierz (1609–1672). During the period 1772–1918, when Poland has been partitioned by Russia, Prussia and Austria, the city came under Austrian domination and the university was temporarily closed. Reopened, with the German language of instruction (previously it was Latin), it did not enjoy high reputation. Only after Lvov became the capital of Galicia and the province was granted autonomy in 1860s (within Austro-Hungarian empire), the significance of the university has begun to raise. In 1871 Polish has been admitted as the language of instruction and soon some research has also started. In those times there were two chairs of mathematics at the university and two more at the Academy of Technology (Lvov Polytechnic since 1918). In 1910 university chairs of mathematics were occupied by Józef Puzyna (1856–1919) and Wacław Sierpiński (1882–1969), both already known by their achievements. They became leaders of a group of talented youngsters, including Zygmunt Janiszewski (1888–1920), Stefan Mazurkiewicz (1888–1945), and Stanisław Ruziewicz (1889–1941), who later made their name in mathematics, and some others. Members of the group received results of some value, subsequently published in Polish, French and German journals, but the group itself has dispersed in 1914 after the outbreak of World War I: Puzyna became ill and died soon, Sierpiński was interned in Russia, Janiszewski volunteered for Polish military troops and died young, Mazurkiewicz moved to Warsaw; only Ruziewicz has remained in Lvov. -
Distinguished Graduates in Mathematics of the Jagiellonian
DISTINGUISHED GRADUATES IN MATHEMATICS OF JAGIELLONIAN UNIVERSITY IN THE INTERWAR PERIOD. PART I: 1918-1925 STANISLAW DOMORADZKI AND MALGORZATA STAWISKA 1. Introduction 2 2. Profiles 7 2.1. Tadeusz Wa_zewski(1896-1972) 7 2.2. W ladys law Nikliborc (1899-1948) 10 2.3. Stanis law Bilski (1893-1934(?)) 12 2.4. Jan J´ozefLe´sniak (1901-1980) 12 2.5. Stanis law Go l¸ab(1902-1980) 13 2.6. Zofia Krygowska (1904-1988) 16 References 18 Contents arXiv:1508.05450v2 [math.HO] 19 Nov 2015 Date: November 20, 2015. 1 Abstract. In this study, we present profiles of some distinguished graduates in mathemat- ics of the Jagiellonian University from the years 1918-1939. We discuss their professional paths and scholarly achievements, instances of scientific collaboration, connections with other academic centers in Poland and worldwide, involvement in mathematical education and teacher training, as well as their later roles in Polish scientific and academic life. We also try to understand in what way they were shaped by their studies and how much of Krak´owscientific traditions they continued. We find strong support for the claim that there was a distinct, diverse and deep mathematical stream in Krak´owbetween the wars, rooted in classical disciplines like differential equations and geometry, but also open to new trends in mathematics. Part I concerns the graduates before the university reform, in 1918-1926. W niniejszej pracy przedstawiamy sylwetki niekt´orych wybitnych absolwent´owUniwer- sytetu Jagiello´nskiegow zakresie matematyki z lat 1918-1939. Omawiamy ich drogi za- wodowe i osi¸agni¸ecianaukowe, przyk ladywsp´o lpracynaukowej, zwi¸azkiz innymi o´srodkami akademickimi w Polsce i na ´swiecie,zaanga_zowanie w nauczanie matematyki i kszta lcenie nauczycieli oraz ich p´o´zniejszerole w polskim _zyciuakademickim. -
Józef Marcinkiewicz (1910–1940) – on the Centenary of His Birth
MARCINKIEWICZ CENTENARY VOLUME BANACH CENTER PUBLICATIONS, VOLUME 95 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011 JÓZEF MARCINKIEWICZ (1910–1940) – ON THE CENTENARY OF HIS BIRTH LECH MALIGRANDA Department of Engineering Sciences and Mathematics Luleå University of Technology, SE-971 87 Luleå, Sweden E-mail: [email protected] Abstract. Józef Marcinkiewicz's (19101940) name is not known by many people, except maybe a small group of mathematicians, although his inuence on the analysis and probability theory of the twentieth century was enormous. This survey of his life and work is in honour of the 100th anniversary of his birth and 70th anniversary of his death. The discussion is divided into two periods of Marcinkiewicz's life. First, 19101933, that is, from his birth to his graduation from the University of Stefan Batory in Vilnius, and for the period 19331940, when he achieved sci- entic titles, was working at the university, did his army services and was staying abroad. Part 3 contains a list of dierent activities to celebrate the memory of Marcinkiewicz. In part 4, scien- tic achievements in mathematics, including the results associated with his name, are discussed. Marcinkiewicz worked in functional analysis, probability, theory of real and complex functions, trigonometric series, Fourier series, orthogonal series and approximation theory. He wrote 55 sci- entic papers in six years (19331939). Marcinkiewicz's name in mathematics is connected with the Marcinkiewicz interpolation theorem, Marcinkiewicz spaces, the Marcinkiewicz integral and function, MarcinkiewiczZygmund inequalities, the MarcinkiewiczZygmund strong law of large numbers, the Marcinkiewicz multiplier theorem, the MarcinkiewiczSalem conjecture, the Mar- cinkiewicz theorem on the characteristic function and the Marcinkiewicz theorem on the Perron integral. -
1918‒1925 Wybitni Absolwenci
TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE FUNDAMENTAL SCIENCES NAUKI PODSTAWOWE 2-NP/2015 STANISŁAW DOMORADZKI*, MAŁGORZATA STAWISKA** DISTINGUISHED GRADUATES IN MATHEMATICS OF JAGIELLONIAN UNIVERSITY IN THE INTERWAR PERIOD. PART I: 1918‒1925 WYBITNI ABSOLWENCI MATEMATYKI NA UNIWERSYTECIE JAGIELLOŃSKIM W OKRESIE MIĘDZYWOJENNYM. CZĘŚĆ I: 1918‒1925 Abstract In this study, we present profiles of some distinguished graduates in mathematics of the Jagiellonian University from the years 1918‒1925. We discuss their professional paths and scholarly achievements, instances of scientific collaboration, connections with other academic centers in Poland and worldwide, involvement in mathematical education and teacher training, as well as their later roles in Polish scientific and academic life. We also try to understand in what way they were shaped by their studies and how much of Kraków scientific traditions they continued. We find strong support for the claim that there was a distinct, diverse and deep mathematical stream in Kraków between the wars, rooted in classical disciplines such as differential equations and geometry, but also open to new trends in mathematics. Keywords: history of mathematics in Poland, Jagiellonian University, Cracow Streszczenie W niniejszym artykule przedstawiamy sylwetki niektórych wybitnych absolwentów Uniwersytetu Jagiellońskiego w zakresie matematyki z lat 1918‒1925. Omawiamy ich drogi zawodowe i osiągnięcia naukowe, przykłady współ- pracy naukowej, związki z innymi ośrodkami akademickimi w Polsce i na świecie, zaangażowanie w nauczanie matematyki i kształcenie nauczycieli oraz ich późniejsze role w polskim życiu akademickim. Próbujemy także zrozumieć, w jaki sposób zostali oni ukształtowani przez swoje studia i na ile kontynuowali krakowskie tradycje naukowe. Znajdujemy mocne dowody na poparcie tezy, że w Krakowie międzywojennym istniał wyraźny, zróżni- cowany i głęboki nurt matematyczny, zakorzeniony w dyscyplinach klasycznych, takich jak równania różniczko- we i geometria, ale również otwarty na nowe trendy w matematyce.