<<

S63

Increases in Rates of Resistance to

Pentti Huovinen From the Antimicrobial Research Laboratory, National Public Health Institute, Turku, Finland

Trimethoprim alone or in combination with a is an effective and relatively inexpensive antibacterial medication. However, a dramatic increase in the rate of resistance to trimethoprim along with high-level resistance to sulfonamides has been seen during the past two decades. The

mechanisms of resistance show a remarkable evolutionary adaptation. Downloaded from https://academic.oup.com/cid/article/24/Supplement_1/S63/283547 by guest on 30 September 2021

Trimethoprim and sulfonamides are both synthetic antibacte- those in industrialized countries. The international WHONET rial agents. Sulfonamides were used for the first time in 1932, surveillance program has shown that only 38%-59% of E. coli and trimethoprim was first used in 1962 [1] . Since 1968, tri- isolates and 47%-77% of Klebsiella pneumoniae isolates in methoprim and sulfonamides have been used in combination Latin America and Asia are susceptible, whereas the corre- because of supposed synergistic action [2]. However, combina- sponding rates in the United States and Sweden are 87%-93% tions of trimethoprim and sulfonamides do not have a clear and 77%-91%, respectively [7]. In addition, the rate of fecal clinical synergism [3-5]. Trimethoprim alone has also been carriage of trimethoprim-resistant enterobacteria has been used as prophylaxis for and treatment of urinary tract infec- shown to be high in developing countries [13]. tions [6]. The rate of trimethoprim resistance among S. saprophyticus Trimethoprim and sulfonamides each cover a wide spectrum isolates has been reported to be only 2% [14]. In my previous of bacteria, including urinary tract pathogens (, study [7], 1% of 186 isolates were resistant to trimethoprim- other Enterobacteriaceae organisms, and Staphylococcus sap- , and 9% of the isolates were resistant to tri- rophyticus) and respiratory tract pathogens (Streptococcus methoprim. More studies are needed to establish the rates of pneumoniae and Haemophilus influenzae); in combination, resistance to trimethoprim and sulfonamides among S. sapro- they have activity against Moraxella catarrhalis, skin patho- phyticus isolates. gens (Staphylococcus aureus), and enteric pathogens (E. coli Enteric pathogens. The increased rate of trimethoprim re- and Shigella species). sistance among Shigella species is one of the most illustrative Figures on the distribution of trimethoprim and sulfonamides examples of the spread of trimethoprim resistance (figure 1). throughout the world are difficult, if not impossible, to obtain This increased resistance has had a clinical impact since rates except from a few countries that publish annual sales [7]. of sulfonamide resistance among Shigella species have been continuously high at 42%-100%. In the 1970s and early 1980s, trimethoprim resistance oc- Spread of Trimethoprim-Sulfonamide Resistance curred in only a few Shigella isolates [7]. In 1983-1984, about Resistant gram-negative bacilli are easily transferred through 4%-17% of these isolates were resistant to trimethoprim or person-to-person contact [8, 9], and colonization occurs readily trimethoprim-sulfamethoxazole; in 1985, 7%-21% were resis- when the normal flora is suppressed by antibacterial agents [10]. tant, and rates of trimethoprim resistance later were as high as Resistant isolates are also easily transferred by travelers even 52% depending on the Shigella species. Most of the isolates when they are not exposed to antimicrobial agents [11, 12]. were resistant to multiple agents, including ampicillin, tetracy- Urinary tract pathogens. In the 1970s, rarely were >10% cline, chloramphenicol, and streptomycin. In addition to the of E. coli isolates from outpatient urine samples resistant to increased resistance in Shigella species, increased rates of tri- trimethoprim. However, reports from the 1980s showed an methoprim resistance among enterotoxigenic E. coli have been increasing frequency; the resistance rates often reached shown [18, 21]. 15%-20%. The rate of trimethoprim or sulfonamide resistance among Resistance rates among gram-negative pathogens in devel- Salmonella species has not increased as fast as that among oping countries have been reported to be clearly higher than Shigella species, although high-level resistance has also been reported [7]. In addition, other enteric bacterial pathogens, like Yersinia species and , have been re- ported to be susceptible to trimethoprim/sulfonamide. Grant support: This work was supported by the Sigrid Juselius Foundation, Helsinki. Respiratory tract pathogens. Although trimethoprim-sulfa- Reprints or correspondence: Dr. P. Huovinen, Antimicrobial Research Labo- methoxazole has been widely used as treatment of respiratory ratory, National Public Health Institute, P.O. Box 57, FIN-20521 Turku, Fin- tract infections, the major respiratory tract pathogens (. in- land. fluenzae, S. pneumoniae, and M catarrhalis) have remained Clnl Inft 1997; (Sppl 1S3- © 1997 by The University of Chicago. All rights reserved. rather susceptible. The rate of resistance to trimethoprim or 1058-4838/97/2401-0037$02.00 sulfonamides among H. influenzae isolates has varied from a S uoie CID 1997; (Su 1

5—

r 1 Iusaie eese- aio o e eeome o i- meoim o imeoim-su- Downloaded from https://academic.oup.com/cid/article/24/Supplement_1/S63/283547 by guest on 30 September 2021 oamie esisace i Shigella secies i iee as o e — wo ees A— eoe aa aae om [15-] esec- iey 1—

tll 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 Yr

ew ece o 1 i Sai [-] e ae o esisace gees ae ee caaceie i gam-egaie aceia a o imeoim-suameoaoe amog muiesisa oe as ee caaceie i S. aureus. Mos o ese gees S. pneumoniae isoaes as age om 1 o [5] ae asee y eicie iego mecaisms cae cas- owee eicii-susceie S. pneumoniae as eaie is sees (ae 1 susceiiiy o is comiaio [] e ae o imeoim Aoug e ume o eie aseae gees o i- o suoamie esisace amog M catarrhalis as ee e- meoim esisace is ig a suie asmi-oe esis- oe o e ee owe a ose amog S. pneumoniae a ace o suoamies ca e accoue o y su// a su/// H. influenzae [ 7] [7] I sie o e imiise use o suoamies e geeic Staphylococci. Meicii-esisa Staphylococcus aureus eemias o suoamie esisace ae si ey commo a coaguase-egaie sayococci ae oe esisa o i- is esisece ca e eaie y ey eicie eices meoim a suoamies wi esisace equecies o -9 [ 9] bl 1 aseae geeic eemias o imeoim esis- ace

Gn Endn rthpr nd Slfnd oyeie asmi a/o tn amiy ye Cassee eg asoso

imeoim esisace is meiae y aee iyooae 1 I, dhfrl Yes 157 7 M15

1 V, dhfrV Yes 157 MO eucase i aceia iyooae eucase is a esseia 1 VI, dhfrVl, Yes 157 UK7 eyme i a iig ces imeoim is sucuay aao- 1 VII, dhfrVII Yes 157 Tn5086 gous o iyooae eucase a is comeiie iiio 1 I dhfrlb Yes 157 Tn4132

iyooae eucase i umas is esisa o imeoim IIa dhfrlla Yes 7 7 wic is e asis o is aceia seeciiy II dhfrllb Yes 7 3

IIc, dhfrllc Yes 7 Tn5090 Suoamie esisace is meiae y aee iyoeo- III dhfrIII o 1 A1 ae syase; is eyme caayes e omaio o iyo- I UK113 eoic aci i aceia a some eukayoic ces ike Pneu- VIII, dhfrVIII o 19 Tn5091 mocystis carinii a Plasmodium falciparum [3 31] IX, dhfrlX o 177 C1

Suoamies ae comeiie iiios o e ockig o i- X, dhfrX o 1 GO1

XII, dhfrXII Yes 15 E1 yoeoae syase ia oae iosyesis i e aceia III ce [] IIIe Plasmid-encoded trimethoprim and sulfonamide resistance. Si (Staphylococcus aureus) 159 Tn4003 e ume o gees o asmi-ecoe imeoim-esis- a iyooae eucase is aeay 17 Siee o ese OE aa aae om [7] = o eemie CI 1997; (Su 1 Icease aes o imeoim esisace S5

o ase; agai e iegos usuay cay e gees o 1 Muay E esime E uo Emegece o ig-ee imeo- suoamie esisace im esisace i eca Escherichia coli, uig oa amiisaio o Chromosomaltrimethoprimandsulfonamideresistance. imeoim o imeoim-suameoaoe Eg Me 19; Ac- 313-5 quie comosoma imeoim esisace is o ey im- 13 ese SC e ia M Wag Scae I iag Oie e oa ciicay is ye o imeoim esisace is mei- caiage o Escherichia coli esisa o aimicoia ages y eay ae y muaios i e gee o iyooae eucase cie i oso i Caacas eeuea a i Qi u Cia Comosoma imeoim esisace is ou i . influenzae Eg Me 199; 335-9 [3] E. coli [33] a S. pneumoniae [3] I aiio eoge- 1 Sceie iey Susceiiiy o uie isoaes o Sayococcus

saoyicus o aimicoia ages aoogy 1991;3135- Downloaded from https://academic.oup.com/cid/article/24/Supplement_1/S63/283547 by guest on 30 September 2021 ous esisace o imeoim occus i may iee ace- 15 Goss ea E Wa owe ug esisace i Shigella ia secies suc as , Pediococcus cerevisiae, dysenteriae, Shigella flexneri a Shigella boydii i Ega a Waes Bacteroides fragilis, a secies [35] Como- iceasig iciece o esisace o imeoim Me [Ci es] soma suoamie esisace is kow o occu i Neisseria 19;7- meningitidis [3] a S. pneumoniae [37] 1 aoea M o issemiaio o imeoim-esisa coes o Shigella sonnei i ugaia Iec is 199;159-53 17 eikki E Siioe A akoa M ig M SusOm uoie Icease o imeoim esisace amog Shigella secies 1975 - Conclusions 19 aaysis o esisace mecaisms Iec is 199; 11 1- uig e as ew yeas a amaic icease i e ae 1 Cakaeomoako A Eceeia ayo Seiwaaa eksomoo o imeoim esisace aog wi ig-ee suoamie U imeoim-esisa Shigella a eeooigeic Escherichia coli esisace as ee see e geeic ikage o gees o sais i cie i aia eia Iec is 197; 735-9 imeoim a suoamie esisace agey iaiaes e 19 eis M Saam MA ossai MA e a Aimicoia esisace o agume o usig e comiaio o imeoim a a Shigella isoaes i agaes 193-199 iceasig equecy o sais muiy esisa o amicii imeoim-suameoaoe suoamie o ee e eeome o esisace I ai- a aiiic aci Ci Iec is 199;1155- io ee ae o sigs a eimiaio o e seecio eec oog CE Sco CS a eeuwe a Kigee Moioig o o imeoim o suoamies wi ae a immeiae imac aiioic esisace i Shigellae isoae i e eeas 19-199 o e ee o esisace Eu Ci Micoio Iec is 199;111-7 1 aes C Maewso Eicsso C uo imeoim/ suameoaoe emais acie agais eeooigeic Esceicia coi a Sigea secies i Guaaaaa Meico Am Me Sci 199; frn 339-91 1 uoie imeoim esisace Miieiew Aimico Ages Coigo e M Maces S Gie G ooey M e Cemoe 197; 31151 - Ausaia Gou o Aimicoia esisace (AGA A aioa usy SM icigs G imeoim a suoamie oeiao coaoaie suy o esisace o aimicoia ages i Haemo- am Cemoe 19; 337-9 philus influenzae i Ausaia osias Aimico Cemoe 3 Aca Gosei Cae YA Syegisic aciiy o imeoim- 199; 3153-3 suameoaoe o gam-egaie acii oseaios i io a i 3 Geoge M Kic eeso W Giiga I io aciiy o io Iec is 1973; 1(suS7-7 oay amiisee aimicoia ages agais Haemophilus influen- umi W amio-Mie M Co-imoaoe o imeoim aoe? zae ecoee om cie moioe ogiuiay i a gou ay- A iewoi o ei eaie ace i eay ugs 19;53- cae cee Aimico Ages Cemoe 1991; 3519- 5 Oie Aca Ama G e a Sessio II aoaoy sueiace Kayse Moeoi G Saaam e seco Euoea coaoaie o syegy ewee a esisace o imeoim a suoamies suy o e equecy o aimicoia esisace i Haemophilus in- e Iec is 19;351-7 fluenzae. Eu Ci Micoio Iec is 199; 91-7 Kasae A Suquis imeoim aoe i e eame o uiay 5 Muio Coey aies M e a Iecoiea sea o a muie- ac iecios eig yeas o eeiece i ia e Iec is sisa coe o seoye 3 Streptococcus pneumoniae. Iec is 19;35-5 1991;13- 7 uoie SusOm Sweeg G SkO imeoim a su- ogese oe G Mae A owe AW eig S Aimico- oamie esisace Miieiew Aimico Ages Cemoe 1995; ia esisace amog esiaoy isoaes o Haemophilus influenzae, 3979-9 Moraxella catarrhalis, a Streptococcus pneumoniae i e Uie eyes og M ickeig K ae A Aae M Muay E Saes Aimico Ages Cemoe 199;375- isk acos o eca cooiaio wi imeoim-esisa a mui- 7 Waace as Seigue A Aiioic susceiiiies a ug esisa Escherichia coli amog cie i ay-cae cees i ous- esisace i Moraxella (Branhamella) catarrhalis. Am Me Sci 199; o eas Aimico Ages Cemoe 199; 319-3 (su 5A-5 9 Wiga E Saes Moime EA Saes M Cooiaio a coss- Koiaie ikoskeaie uoie Aiioic susceiiiy o cooiaio o usig ome aies wi imeoim-esisa gam- coaguase-egaie sayococca oo isoaes wi secia eeece egaie acii Ci Iec is 1993; 175-1 o aee sime-oucig Sayococcus eiemiis sais Sca 1 oaa E Casee A Cooiaio esisace Aimico Ages Iec is 1991;335-3 Cemoe 199; 39 -1 9 e Ko I ueska A equecy a aseaiiy o i- 11 Muay E Maewso uo Eicsso C eyes Emegece meoim a suoamie esisace i meicii-esisa o esisa eca Escherichia coli i aees o akig oyaic aimi- Sayococcus aueus a Sayococcus eiemiis Cemo- coia ages Aimico Ages Cemoe 199;3515- e 199; 7-71 S66 Huovinen CID 1997;24 (Suppl 1)

30. Volpe F, Ballantine SP, Delves CJ. The multifunctional folic acid fas gene 34. Sirotnak FM, McCuen RW. Hyperproduction of dihydrofolate reductase in of Pneumocystis carinii encodes dihydroneopterin aldolase, hydroxy- Diplococcus pneumoniae after mutation in the structural gene. Evidence methyldihydropterin pyrophosphokinase and dihydropteroate synthase. for an effect at the level of transcription. Genetics 1973; 74:543 —56. Eur J Biochem 1993; 216:449-58. 35. Then RL, Riggenbach H. Dihydrofolate reductases in some folate-requir- 31. Zhang Y, Meshnick SR. Inhibition of Plasmodium falciparum dihydropter- ing bacteria with low trimethoprim susceptibility. Antimicrob Agents oate synthetase and growth in vitro by sulfa drugs. Antimicrob Agents Chemother 1978; 14:112-7. Chemother 1991; 35:267-71. 36. RadstrOm P, Fermer C, Kristiansen B-E, Jenkins A, SkOld 0, Swedberg 32. de Groot R, Dzoljic-Danilov G, van Klingeren B, Goessens WH, Neyens G. Transformational exchanges in the dihydropteroate synthase gene HJ. resistance in Haemophilus influenzae: mechanisms, clini- of Neisseria meningitidis, a novel mechanism for the acquisition of cal importance and consequences for therapy. Eur J Pediatr 1991; 150: sulfonamide resistance. J Bacteriol 1992; 174:6386-93. Downloaded from https://academic.oup.com/cid/article/24/Supplement_1/S63/283547 by guest on 30 September 2021 534-46. 37. Lopez P, Espinosa M, Greenberg B, Lacks SA. Sulfonamide resistance 33. Flensburg J, SkOld 0. Massive overproduction of dihydrofolate reductase in Streptococcus pneumoniae: DNA sequence of the gene encoding in bacteria as a response to the use of trimethoprim. Eur J Biochem dihydropteroate synthase and characterization of the enzyme. J Bacteriol 1987; 162:473-6. 1987; 169:4320-6.