Quantum Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory Quantum Field Theory A Physicist’s Primer Gordon Walter Semenoff Copyright c 2019 Gordon Walter Semenoff PUBLISHED BY PUBLISHER BOOK-WEBSITE.COM Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the “License”). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. First printing, May 2019 Contents I Many Particle Physics as a Quantum Field Theory 1 Many particle physics .........................................9 1.1 A preview of this chapter9 1.2 Introduction9 1.3 Non-relativistic particles 10 1.3.1 Identical particles............................................... 13 1.3.2 Spin.......................................................... 16 1.4 Second Quantization 17 1.5 The Heisenberg picture 20 1.6 Summary of this chapter 23 2 Degenerate Fermi and Bose Gases ........................... 25 2.1 A preview of this chapter 25 2.2 The limit of weak interactions 25 2.3 Degenerate Fermi gas and the Fermi surface 28 2.3.1 The ground state jO > ............................................ 28 2.3.2 Particle and holes............................................... 29 2.3.3 The grand canonical ensemble.................................... 31 2.4 Bosons 33 2.5 Summary of this chapter 38 3 Classical field theory and the action principle .................. 41 3.1 The Action Principle 41 3.1.1 The Action..................................................... 42 3.1.2 The action principle and the Euler-Lagrange equations.................. 43 3.1.3 Canonical momenta, Poisson brackets and Commutation relations........ 47 3.2 Noether’s theorem 48 3.2.1 Examples of symmetries........................................... 49 3.2.2 Proof of Noether’s Theorem........................................ 50 3.3 Phase symmetry and the conservation of particle number 51 3.4 Translation invariance 53 3.5 Galilean symmetry 54 3.6 Scale invariance 57 3.6.1 Improving the energy-momentum tensor............................. 58 3.6.2 The consequences of scale invariance............................... 59 3.7 Special Schrödinger symmetry 60 3.8 The Schrödinger algebra 61 3.9 Summary of this chapter 63 II Relativistic Symmetry and Quantum Field Theory 4 Space-time symmetry and relativistic field theory .............. 69 4.1 Quantum mechanics and special relativity 69 4.2 Coordinates 73 4.3 Scalars, vectors, tensors 75 4.4 The metric 76 4.5 Symmetry of space-time 77 4.6 The symmetries of Minkowski space 77 5 The Dirac Equation ............................................ 79 5.1 Solving the Dirac equation 81 5.2 Lorentz Invariance of the Dirac equation 84 5.3 Phase symmetry and the conservation of electric current 86 5.4 The Energy-Momentum Tensor of the Dirac Field 87 5.5 Summary of this chapter 90 6 Photons ...................................................... 93 6.1 Relativistic Classical Electrodynamics 93 6.2 Covariant quantization of the photon 94 6.2.1 Field equations and commutation relations........................... 94 6.2.2 Massive photon (Optional reading)................................ 102 6.3 Space-time symmetries of the photon 103 6.4 Quantum Electrodynamics 104 6.5 Summary of this chapter 106 III Functional methods and quantum electrodynamics 7 Functional Methods and Correlation Functions ................ 111 7.1 Functional derivative 111 7.2 Functional integral 113 7.3 Photon Correlation functions 114 7.3.1 Generating functional for correlation functions of free photons........... 117 7.3.2 Photon Generating functional as a functional integral.................. 119 7.4 Functional differentiation and integration for Fermions 121 7.5 Generating functionals for non-relativistic Fermions 125 7.5.1 Interacting non-relativistic Fermions................................ 127 7.6 The Dirac field 128 7.6.1 Two-point function for the Dirac field................................ 128 7.6.2 Generating functional for the Dirac field............................ 130 7.6.3 Functional integral for the Dirac field............................... 131 7.7 Summary of this chapter 131 8 Quantum Electrodynamics ................................... 135 8.1 Quantum Electrodynamics 135 8.2 The generating functional in perturbation theory 139 8.3 Wick’s Theorem 140 8.4 Feynman diagrams 141 8.5 Connected Correlations and Goldstone’s theorem 145 8.5.1 Connected correlation functions.................................. 145 8.5.2 Goldstone’s Theorem............................................ 147 8.6 Fourier transform 147 8.7 Furry’s theorem 150 8.8 One-particle irreducible correlation functions 151 8.9 Some calculations 152 8.9.1 The photon two-point function.................................... 152 8.9.2 The Dirac field two-point function.................................. 155 8.9.3 Traces of gamma matrices....................................... 158 8.9.4 Feynman Parameter Formula..................................... 158 8.9.5 Dimensional regularization integral................................. 159 8.10 Quantum corrections of the Coulomb potential 160 8.11 Renormalization 162 8.11.1 The Ward-Takahashi identities..................................... 163 8.12 Summary of this Chapter 164 9 Formal developments ........................................ 167 9.1 In-fields, the Haag expansion and the S-matrix 167 9.2 Spectral Representation 168 9.2.1 Gauge invariant scalar operators.................................. 169 9.2.2 The Dirac field................................................. 170 9.3 S-matrix and Reduction formula 173 9.3.1 Some intuition about asymptotic behaviour.......................... 173 9.3.2 In and out-fields in QED.......................................... 174 9.3.3 Proof of the LSZ identities........................................ 178 9.3.4 An Example: Electron-electron scattering............................ 180 9.4 More generating functionals 182 9.4.1 Connected correlation functions.................................. 182 9.4.2 One-particle irreducible correlation functions........................ 184 9.4.3 Charge conjugation symmetry ....................................... 186 Many Particle Physics as a I Quantum Field Theory 1 Many particle physics ................9 1.1 A preview of this chapter 1.2 Introduction 1.3 Non-relativistic particles 1.4 Second Quantization 1.5 The Heisenberg picture 1.6 Summary of this chapter 2 Degenerate Fermi and Bose Gases .. 25 2.1 A preview of this chapter 2.2 The limit of weak interactions 2.3 Degenerate Fermi gas and the Fermi surface 2.4 Bosons 2.5 Summary of this chapter 3 Classical field theory and the action prin- ciple ................................ 41 3.1 The Action Principle 3.2 Noether’s theorem 3.3 Phase symmetry and the conservation of particle number 3.4 Translation invariance 3.5 Galilean symmetry 3.6 Scale invariance 3.7 Special Schrödinger symmetry 3.8 The Schrödinger algebra 3.9 Summary of this chapter 1. Many particle physics 1.1 A preview of this chapter In this chapter, we will formulate our first example of a quantum field theory. We begin with the study of a quantum mechanical system with non-relativistic, identical, interacting particles. We will define the problem at hand as that of needing to find a solution of the Schrödinger equation which describes that system, subject to the appropriate boundary conditions. We will discuss the two cases of particle exchange statistics, Fermions and Bosons. We shall then find a way to rewrite the quantum many-particle problem as a quantum field theory. For this, we introduce field operators and the problem is posed as a field equation and commutation relations that the field operators of the quantum field theory should satisfy. 1.2 Introduction In this chapter we will attempt to develop intuition for the answer to the question “what is a quantum field theory”. We will do this by studying a system with many particles. For now, we will assume that the particles are non-relativistic. The generalization to relativistic particles and relativistic quantum field theory will be discussed in later chapters. We will assume that the problem in front of us is quantum mechanical, that is, that we want to find a solution of the Schrödinger equation for the system as a whole and then use that solution, the wave function, to answer questions about the physical state of the system. In order to describe the quantum mechanical problem for a large number of particles in an elegant way, we will develop a procedure which is called “second quantization”. In non-relativistic quantum mechanics, when the total number of particles is finite, second quantization gives an alternative, but at the same time completely equivalent formulation of the problem of solving the Schrödinger equation. This formulation is convenient for some applications, such as perturbation theory which is widely used to study many-particle systems and it can be relevant to many interesting physical scenarios. Metals, superconductors, superfluids, trapped cold atoms and nuclear matter are important examples. The formalism is particularly useful in that it allows us to take the “thermodynamic limit” which is an idealization of such a system that considers 10 Chapter 1. Many particle physics the limit as both the volume of the system
Recommended publications
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases.
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Configuration Interaction Study of the Ground State of the Carbon Atom
    Configuration Interaction Study of the Ground State of the Carbon Atom María Belén Ruiz* and Robert Tröger Department of Theoretical Chemistry Friedrich-Alexander-University Erlangen-Nürnberg Egerlandstraße 3, 91054 Erlangen, Germany In print in Advances Quantum Chemistry Vol. 76: Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems 30th July 2017 Abstract Configuration Interaction (CI) calculations on the ground state of the C atom are carried out using a small basis set of Slater orbitals [7s6p5d4f3g]. The configurations are selected according to their contribution to the total energy. One set of exponents is optimized for the whole expansion. Using some computational techniques to increase efficiency, our computer program is able to perform partially-parallelized runs of 1000 configuration term functions within a few minutes. With the optimized computer programme we were able to test a large number of configuration types and chose the most important ones. The energy of the 3P ground state of carbon atom with a wave function of angular momentum L=1 and ML=0 and spin eigenfunction with S=1 and MS=0 leads to -37.83526523 h, which is millihartree accurate. We discuss the state of the art in the determination of the ground state of the carbon atom and give an outlook about the complex spectra of this atom and its low-lying states. Keywords: Carbon atom; Configuration Interaction; Slater orbitals; Ground state *Corresponding author: e-mail address: [email protected] 1 1. Introduction The spectrum of the isolated carbon atom is the most complex one among the light atoms. The ground state of carbon atom is a triplet 3P state and its low-lying excited states are singlet 1D, 1S and 1P states, more stable than the corresponding triplet excited ones 3D and 3S, against the Hund’s rule of maximal multiplicity.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • 1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
    1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.
    [Show full text]
  • The Heisenberg Uncertainty Principle*
    OpenStax-CNX module: m58578 1 The Heisenberg Uncertainty Principle* OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to: • Describe the physical meaning of the position-momentum uncertainty relation • Explain the origins of the uncertainty principle in quantum theory • Describe the physical meaning of the energy-time uncertainty relation Heisenberg's uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we know everything about where a particle is located (the uncertainty of position is small), we know nothing about its momentum (the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle also exist for other quantities as well, such as energy and time. We discuss the momentum-position and energy-time uncertainty principles separately. 1 Momentum and Position To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the x- direction. The particle moves with a constant velocity u and momentum p = mu. According to de Broglie's relations, p = }k and E = }!. As discussed in the previous section, the wave function for this particle is given by −i(! t−k x) −i ! t i k x k (x; t) = A [cos (! t − k x) − i sin (! t − k x)] = Ae = Ae e (1) 2 2 and the probability density j k (x; t) j = A is uniform and independent of time. The particle is equally likely to be found anywhere along the x-axis but has denite values of wavelength and wave number, and therefore momentum.
    [Show full text]
  • (Aka Second Quantization) 1 Quantum Field Theory
    221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization) 1 Quantum Field Theory Why quantum field theory? We know quantum mechanics works perfectly well for many systems we had looked at already. Then why go to a new formalism? The following few sections describe motivation for the quantum field theory, which I introduce as a re-formulation of multi-body quantum mechanics with identical physics content. 1.1 Limitations of Multi-body Schr¨odinger Wave Func- tion We used totally anti-symmetrized Slater determinants for the study of atoms, molecules, nuclei. Already with the number of particles in these systems, say, about 100, the use of multi-body wave function is quite cumbersome. Mention a wave function of an Avogardro number of particles! Not only it is completely impractical to talk about a wave function with 6 × 1023 coordinates for each particle, we even do not know if it is supposed to have 6 × 1023 or 6 × 1023 + 1 coordinates, and the property of the system of our interest shouldn’t be concerned with such a tiny (?) difference. Another limitation of the multi-body wave functions is that it is incapable of describing processes where the number of particles changes. For instance, think about the emission of a photon from the excited state of an atom. The wave function would contain coordinates for the electrons in the atom and the nucleus in the initial state. The final state contains yet another particle, photon in this case. But the Schr¨odinger equation is a differential equation acting on the arguments of the Schr¨odingerwave function, and can never change the number of arguments.
    [Show full text]
  • Harmonic Oscillator: Motion in a Magnetic Field
    Harmonic Oscillator: Motion in a Magnetic Field * The Schrödinger equation in a magnetic field The vector potential * Quantized electron motion in a magnetic field Landau levels * The Shubnikov-de Haas effect Landau-level degeneracy & depopulation The Schrödinger Equation in a Magnetic Field An important example of harmonic motion is provided by electrons that move under the influence of the LORENTZ FORCE generated by an applied MAGNETIC FIELD F ev B (16.1) * From CLASSICAL physics we know that this force causes the electron to undergo CIRCULAR motion in the plane PERPENDICULAR to the direction of the magnetic field * To develop a QUANTUM-MECHANICAL description of this problem we need to know how to include the magnetic field into the Schrödinger equation In this regard we recall that according to FARADAY’S LAW a time- varying magnetic field gives rise to an associated ELECTRIC FIELD B E (16.2) t The Schrödinger Equation in a Magnetic Field To simplify Equation 16.2 we define a VECTOR POTENTIAL A associated with the magnetic field B A (16.3) * With this definition Equation 16.2 reduces to B A E A E (16.4) t t t * Now the EQUATION OF MOTION for the electron can be written as p k A eE e 1k(B) 2k o eA (16.5) t t t 1. MOMENTUM IN THE PRESENCE OF THE MAGNETIC FIELD 2. MOMENTUM PRIOR TO THE APPLICATION OF THE MAGNETIC FIELD The Schrödinger Equation in a Magnetic Field Inspection of Equation 16.5 suggests that in the presence of a magnetic field we REPLACE the momentum operator in the Schrödinger equation
    [Show full text]
  • 8 the Variational Principle
    8 The Variational Principle 8.1 Approximate solution of the Schroedinger equation If we can’t find an analytic solution to the Schroedinger equation, a trick known as the varia- tional principle allows us to estimate the energy of the ground state of a system. We choose an unnormalized trial function Φ(an) which depends on some variational parameters, an and minimise hΦ|Hˆ |Φi E[a ] = n hΦ|Φi with respect to those parameters. This gives an approximation to the wavefunction whose accuracy depends on the number of parameters and the clever choice of Φ(an). For more rigorous treatments, a set of basis functions with expansion coefficients an may be used. The proof is as follows, if we expand the normalised wavefunction 1/2 |φ(an)i = Φ(an)/hΦ(an)|Φ(an)i in terms of the true (unknown) eigenbasis |ii of the Hamiltonian, then its energy is X X X ˆ 2 2 E[an] = hφ|iihi|H|jihj|φi = |hφ|ii| Ei = E0 + |hφ|ii| (Ei − E0) ≥ E0 ij i i ˆ where the true (unknown) ground state of the system is defined by H|i0i = E0|i0i. The inequality 2 arises because both |hφ|ii| and (Ei − E0) must be positive. Thus the lower we can make the energy E[ai], the closer it will be to the actual ground state energy, and the closer |φi will be to |i0i. If the trial wavefunction consists of a complete basis set of orthonormal functions |χ i, each P i multiplied by ai: |φi = i ai|χii then the solution is exact and we just have the usual trick of expanding a wavefunction in a basis set.
    [Show full text]
  • Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene
    Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene X. Lin, R. R. Du and X. C. Xie International Center for Quantum Materials, Peking University, Beijing, People’s Republic of China 100871 ABSTRACT The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. Three decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally FQHE has been observed in high mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene. Keywords: Fractional Quantum Hall Effect, Experimental Progress, 5/2 State, Graphene measured through the temperature dependence of I. INTRODUCTION longitudinal resistance. Due to the confinement potential of a realistic 2DEG sample, the gapped QHE A. Quantum Hall Effect (QHE) state has chiral edge current at boundaries. Hall effect was discovered in 1879, in which a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although Hall effect was discovered in a sheet of gold leaf by Edwin Hall, Hall effect does not require two-dimensional condition. In 1980, quantum Hall effect was observed in two-dimensional electron gas (2DEG) system [1,2].
    [Show full text]