The Electromagnetic Field E9uations

Total Page:16

File Type:pdf, Size:1020Kb

The Electromagnetic Field E9uations CHAPTER 4 ' THE ELECTROMAGNETIC FIELD E9UATIONS § 26. The first pair of Maxwell's equations From the expressions H = curl A, E = - 1oA ~ai -grad cp it is easy to obtain equations containing only E and H. To do this we find curl E: 1 0 curl E = - -c -;-vt curl A- curlgradcp. But the curl of any gradient is zero. Consequently, loH curlE = - --. (26.1) c ot Taking the divergence of both sides of the equation curl A = H, and recalling that div curl = 0, we find ~H=Q ~~ The equations (26.1) and (26.2) are called the first pair of Maxwell's equations. t We note that these two equations still do not completely determine the properties of the fields. This is clear from the fact that they determine the change of the magnetic field with time (the derivative oHlot), but do not determine the derivative oE/ot. Equations (26.1) and (26.2) can be written in integral form. According to Gauss' theorem Idiv HdV = fH. dr, where the integral on the right goes over the entire closed surface surrounding the volume over which the integral on the left is extended. On the basis of (26.2), we have fH'df=O. (26.3) The integral of a vector over a surface is called the flux of the vector through the surface. Thus the flux of the magnetic field through every closed surface is zero. According to Stokes' theorem, IcurlE. df= fE. dl, where the integral on the right is taken over the closed contour bounding the surface over t Maxwell's equations (the fundamental equations of electrodynamics) were first formulated by him in the 1860's. 66 § 27 THE ACTION FUNCTION OF THE ELECTROMAGNETIC FIELD 67 which the left side is integrated. From (26.1) we find, integrating both sides for any surface, ~ E. dl = - ~8 H .df. (26.4) j cot f The integral of a vector over a closed contour is called the circulation of the vector around the contour. The circulation of the electric field is also called the electromotive force in the given contour. Thus the electromotive force in any contour is equal to minus the time derivative of the magnetic flux through a surface bounded by this contour. The Maxwell equations (26.1) and (26.2) can be expressed in four-dimensional notation. Using the definition of the electromagnetic field tensor Fik = oAk/ox/-oAdox'<, it is easy to verify that of ik oFkl oFu - 0 ' (26.5) OXI + OXI + OXk - . The expression on the left is a tensor of third rank, which is antisymmetric in all three indices. , The only components which are not identically zero are those with i =f:k =f:I. Thus there are altogether four different equations which we can easily show [by substituting from (23.5)] coincide with equations (26.1) and (26.2). We can construct the four-vector which is dual to this antisymmetric four-tensor of rank three by multiplying the tensor by e.iklmand contracting on three pairs of indices (see § 6). Thus (26.5) can be written in the form iklm oFlm = 0, (26.6) e OXk which shows explicitly that there are only three independent equations. § 27. Tbe action function of the electromagnetic field The action function S for the whole system, consisting of an electromagnetic field as well as the particles located in it, must consist of three parts: S = Sf+Sm+8mf' (27.1) where Smis that part of the action which depends only on the properties of the particles, that is, just the action for free particles. For a single free particle, it is given by (8.1). If there are several particles, then their total action is the sum of the actions for each of the individual particles. Thus, 8m= - L: mc f ds. (27.2) The quantity Smf is that part of the action which depends on the interaction between the particles and the field. According to § 16, we have for a system of particles: (27.3) 8"jf = - L: ~ f Akdxk: 68 THE ELECTROMAGNETIC FIELD EQUATIONS § 27 In each term of this sum, Ak is the potential of the field at that point of spacetime at which the corresponding particle is located. The sum Sm+ Sml is already familiar to us as the action (16.1) for charges in a field. Finally S1 is that part of the action which depends only on the properties of the field itself, that is, Sf is the action for a field in the absence of ch~rges. Up to now, because we were interested only in the motion of charges in a given electromagnetic field, the quantity SI' . which does not depend on the particles, did not concern us, since this term cannot affect the motion of the particles. Nevertheless this term is necessary when we want to find equations determining the field itself. This corresponds to the fact- that from the parts Sm+Sml of the action we found only two equations for the field, (26.1) and (26.2), which are not yet sufficient for complete determination of the field. To establish the form of the action S1 for the field, we start from the following very important property of electromagnetic fields. As experiment shows, the electromagnetic field satisfies the so-called principle of superposition. This principle consists in the statement that the field produced by a system of charges is the result of a simple composition of the fields produced by each of the particles individually. This means that the resultant field intensity at each point is equal to the vector sum of the individual field intensities at that point. Every solution of the field equations gives a field that can exist in nature. According to the principle of superposition, the sum of any such fields must be a field that can exist in nature, that is, must satisfy the field equations. As is well known, linear differential equations have just this property, that the sum of any solutions is also a solution. Consequently the field equations must be linear differential equations. From the discussion, it follows that under the integral sign for the action S1 there must stand an expression quadratic in the field. Only in this case will the field equations be linear; the field equations are obtained by varying the action, and in the variation the degree of the expression under the integral sign decreases by unity. The potentials cannot enter into the expression for the action SI' since they are not uniquely determined (in Sml this lack of uniqueness was not important). Therefore S1 must be tlle integral of some function of the electromagnetic field tensor Fik' But the action must be a scalar and must therefore be the integral of some scalar. The only such quantity is the product Fik Fik. t Thus SI must have the form: S 1 = a IIFikFikdV dt, dV = dx dy dz, where the integral extends over all of space and the time between two given moments; a is some constant. Under the integral stands Fik Fik = 2(H2 - £2). The field E contains the derivative oAjat; but it is easy to see that (oAjot)2 must appear in the action with the positivesign (and therefore E2 must have a positivesign). For if (oAjt)2 appeared in SI t The function in the integrand of Sf must not include derivatives of F.k, since the Lagrangian can contain, aside from the coordinates, only their first time derivatives. The role of "coordinates" (i.e., parameters to be varied in the principle of least action) is in this case played by the field potential Ak; this is analogous to the situation in mechanics where the Lagrangian of a mechanical system contains only the coordinates of the particles and their first time derivatives. As for the quantity e1klmF.kF.m(§ 25), as pointed out in the footnote on p. 63, it is a complete four- divergence,'so that adding it to the integrand in Sf would have no effecton the -f'equationsof motion". It is interesting that this quantity is already excludedfrom the action for a reason independent of the fact that it is a pseudoscalar and not a true scalar. § 2S THE FOUR-DIMENSIONAL CURRENT VECTOR 69 with a minus sign, then sufficiently rapid change of the potential with time (in the time interval under consideration) could always make Sf a negative quantity with arbitrarily large absolute value. Consequently Sf could not have a minimum, as is required by the principle of least action. Thus, a must be negative. The numerical value of a depends on the choice of units for measurement of the field. We note that after the choice of a definite value for a and for the units of measurement of field, the units for measurement of all other electromagnetic quantities are determined. From now on we shall use the Gaussian system of units; in this system a is a dimension- less quantity, equal to -(1/16n).t Thus the action for the field has the form (27.4) Sf = - I6~C f F/kFikdo., dO.= c dt dx dy dz. In three-dimensional form: (27.5) Sf = sInf (E2_H2) dVdt. In other words, the Lagrangian for the field is (27.6) Lf = SInf (E2_H2)dV. The action for field plus particles has the form (27.7) S = - Lf mcds- Lf ~ Akdxk- I6~C f FikFikdo.. We emphasize that now the charges are not assumed to be small, as in the derivation of the equation of motion of a charge in a given field.Therefore Ak and Fikrefer to the actual field, that is, the external field plus the field produced by the particles themselves; Ak and F/know depend on the positions and velocities of the charges.
Recommended publications
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • (Aka Second Quantization) 1 Quantum Field Theory
    221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization) 1 Quantum Field Theory Why quantum field theory? We know quantum mechanics works perfectly well for many systems we had looked at already. Then why go to a new formalism? The following few sections describe motivation for the quantum field theory, which I introduce as a re-formulation of multi-body quantum mechanics with identical physics content. 1.1 Limitations of Multi-body Schr¨odinger Wave Func- tion We used totally anti-symmetrized Slater determinants for the study of atoms, molecules, nuclei. Already with the number of particles in these systems, say, about 100, the use of multi-body wave function is quite cumbersome. Mention a wave function of an Avogardro number of particles! Not only it is completely impractical to talk about a wave function with 6 × 1023 coordinates for each particle, we even do not know if it is supposed to have 6 × 1023 or 6 × 1023 + 1 coordinates, and the property of the system of our interest shouldn’t be concerned with such a tiny (?) difference. Another limitation of the multi-body wave functions is that it is incapable of describing processes where the number of particles changes. For instance, think about the emission of a photon from the excited state of an atom. The wave function would contain coordinates for the electrons in the atom and the nucleus in the initial state. The final state contains yet another particle, photon in this case. But the Schr¨odinger equation is a differential equation acting on the arguments of the Schr¨odingerwave function, and can never change the number of arguments.
    [Show full text]
  • Harmonic Oscillator: Motion in a Magnetic Field
    Harmonic Oscillator: Motion in a Magnetic Field * The Schrödinger equation in a magnetic field The vector potential * Quantized electron motion in a magnetic field Landau levels * The Shubnikov-de Haas effect Landau-level degeneracy & depopulation The Schrödinger Equation in a Magnetic Field An important example of harmonic motion is provided by electrons that move under the influence of the LORENTZ FORCE generated by an applied MAGNETIC FIELD F ev B (16.1) * From CLASSICAL physics we know that this force causes the electron to undergo CIRCULAR motion in the plane PERPENDICULAR to the direction of the magnetic field * To develop a QUANTUM-MECHANICAL description of this problem we need to know how to include the magnetic field into the Schrödinger equation In this regard we recall that according to FARADAY’S LAW a time- varying magnetic field gives rise to an associated ELECTRIC FIELD B E (16.2) t The Schrödinger Equation in a Magnetic Field To simplify Equation 16.2 we define a VECTOR POTENTIAL A associated with the magnetic field B A (16.3) * With this definition Equation 16.2 reduces to B A E A E (16.4) t t t * Now the EQUATION OF MOTION for the electron can be written as p k A eE e 1k(B) 2k o eA (16.5) t t t 1. MOMENTUM IN THE PRESENCE OF THE MAGNETIC FIELD 2. MOMENTUM PRIOR TO THE APPLICATION OF THE MAGNETIC FIELD The Schrödinger Equation in a Magnetic Field Inspection of Equation 16.5 suggests that in the presence of a magnetic field we REPLACE the momentum operator in the Schrödinger equation
    [Show full text]
  • Formulation of Einstein Field Equation Through Curved Newtonian Space-Time
    Formulation of Einstein Field Equation Through Curved Newtonian Space-Time Austen Berlet Lord Dorchester Secondary School Dorchester, Ontario, Canada Abstract This paper discusses a possible derivation of Einstein’s field equations of general relativity through Newtonian mechanics. It shows that taking the proper perspective on Newton’s equations will start to lead to a curved space time which is basis of the general theory of relativity. It is important to note that this approach is dependent upon a knowledge of general relativity, with out that, the vital assumptions would not be realized. Note: A number inside of a double square bracket, for example [[1]], denotes an endnote found on the last page. 1. Introduction The purpose of this paper is to show a way to rediscover Einstein’s General Relativity. It is done through analyzing Newton’s equations and making the conclusion that space-time must not only be realized, but also that it must have curvature in the presence of matter and energy. 2. Principal of Least Action We want to show here the Lagrangian action of limiting motion of Newton’s second law (F=ma). We start with a function q mapping to n space of n dimensions and we equip it with a standard inner product. q : → (n ,(⋅,⋅)) (1) We take a function (q) between q0 and q1 and look at the ds of a section of the curve. We then look at some properties of this function (q). We see that the classical action of the functional (L) of q is equal to ∫ds, L denotes the systems Lagrangian.
    [Show full text]
  • General Relativity 2020–2021 1 Overview
    N I V E R U S E I T H Y T PHYS11010: General Relativity 2020–2021 O H F G E R D John Peacock I N B U Room C20, Royal Observatory; [email protected] http://www.roe.ac.uk/japwww/teaching/gr.html Textbooks These notes are intended to be self-contained, but there are many excellent textbooks on the subject. The following are especially recommended for background reading: Hobson, Efstathiou & Lasenby (Cambridge): General Relativity: An introduction for Physi- • cists. This is fairly close in level and approach to this course. Ohanian & Ruffini (Cambridge): Gravitation and Spacetime (3rd edition). A similar level • to Hobson et al. with some interesting insights on the electromagnetic analogy. Cheng (Oxford): Relativity, Gravitation and Cosmology: A Basic Introduction. Not that • ‘basic’, but another good match to this course. D’Inverno (Oxford): Introducing Einstein’s Relativity. A more mathematical approach, • without being intimidating. Weinberg (Wiley): Gravitation and Cosmology. A classic advanced textbook with some • unique insights. Downplays the geometrical aspect of GR. Misner, Thorne & Wheeler (Princeton): Gravitation. The classic antiparticle to Weinberg: • heavily geometrical and full of deep insights. Rather overwhelming until you have a reason- able grasp of the material. It may also be useful to consult background reading on some mathematical aspects, especially tensors and the variational principle. Two good references for mathematical methods are: Riley, Hobson and Bence (Cambridge; RHB): Mathematical Methods for Physics and Engi- • neering Arfken (Academic Press): Mathematical Methods for Physicists • 1 Overview General Relativity (GR) has an unfortunate reputation as a difficult subject, going back to the early days when the media liked to claim that only three people in the world understood Einstein’s theory.
    [Show full text]
  • Introduction to Gauge Theories and the Standard Model*
    INTRODUCTION TO GAUGE THEORIES AND THE STANDARD MODEL* B. de Wit Institute for Theoretical Physics P.O.B. 80.006, 3508 TA Utrecht The Netherlands Contents The action Feynman rules Photons Annihilation of spinless particles by electromagnetic interaction Gauge theory of U(1) Current conservation Conserved charges Nonabelian gauge fields Gauge invariant Lagrangians for spin-0 and spin-g Helds 10. The gauge field Lagrangian 11. Spontaneously broken symmetry 12. The Brout—Englert-Higgs mechanism 13. Massive SU (2) gauge Helds 14. The prototype model for SU (2) ® U(1) electroweak interactions The purpose of these lectures is to give an introduction to gauge theories and the standard model. Much of this material has also been covered in previous Cem Academic Training courses. This time I intend to start from section 5 and develop the conceptual basis of gauge theories in order to enable the construction of generic models. Subsequently spontaneous symmetry breaking is discussed and its relevance is explained for the renormalizability of theories with massive vector fields. Then we discuss the derivation of the standard model and its most conspicuous features. When time permits we will address some of the more practical questions that arise in the evaluation of quantum corrections to particle scattering and decay reactions. That material is not covered by these notes. CERN Academic Training Programme — 23-27 October 1995 OCR Output 1. The action Field theories are usually defined in terms of a Lagrangian, or an action. The action, which has the dimension of Planck’s constant 7i, and the Lagrangian are well-known concepts in classical mechanics.
    [Show full text]
  • Classical-Field Description of the Quantum Effects in the Light-Atom Interaction
    Classical-field description of the quantum effects in the light-atom interaction Sergey A. Rashkovskiy Institute for Problems in Mechanics of the Russian Academy of Sciences, Vernadskogo Ave., 101/1, Moscow, 119526, Russia Tomsk State University, 36 Lenina Avenue, Tomsk, 634050, Russia E-mail: [email protected], Tel. +7 906 0318854 March 1, 2016 Abstract In this paper I show that light-atom interaction can be described using purely classical field theory without any quantization. In particular, atom excitation by light that accounts for damping due to spontaneous emission is fully described in the framework of classical field theory. I show that three well-known laws of the photoelectric effect can also be derived and that all of its basic properties can be described within classical field theory. Keywords Hydrogen atom, classical field theory, light-atom interaction, photoelectric effect, deterministic process, nonlinear Schrödinger equation, statistical interpretation. Mathematics Subject Classification 82C10 1 Introduction The atom-field interaction is one of the most fundamental problems of quantum optics. It is believed that a complete description of the light-atom interaction is possible only within the framework of quantum electrodynamics (QED), when not only the states of an atom are quantized but also the radiation itself. In quantum mechanics, this viewpoint fully applies to iconic phenomena, such as the photoelectric effect, which cannot be explained in terms of classical mechanics and classical electrodynamics according to the prevailing considerations. There were attempts to build a so-called semiclassical theory in which only the states of an atom are quantized while the radiation is considered to be a classical Maxwell field [1-6].
    [Show full text]
  • Introduction. What Is a Classical Field Theory? Introduction This Course
    Classical Field Theory Introduction. What is a classical field theory? Introduction. What is a classical field theory? Introduction This course was created to provide information that can be used in a variety of places in theoretical physics, principally in quantum field theory, particle physics, electromagnetic theory, fluid mechanics and general relativity. Indeed, it is usually in such courses that the techniques, tools, and results we shall develop here are introduced { if only in bits and pieces. As explained below, it seems better to give a unified, systematic development of the tools of classical field theory in one place. If you want to be a theoretical/mathematical physicist you must see this stuff at least once. If you are just interested in getting a deeper look at some fundamental/foundational physics and applied mathematics ideas, this is a good place to do it. The most familiar classical* field theories in physics are probably (i) the \Newtonian theory of gravity", based upon the Poisson equation for the gravitational potential and Newton's laws, and (ii) electromagnetic theory, based upon Maxwell's equations and the Lorentz force law. Both of these field theories are exhibited below. These theories are, as you know, pretty well worked over in their own right. Both of these field theories appear in introductory physics courses as well as in upper level courses. Einstein provided us with another important classical field theory { a relativistic gravitational theory { via his general theory of relativity. This subject takes some investment in geometrical technology to adequately explain. It does, however, also typically get a course of its own.
    [Show full text]
  • Einstein's Field Equation
    Einstein’s Field Equation 4 c . 8 G The famous Einstein’s Field Equation, above, is really 16 quite complicated equations expressed in a concise way. The ‘T’ and the large ‘G’ are called “tensors” and each is a 4 x 4 matrix of formulas. The stress energy tensor ‘T’ describes the distribution of mass, momentum and energy, while the Einstein curvature tensor ‘G’ represents the curvature of space and time. c4 . The constant 8 G is a measure of the stiffness of space and time. It is an enormous number made up from the speed of light (300,000,000 metres per second) multiplied by itself 4 times and divided by the universal constant of gravitation ‘G’ which is equal to 6.67x10-11 m3 kg-1 s-2. Because ‘G’ is such a small number, gravity is the weakest of all known forces. However the fourth power of the speed of light is an extraordinarily large number, and divided by ‘G’ it becomes one of the largest numbers used in any field of science: 4.8 x 1042…that’s 42 zeros: 4,800,000,000,000,000,000,000,000,000,000,000,000,000,000 Newton assumed that matter and energy would have no effect on space or time. Einstein’s theory shows that, while Newton’s theory is not correct, it is a good approximation for “human-sized” amounts of matter and energy. However, “astronomically” large amounts of matter have easily measurable effects. The massive Sun warps space distorting the positions of stars and changes the orbits of planets.
    [Show full text]
  • Relativistic Wave Equations Les Rencontres Physiciens-Mathématiciens De Strasbourg - RCP25, 1973, Tome 18 « Conférences De : J
    Recherche Coopérative sur Programme no 25 R. SEILER Relativistic Wave Equations Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1973, tome 18 « Conférences de : J. Leray, J.P. Ramis, R. Seiler, J.M. Souriau et A. Voros », , exp. no 4, p. 1-24 <http://www.numdam.org/item?id=RCP25_1973__18__A4_0> © Université Louis Pasteur (Strasbourg), 1973, tous droits réservés. L’accès aux archives de la série « Recherche Coopérative sur Programme no 25 » implique l’ac- cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Relativistic Wave Equations R. Seiler Institut für Theoretische Physik Freie Universität Berlin Talk présentée at the Strassbourg meeting^November 1972 (Quinzième rencontre entre physiciens théoriciens et mathé­ maticiens dans le cadre de recherche coopérative sur pro­ gramme n° 25 du CNRS). III - 1 - Introduction In general quantum field theory, formulation of dynamics is one of the most important yet most difficult problems. Experience with classical field theories - e.g. Maxwell theory - indicatesthat relativistic wave equations, in one form or another are going to play an important role. This optimism is furthermore supported by the analysis of models, e. g. Thirring model ^ 4 1 or <j theory both in 2 space time dimensions, and of renormalized perturbation theory. Asa step towards full quantum theory one might consider the so called external field problems.
    [Show full text]
  • Electro Magnetic Field Theory Υ
    “main” 2000/11/13 page 1 ELECTRO MAGNETIC FIELD THEORY Υ Bo Thidé U P S I L O N M E D I A “main” 2000/11/13 page 2 “main” 2000/11/13 page 3 Bo Thidé ELECTROMAGNETIC FIELD THEORY “main” 2000/11/13 page 4 Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik “main” 2000/11/13 page 1 ELECTROMAGNETIC FIELD THEORY Bo Thidé Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden Υ U P S I L O N M E D I A U P P S A L A S W E D E N · · “main” 2000/11/13 page 2 This book was typeset in LATEX 2ε on an HP9000/700 series workstation and printed on an HP LaserJet 5000GN printer. Copyright ©1997, 1998, 1999 and 2000 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X “main” 2000/11/13 page i Contents Preface xi 1 Classical Electrodynamics 1 1.1 Electrostatics . 1 1.1.1 Coulomb’s law . 1 1.1.2 The electrostatic field . 2 1.2 Magnetostatics . 4 1.2.1 Ampère’s law . 4 1.2.2 The magnetostatic field . 6 1.3 Electrodynamics . 8 1.3.1 Equation of continuity . 9 1.3.2 Maxwell’s displacement current . 9 1.3.3 Electromotive force . 10 1.3.4 Faraday’s law of induction . 11 1.3.5 Maxwell’s microscopic equations . 14 1.3.6 Maxwell’s macroscopic equations .
    [Show full text]