Integrative Copy Number Analysis of Uveal Melanoma Reveals Novel Candidate Genes Involved in Tumorigenesis Including a Tumor Suppressor Role for PHF10/ Baf45a

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Copy Number Analysis of Uveal Melanoma Reveals Novel Candidate Genes Involved in Tumorigenesis Including a Tumor Suppressor Role for PHF10/ Baf45a Author Manuscript Published OnlineFirst on June 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Integrative copy number analysis of uveal melanoma reveals novel candidate genes involved in tumorigenesis including a tumor suppressor role for PHF10/ BAF45a Running title: Copy number analysis reveals novel UM candidate genes Hima Anbunathan1, Ruth Verstraten1,2, A. Singh3, J. William Harbour4, Anne M. Bowcock1,2,5 1National Heart and Lung Institute, Imperial College, London, SW3 6LY, United Kingdom 2Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, U.S.A. 3Dept. of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, U.S.A. 4Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, U.S.A. 5Departments Dermatology and Genetics & Genome Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, U.S.A. Correspondence to: A.M. Bowcock, Email: [email protected] Departments of Oncological Sciences, Dermatology and Genetics & Genome Sciences, Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place Box 1130 New York, NY 10029 T: (212) 659-8256 F: (212) 987-2240 Key words: uveal melanoma, copy number alteration, transcriptome, exome sequencing, PHF10, PTK2 1 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract: Purpose: Uveal melanoma (UM) is a primary malignancy of the eye with oncogenic mutations in GNAQ, GNA11, or CYSLTR2, and additional mutations in BAP1 (usually associated with LOH of Chr 3), SF3B1 or EIF1AX. There are other characteristic chromosomal alterations, but their significance is not clear. Experimental Design: To investigate genes driving chromosomal alterations we integrated copy number, transcriptome and mutation data from three cohorts and followed up key findings. Results: We observed significant enrichment of transcripts on Chromosomes 1p, 3, 6, 8 and 16q and identified seven shared focal copy number alterations (FCNAs) on Chr 1p36, 2q37, 3, 6q25, 6q27 and 8q24. Integrated analyses revealed clusters of genes in focal copy number regions whose expression was associated with metastasis and worse overall survival. This included genes from Chr 1p36, 3p21, and 8q24.3. At Chr 6q27 we identified two tumors with homozygous deletion of PHF10/BAF45a and one with a frameshift mutation with concomitant loss of the wild type allele. Down-regulation of PHF10 in UM cell lines and tumors altered a number of biological pathways including development and adhesion. These findings provide support for a role for PHF10 as a novel tumor suppressor at Chr 6q27. Conclusions: Integration of copy number, transcriptome and mutation data revealed novel candidate genes playing a role in UM pathogenesis and a potential tumor suppressor role for PHF10. 2 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Translational Relevance Here we describe integration of copy number, transcriptomic, epigenomic and mutational data in uveal melanoma across three independent datasets. Although loss of one copy of Chromosome 3 is usually accompanied by loss of function mutations in BAP1, the significance of other chromosomal changes such as loss of Chr 1p, 6q and 8p, and gain of Chr 6p and 8q are not clear. We describe candidate genes on altered chromosomes affecting uveal melanoma pathogenesis and patient survival. We also provide evidence for a tumor suppressor role for PHF10 on Chr 6q27. Its loss affects early pathways in cell development such as transcriptional regulation as well as adhesion and migration. This knowledge will be important as we progress towards a more comprehensive molecular diagnosis of uveal melanoma and determination of prognosis. Besides providing important insights in the development of uveal melanoma these studies provide novel therapeutic targets for this cancer. 3 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction Uveal melanoma (UM) is the most common primary intraocular malignant tumor diagnosed in approximately six cases per million per year. Approximately 40% of patients develop metastatic melanoma to the liver within ten years (1). Advances made in the local methods of treatment of primary uveal melanoma have not led to an improvement in survival and after metastasis there is a median survival time of less than six months (2). UMs display characteristic genomic signatures including recurrent chromosomal aberrations, gene mutations and gene expression profiles (GEP), some of which are predictive of metastatic risk (3,4). Mutations in GNAQ, GNA11, CYSLTR2 and PLCB4 that constitutively activate Gq signaling are seen in almost all tumors in a mutually exclusive manner (5-8). Inactivating mutations in BAP1 at Chromosome 3p21 (9) are found in tumors with loss of heterozygosity for Chr 3 (LOH3) and a GEP predictive of metastatic risk (class 2 tumors) (10), and mutations in SF3B1 or EIF1AX are found in tumors with disomy 3 and a GEP associated with an intermediate and low likelihood of metastasis respectively (class 1 tumors) (4,11,12). Whole genome sequencing has also revealed potential mutations in other genes (13). In addition to LOH3, UMs are characterized by chromosomal alterations that can include Chr 1p loss, 6p gain, 6q loss, 8p loss, 8q gain, and 16q loss (14-20). These DNA copy number aberrations (CNAs) are an important category of genetic alterations which can lead to development and progression of cancers by affecting gene dosage, sometimes amplifying genes conferring a proliferative or metastatic advantage or leading to loss of function of tumor suppressor genes. However, the significance of CNAs in most cancers, including in UM is poorly understood. A global characterization of copy number, transcriptome, mutation, and methylation status in UM has been described (20). This confirmed much previous work and showed four distinct 4 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. molecular subtypes of CNA, each associated with a varying degree of metastatic risk. Here, we describe copy number analysis of 182 tumor samples from three different cohorts followed by integration of transcriptomic, methylation and mutation data to look for genes driving copy number loss or gain, extending earlier studies investigating the relationship with chromosomal alterations and gene expression in UM with microarrays (21). We describe candidate genes on chromosomes 1p, 8q and 6q and provide evidence for a tumor suppressor role for PHF10 mapping to Chr 6q27. Functional studies provided insights into the consequences of loss of PHF10. Materials and Methods Data source and analysis Data from 182 primary UM tumor samples were obtained from three different cohorts: Washington University (WU), Cleveland Clinic (CC) and TCGA. All of the samples were enucleated specimens obtained from adult patients after they had provided written informed consent. Studies were conducted in accordance with recognized ethical guidelines (e.g., Declaration of Helsinki, CIOMS, Belmont Report, U.S. Common Rule) and were approved by an institutional review board. The data analysis workflow and methods of analysis of SNP arrays (copy number), RNA sequencing and exome sequencing are described in Supplementary Figure 1. PHF10 knock-down and RNA sequencing Established cell lines derived from primary uveal melanomas (Mel202 (22), 92-1 (23) and Mel290 (24) (described in Supplementary Table 1) were subjected to PHF10 knockdown with siRNA (Santa-cruz, sc-95343) or a siRNA control that consisted of scrambled sequence/non-silencing siRNA (Santa-cruz, sc-37007) (SiCtrl). RNA seq was performed with routine methods. In the case of Mel202 and 92-1, RNA was sent to the Centre Nacional d'Anàlisi Genòmica (CNAG, Barcelona, Spain) for processing. In the case of Mel290 (25), 5 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 21, 2019; DOI: 10.1158/1078-0432.CCR-18-3052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. RNA was sent to Genewiz (New Jersey, USA; www.genewiz.com). Raw counts were analyzed with DeSeq2 (26). RNA-Seq data from cell lines are available upon request. Migration, Invasion and Adhesion assays:
Recommended publications
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen
    CLINICAL RESEARCH www.jasn.org Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen Rany M. Salem ,1 Jennifer N. Todd,2,3,4 Niina Sandholm ,5,6,7 Joanne B. Cole ,2,3,4 Wei-Min Chen,8 Darrell Andrews,9 Marcus G. Pezzolesi,10 Paul M. McKeigue,11 Linda T. Hiraki,12 Chengxiang Qiu,13 Viji Nair,14 Chen Di Liao,12 Jing Jing Cao,12 Erkka Valo ,5,6,7 Suna Onengut-Gumuscu,8 Adam M. Smiles,15 Stuart J. McGurnaghan,16 Jani K. Haukka,5,6,7 Valma Harjutsalo,5,6,7,17 Eoin P. Brennan,9 Natalie van Zuydam,18,19 Emma Ahlqvist,20 Ross Doyle,9 Tarunveer S. Ahluwalia ,21 Maria Lajer,21 Maria F. Hughes,9 Jihwan Park,13 Jan Skupien,15 Athina Spiliopoulou,11 Andrew Liu,22 Rajasree Menon,14,23 Carine M. Boustany-Kari,24 Hyun M. Kang,23,25 Robert G. Nelson,26 Ronald Klein,27 Barbara E. Klein,27 Kristine E. Lee ,27 Xiaoyu Gao,28 Michael Mauer,29 Silvia Maestroni,30 Maria Luiza Caramori,29 Ian H. de Boer ,31 Rachel G. Miller,32 Jingchuan Guo ,32 Andrew P. Boright,12 David Tregouet,33,34 Beata Gyorgy,33,34 Janet K. Snell-Bergeon,35 David M. Maahs,36 Shelley B. Bull ,37 Angelo J. Canty,38 Colin N.A. Palmer,39 Lars Stechemesser,40 Bernhard Paulweber,40 Raimund Weitgasser,40,41 Jelizaveta Sokolovska,42 Vita Rovıte,43 Valdis Pırags, 42,44 Edita Prakapiene,45 Lina Radzeviciene,46 Rasa Verkauskiene,46 Nicolae Mircea Panduru,6,47 Leif C.
    [Show full text]
  • Mir-17-92 Fine-Tunes MYC Expression and Function to Ensure
    ARTICLE Received 31 Mar 2015 | Accepted 22 Sep 2015 | Published 10 Nov 2015 DOI: 10.1038/ncomms9725 OPEN miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth Marija Mihailovich1, Michael Bremang1, Valeria Spadotto1, Daniele Musiani1, Elena Vitale1, Gabriele Varano2,w, Federico Zambelli3, Francesco M. Mancuso1,w, David A. Cairns1,w, Giulio Pavesi3, Stefano Casola2 & Tiziana Bonaldi1 The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 30 untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c- MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 30 UTR shortening at different stages of tumorigenesis. 1 Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy. 2 Units of Genetics of B cells and lymphomas, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Theranostics Deficiency of ATP6V1H Causes Bone Loss by Inhibiting
    Theranostics 2016, Vol. 6, Issue 12 2183 Ivyspring International Publisher Theranostics 2016; 6(12): 2183-2195. doi: 10.7150/thno.17140 Research Paper Deficiency of ATP6V1H Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the TGF-β1 Pathway Xiaohong Duan1*, Jin Liu1*, Xueni Zheng1*, Zhe Wang1, Yanli Zhang1, Ying Hao1, Tielin Yang2, Hongwen Deng3 1. State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China. 2. Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China. 3. School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. *Contributed equally to this work. Corresponding author: Xiaohong Duan, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi’an 710032, P. R. China. Tel: 86-29-84776169; Fax: 86-29-84776169; E-mail: [email protected]. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2016.08.08; Accepted: 2016.08.15; Published: 2016.09.13 Abstract Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells.
    [Show full text]
  • Genome-Wide Association and Trans-Ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)
    RESEARCH ARTICLE Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND) Sudha K. Iyengar1☯*, John R. Sedor2,3☯*, Barry I. Freedman4☯*, W. H. Linda Kao5†, Matthias Kretzler6, Benjamin J. Keller6, Hanna E. Abboud7†, Sharon G. Adler8, Lyle G. Best9, Donald W. Bowden10, Allison Burlock6, Yii-Der Ida Chen11, Shelley A. Cole12, Mary E. Comeau13, Jeffrey M. Curtis14, Jasmin Divers13, Christiane Drechsler15, Ravi Duggirala12, Robert C. Elston1, Xiuqing Guo11, Huateng Huang16, Michael Marcus Hoffmann17, Barbara V. Howard18, Eli Ipp19, Paul L. Kimmel20, Michael J. Klag21, William C. Knowler14, Orly F. Kohn22, Tennille S. Leak6, David J. Leehey23, Man Li24, Alka Malhotra14, Winfried März25, Viji Nair6, Robert G. Nelson14, Susanne B. Nicholas26, Stephen J. O’Brien27, Madeleine V. Pahl28, Rulan S. Parekh29, Marcus G. Pezzolesi30, Rebekah S. Rasooly31, Charles N. Rotimi32, Jerome I. Rotter11, Jeffrey R. Schelling2, Michael F. Seldin33, Vallabh O. Shah34, Adam M. Smiles35, Michael W. Smith36, Kent D. Taylor11, Farook Thameem37¤, Denyse P. Thornley-Brown38, Barbara J. Truitt1, OPEN ACCESS Christoph Wanner39, E. Jennifer Weil14, Cheryl A. Winkler40, Philip G. Zager41, Robert P. Igo, Jr1‡, Robert L. Hanson14‡, Carl D. Langefeld11‡, Family Investigation of Citation: Iyengar SK, Sedor JR, Freedman BI, Kao Nephropathy and Diabetes (FIND)¶ WHL, Kretzler M, Keller BJ, et al. (2015) Genome- Wide Association and Trans-ethnic Meta-Analysis for 1 Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, Advanced Diabetic Kidney Disease: Family United States of America, 2 Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, Investigation of Nephropathy and Diabetes (FIND).
    [Show full text]
  • Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition
    HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition Charles Richard Bradshaw1¤a, Vineeth Surendranath1, Robert Henschel2,3, Matthias Stefan Mueller2, Bianca Hermine Habermann1,4*¤b 1 Bioinformatics Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony, Germany, 2 Center for Information Services and High Performance Computing (ZIH), Technical University, Dresden, Saxony, Germany, 3 High Performance Applications, Pervasive Technology Institute, Indiana University, Bloomington, Indiana, United States of America, 4 Bioinformatics Laboratory, Scionics c/o Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony, Germany Abstract Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes.
    [Show full text]
  • Thai Hun Taiteit Ut La in Tutta Latoare
    THAI HUN TAITEIT US009970056B2UT LA IN TUTTA LATOARE (12 ) United States Patent ( 10 ) Patent No. : US 9 ,970 , 056 B2 Potashkin et al. ( 45 ) Date of Patent: May 15 , 2018 ( 54 ) METHODS AND KITS FOR DIAGNOSING , Aviles- Olmos , et al. “ Parkinson ' s Disease , Insulin Resistance and PROGNOSING AND MONITORING Novel Agents of Neuroprotection ” , Brain , 2013 , vol. 136 ( Pt 2 ) , pp . PARKINSON ' S DISEASE 37414 -- 384 .. Bassil, et al, “ Insulin , IGF - 1 and GLP - 1 Signaling in Neurodegenerative Disorders : Targets for Disease Modification ? ” , ( 71 ) Applicant: Rosalind Franklin University of Prog Neurobiol , Jul. 2014 , vol. 118 , pp . 1 - 18 . ( Abstract only ) . Medicine and Science , North Chicago , Bonnefond , et al. , “ The Emerging Genetics of Type 2 Diabetes ” , IL (US ) Trends Mol Med , Sep . 2010 , vol. 16 ( 9 ) , pp . 407 -416 . ( Abstract only ) . (72 ) Inventors : Judith Ann Potashkin , North Chicago , Cereda, et al. , “ Diabetes and Risk of Parkinson ' s Disease : A IL (US ) ; Jose Alfredo Santiago , North Systematic Review and Meta - Analysis ” , Diabetes Care, Dec . 2011 , Chicago , IL (US ) vol . 34 , pp . 2614 - 2623 . Cereda , et al. , “ Diabetes and Risk of Parkinson ' s Disease ” , Move ( 73 ) Assignee : Rosalind Franklin University of ment Disorders, 2013 , vol. 28 , pp . 257 - 261 ( Abstract only ) . Medicine and Science , North Chicago , Cereda , et al . , “ Clinical Features of Parkinson ' s Disease When Onset of Diabetes Came First: A Case - Control Study” , Neurology , IL (US ) May 8 , 2012 , vol . 78 ( 19 ), pp . 1507 - 1511 , doi: 10 .1212 /WNL . Ob013e3182553cc9 , Epub Apr. 25 , 2012 . ( Abstract only ) . ( * ) Notice : Subject to any disclaimer , the term of this Chen - Plotkin , et al. , “ Plasma Epidermal Growth Factor Levels patent is extended or adjusted under 35 Predict Cognitive Decline in Parkinson ' s Disease " , Ann Neurol , U .
    [Show full text]
  • Integrated Analysis of Gene Expression Changes Associated
    Miao et al. Lipids in Health and Disease (2019) 18:92 https://doi.org/10.1186/s12944-019-1032-5 RESEARCH Open Access Integrated analysis of gene expression changes associated with coronary artery disease Liu Miao1 , Rui-Xing Yin1,2,3* , Feng Huang1,2,3, Shuo Yang1, Wu-Xian Chen1 and Jin-Zhen Wu1 Abstract Background: This study investigated the pathways and genes involved in coronary artery disease (CAD) and the associated mechanisms. Methods: Two array data sets of GSE19339 and GSE56885 were downloaded. The limma package was used to analyze the differentially expressed genes (DEGs) in normal and CAD specimens. Examination of DEGs through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology annotation was achieved by Database for Annotation, Visualization and Integrated Discovery (DAVID). The Cytoscape software facilitated the establishment of the protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) was performed for the significant modules. Results: We identified 413 DEGs (291 up-regulated and 122 down-regulated). Approximately 256 biological processes, only 1 cellular component, and 21 molecular functions were identified by GO analysis and 10 pathways were enriched by KEGG. Moreover, 264 protein pairs and 64 nodes were visualized by the PPI network. After the MCODE analysis, the top 4 high degree genes, including interleukin 1 beta (IL1B, degree = 29), intercellular adhesion molecule 1 (ICAM1, degree = 25), Jun proto-oncogene (JUN, degree = 23) and C-C motif chemokine ligand 2 (CCL2, degree = 20) had been identified to validate in RT-PCR and Cox proportional hazards regression between CAD and normals. Conclusions: The relative expression of IL1B, ICAM1 and CCL2 was higher in CAD than in normal controls (P <0.05–0.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]