Józef Marcinkiewicz–His Life and Work
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
L. Maligranda REVIEW of the BOOK by ROMAN
Математичнi Студiї. Т.46, №2 Matematychni Studii. V.46, No.2 УДК 51 L. Maligranda REVIEW OF THE BOOK BY ROMAN DUDA, “PEARLS FROM A LOST CITY. THE LVOV SCHOOL OF MATHEMATICS” L. Maligranda. Review of the book by Roman Duda, “Pearls from a lost city. The Lvov school of mathematics”, Mat. Stud. 46 (2016), 203–216. This review is an extended version of my two short reviews of Duda's book that were published in MathSciNet and Mathematical Intelligencer. Here it is written about the Lvov School of Mathematics in greater detail, which I could not do in the short reviews. There are facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach's book and also books by Mazur, Schauder and Tarski. My two short reviews of Duda’s book were published in MathSciNet [16] and Mathematical Intelligencer [17]. Here I write about the Lvov School of Mathematics in greater detail, which was not possible in the short reviews. I will present the facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach’s book and also books by Mazur, Schauder and Tarski. So let us start with a discussion about Duda’s book. In 1795 Poland was partioned among Austria, Russia and Prussia (Germany was not yet unified) and at the end of 1918 Poland became an independent country. -
W Ladys Law Orlicz
WLADYS LAW ORLICZ Born: 24 May 1903 in Okocim, Galicia, Austria-Hungary (now Poland) Died: 9 August 1990 in Pozna´n,Poland W ladyslaw Roman Orlicz was born in Okocim, a village in the district of Brzesko, province of Cracow. His parents, Franciszek and Maria n´ee Rossknecht, had five sons. Father died when he was only four years old. In 1919 Orlicz's family moved to Lw´ow,where he completed his secondary education and then studied mathematics at the Jan Kazimierz University in Lw´owhaving as teachers Stefan Banach, Hugo Steinhaus and Antoni Lomnicki. In the years 1922-1929 he worked as a teaching assistent at the Depart- ment of Mathematics of Jan Kazimierz University. In 1928 he received doctor's degree upon presenting a thesis \Some prob- lems in the theory of orthogonal series" under the supervision of Eustachy Zyli´nski.In_ the same year he married Zofia Krzysik (born: 26 Sept. 1898, Foca, Bosnia { died: 5 Nov. 1999, Pozna´n). In the late twenties and early thirties Orlicz worked as a teacher in private secondary schools and in a military school. Academic year 1929/30 Orlicz spent at the G¨ottingenUniversity on a scholarship in theoretical physics, not in mathematics. During his stay in G¨ottingenhe started his collaboration with Zygmunt Wilhelm Birnbaum (also from Lw´ow). They published two papers in Studia Mathematica in 1930 and 1931 whose results became a starting point for Orlicz to consider and investigate in 1932 and 1936 function spaces more general than Lp spaces which later on became known as Orlicz spaces. -
Polish Mathematicians and Mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire)
Science in Poland Stanisław Domoradzki ORCID 0000-0002-6511-0812 Faculty of Mathematics and Natural Sciences, University of Rzeszów (Rzeszów, Poland) [email protected] Małgorzata Stawiska ORCID 0000-0001-5704-7270 Mathematical Reviews (Ann Arbor, USA) [email protected] Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire) Abstract In this article we present diverse experiences of Polish math- ematicians (in a broad sense) who during World War I fought for freedom of their homeland or conducted their research and teaching in difficult wartime circumstances. We discuss not only individual fates, but also organizational efforts of many kinds (teaching at the academic level outside traditional institutions, Polish scientific societies, publishing activities) in order to illus- trate the formation of modern Polish mathematical community. PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Domoradzki, Stanisław; Stawiska, Małgorzata 2018: Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire. Studia Historiae Scientiarum 17, pp. 23–49. Available online: https://doi.org/10.4467/2543702XSHS.18.003.9323. ARCHIVE RECEIVED: 2.02.2018 LICENSE POLICY ACCEPTED: 22.10.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Stanisław Domoradzki, Małgorzata Stawiska Polish mathematicians and mathematics in World War I ... In Part I we focus on mathematicians affiliated with the ex- isting Polish institutions of higher education: Universities in Lwów in Kraków and the Polytechnical School in Lwów, within the Austro-Hungarian empire. -
Matical Society Was Held at Columbia University on Friday and Saturday, April 25-26, 1947
THE APRIL MEETING IN NEW YORK The four hundred twenty-fourth meeting of the American Mathe matical Society was held at Columbia University on Friday and Saturday, April 25-26, 1947. The attendance was over 300, includ ing the following 300 members of the Society: C. R. Adams, C. F. Adler, R. P. Agnew, E.J. Akutowicz, Leonidas Alaoglu, T. W. Anderson, C. B. Allendoerfer, R. G. Archibald, L. A. Aroian, M. C. Ayer, R. A. Bari, Joshua Barlaz, P. T. Bateman, G. E. Bates, M. F. Becker, E. G. Begle, Richard Bellman, Stefan Bergman, Arthur Bernstein, Felix Bernstein, Lipman Bers, D. H. Blackwell, Gertrude Blanch, J. H. Blau, R. P. Boas, H. W. Bode, G. L. Bolton, Samuel Borofsky, J. M. Boyer, A. D. Bradley, H. W. Brinkmann, Paul Brock, A. B. Brown, G. W. Brown, R. H. Brown, E. F. Buck, R. C. Buck, L. H. Bunyan, R. S. Burington, J. C. Burkill, Herbert Busemann, K. A. Bush, Hobart Bushey, J. H. Bushey, K. E. Butcher, Albert Cahn, S. S. Cairns, W. R. Callahan, H. H. Campaigne, K. Chandrasekharan, J. O. Chellevold, Herman Chernoff, Claude Chevalley, Ed mund Churchill, J. A. Clarkson, M. D. Clement, R. M. Cohn, I. S. Cohen, Nancy Cole, T. F. Cope, Richard Courant, M. J. Cox, F. G. Critchlow, H. B. Curry, J. H. Curtiss, M. D. Darkow, A. S. Day, S. P. Diliberto, J. L. Doob, C. H. Dowker, Y. N. Dowker, William H. Durf ee, Churchill Eisenhart, Benjamin Epstein, Ky Fan, J.M.Feld, William Feller, F. G. Fender, A. D. -
Stefan Bergman Prize
people.qxp 5/8/98 3:41 PM Page 778 Mathematics People 1995 Bergman Trust Prize Awarded Harold P. Boas and Emil J. Straube have been named joint awardees of the Stefan Bergman Trust for 1995. The trust, established in 1988, recognizes mathematical accom- plishments in the areas of research in which Stefan Bergman worked. The previous beneficiaries of the trust are: David W. Catlin (1989), Steven Bell and Ewa Ligocka (1991), Charles Fefferman (1992), Yum Tong Siu (1993), and John Erik Fornæss (1994). On the selection committee for the 1995 award were Frederick Gehring, J. J. Kohn (chair), and Yum Tong Siu. Harold P. Boas Emil J. Straube Award Citation Boas and Straube have had a very fruitful collaboration and he advanced to the rank of associate professor in 1987 and have proved a series of important results in the theory of full professor in 1992. He has held visiting positions at the several complex variables. In particular, they have made University of North Carolina at Chapel Hill. spectacular progress in the study of global regularity of Emil J. Straube was born August 27, 1952, in Flums, the Bergman projection and of the ¯∂-Neumann problem. Switzerland. He received his diploma in mathematics from They have established global regularity, in the sense of the Swiss Federal Institute of Technology (ETH) in 1977 and preservation of Sobolev spaces, on a large class of weakly his Ph.D. in mathematics, also from ETH, in 1983 under the pseudoconvex domains. This is a remarkable achievement, direction of Konrad Osterwalder. He was a visiting re- since it gives natural conditions for global regularity in cases search scholar at the University of North Carolina where local regularity does not hold; it also gives rise to a (1983–1984), a visiting assistant professor at Indiana Uni- series of important problems concerning global regularity versity (1984–1986), and a visiting assistant professor at in situations when the Sobolev spaces are not preserved. -
Roman Duda (Wrocław, Poland) EMIGRATION OF
ORGANON 44:2012 Roman Duda (Wrocław, Poland) EMIGRATION OF MATHEMATICIANS FROM POLAND IN THE 20 th CENTURY (ROUGHLY 1919–1989) ∗ 1. Periodization For 123 years (1795–1918) Poland did not exist as an independent state, its territory being partitioned between Prussia (Germany), Austria and Russia 1. It was a period of enforced assimilation within new borders and thus of restraining native language and culture which first provoked several national uprisings against oppressors, and then – in the three decades at the turn of the 19 th to 20 th centuries – of a slow rebuilding of the nation’s intellectual life. Conditions, however, were in general so unfavourable that many talents remained undeveloped while some talented people left the country to settle and work elsewhere. Some of the mathematicians emigrating then (in the chronological order of birth): • Józef Maria Hoene–Wro ński (1776–1853) in France, • Henryk Niew ęgłowski (1807–1881) in Paris, • Edward Habich (1835–1909) in Peru, • Franciszek Mertens (1840–1929) in Austria, • Julian Sochocki (1842–1927) in Petersburg, • Jan Ptaszycki (1854–1912) in Petersburg, • Bolesław Młodziejewski (1858–1923) in Moscow, • Cezary Russyan (1867–1934) in Kharkov, • Władysław Bortkiewicz (1868–1931) in Berlin, • Alexander Axer (1880–1948) in Switzerland. Thus the period of partitions was a time of a steady outflow of many good names (not only mathematicians), barely balanced by an inflow due to assim- ilation processes. The net result was decisively negative. After Poland regained independence in 1918, five newly established or re–established Polish universities (Kraków, Lwów, Warsaw, Vilnius, Pozna ń) ∗ The article has been prepared on the suggestion of Prof. -
The Legacy of Jozef Marcinkiewicz: Four Hallmarks of Genius
The legacy of Jozef´ Marcinkiewicz: four hallmarks of genius Nikolay Kuznetsov In memoriam of an extraordinary analyst This article is a tribute to one of the most prominent Pol- ish mathematicians Jozef´ Marcinkiewicz who perished 80 years ago in the Katyn´ massacre. He was one of nearly 22000 Polish officers interned by the Red Army in Septem- ber 1939 and executed in April–May 1940 in the Katyn´ forest near Smolensk and at several locations elsewhere. One of these places was Kharkov (Ukraine), where more than 3800 Polish prisoners of war from the Starobelsk camp were executed. One of them was Marcinkiewicz; the plaque with his name (see photo at the bottom) is on the Memo- rial Wall at the Polish War Cemetery in Kharkov.∗ This industrial execution was authorized by Stalin’s secret order dated 5 March 1940, and organised by Beria, who headed the People’s Commissariat for Internal Affairs (the interior ministry of the Soviet Union) known as NKVD. Turning to the personality and mathematical achieve- ments of Marcinkiewicz, it is appropriate to cite the article [24] of his superviser Antoni Zygmund (it is published in the Collected Papers [13] of Marcinkiewicz; see p. 1): Considering what he did during his short life its proceedings, L. Maligranda published the detailed article and what he might have done in normal circum- [9] about Marcinkiewicz’s life and mathematical results; 16 stances one may view his early death as a great pages of this paper are devoted to his biography, where one blow to Polish Mathematics, and probably its finds the following about his education and scientific career. -
Peter Duren Lawrence Zalcman Editors Selected Papers Volume 2
Contemporary Mathematicians Peter Duren Lawrence Zalcman Editors Menahem Max Schiffer Selected Papers Volume 2 Contemporary Mathematicians Gian-Carlo Rota† Joseph P.S. Kung Editors For further volumes: http://www.springer.com/series/4817 Peter Duren • Lawrence Zalcman Editors Menahem Max Schiffer: Selected Papers Volume 2 Editors Peter Duren Lawrence Zalcman Department of Mathematics Department of Mathematics University of Michigan Bar-Ilan University Ann Arbor, Michigan, USA Ramat-Gan, Israel ISBN 978-1-4614-7948-2 ISBN 978-1-4614-7949-9 (eBook) DOI 10.1007/978-1-4614-7949-9 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013948450 Mathematics Subject Classification (2010): 30-XX, 31-XX, 35-XX, 49-XX, 76-XX, 20-XX, 01-XX © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Mathematics People
Mathematics People map between CR manifolds which satisfies the tangential Baouendi and Rothschild Cauchy-Riemann equations is a CR map. Receive 2003 Bergman Prize The work of Baouendi and Rothschild on CR manifolds focuses on two aspects. One aspect concerns CR maps. M. SALAH BAOUENDI and LINDA PREISS ROTHSCHILD have been When can a locally defined CR map be extended to a global awarded the 2003 Stefan Bergman Prize. Established in CR map between two CR manifolds? When is a global CR 1988, the prize recognizes mathematical accomplishments map already determined locally or even by the infinite jet in the areas of research in which Stefan Bergman worked. at one point? Another aspect concerns CR functions. When For one year each awardee will receive half of the income is a CR function on a real submanifold of a complex from the prize fund. Currently this income is about $22,000 manifold the restriction of a holomorphic function, or the per year. limit of holomorphic functions, defined on some open The previous Bergman Prize winners are: David W. subset of the complex manifold? Catlin (1989), Steven R. Bell and Ewa Ligocka (1991), Charles In a series of seminal papers (some jointly with X. Huang, Fefferman (1992), Yum Tong Siu (1993), John Erik Fornæss P. Ebenfelt, and D. Zaitsev) they showed, under some natural (1994), Harold P. Boas and Emil J. Straube (1995), David E. nondegeneracy conditions, that germs of smooth CR maps Barrett and Michael Christ (1997), John P. D’Angelo (1999), between two real analytic hypersurfaces always extend to Masatake Kuranishi (2000), and László Lempert and global CR maps which, moreover, in the case of algebraic hypersurfaces (and even for the higher codimensional case), Sidney Webster (2001). -
Solution, Extensions and Applications of the Schauder's 54Th Problem In
Mathematica Moravica Vol. 20:1 (2016), 145–190 Solution, Extensions and Applications of the Schauder’s 54th Problem in Scottish Book Milan R. Tasković∗ Abstract. This paper presents the Axiom of Infinite Choice: Given any set P , there exist at least countable choice functions or there exist at least finite choice functions. The author continues herein with the further study of two papers of the Axiom of Choice in order by E. Z e r - m e l o [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. An- nalen, 65 (1908), 107–128; translated in van Heijenoort 1967, 183–198], and by M. Ta s kov i ć [The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897–904]. Fredholm and Leray-Schauder alternatives are two direct consequences of the Axiom of Infinite Choice! This paper presents applications of the Axiom of Infinite Choice to the Fredholm and Leray-Schauder the- ory. In this sense, I give a solution and some extensions of Schauder’s problem (in Scottish book, problem 54). This paper presents some new mathematical n-person games. In the theory of n-person games, there have been some further developments in the direction of transversal games and mathematical alternative theory. 1. History and origins We shall first discuss an assumption that appears to be independent of, and yet consistent with, the usual logical assumptions regarding classes and correspondences, but whose absolute validity has been seriously questioned by many authors. This is the so-called Axiom of Choice, which has excited more controversy than any other axiom of set theory since its formulation by Ernst Zermelo in 1908. -
Lwów I Wilno W Matematyce Międzywojennej Polski
Przegląd Wschodni, t. XIV, z. 1 (53), s. , ISSN 0867–5929 © Przegląd Wschodni 2015 Roman Duda Wrocław LWÓW I WILNO W MATEMATYCE MIĘDZYWOJENNEJ POLSKI Wstęp dzyskanie przez Polskę niepodległości w 1918 r. wyzwoliło falę entuzjazmu i wolę wyróżnienia się na każdym polu, także Onaukowym. Międzywojenna Polska powołała 5 uniwersytetów i 3 politechniki, w tym Uniwersytet Jana Kazimierza i Politechnikę we Lwowie oraz Uniwersytet Stefana Batorego w Wilnie, co oznaczało, że blisko 40% akademickiego stanu posiadania mieściło się na Kresach Wschodnich. Nie było to mało, ale i wkład uczelni kresowych do nauki też okazał się niemały. Przedwojenna matematyka polska, oparta o tych 8 uczelni, szyb- ko zyskała międzynarodowe znaczenie, a jej ówczesne osiągnięcia należą do największych osiągnięć nauki polskiej w całym okresie jej dziejów. Śmiało można powiedzieć, że matematyka polska była wówczas trampoliną torującą drogę całej nauce polskiej do uznania w świecie. Celem tego artykułu jest przedstawienie roli ośrodków matematycznych Lwowa i Wilna w międzywojennym życiu matema- tycznym Polski i świata. Początki Sytuacja wyjściowa w obu miastach, Wilnie i Lwowie, była skrajnie różna. Oba szczyciły się wprawdzie parowiekową tradycją uniwer- sytecką (uniwersytet wileński powołał król Stefan Batory w 1579 r., a uniwersytet lwowski król Jan Kazimierz w 1661 r.), ale w Wilnie tradycja ta została brutalnie przerwana, kiedy władze carskie po zdławieniu powstania listopadowego zamknęły tamtejszy uniwersy- tet, natomiast uczelnia lwowska miała wprawdzie trudne okresy, ale 2 ROMAN DUDA była czynna niemal bez przerwy, a od jej repolonizacji w 1870 r. rola uniwersytetu lwowskiego w polskim życiu narodowym szybko rosła1. W przededniu I wojny światowej sytuacja w obu tych miastach była więc różna.