Vertebrate Phylogeny Continued O Evolution of the Tetrapods O Evolution of the Amniotes O Evolution of the Sauropsids O Evolution of the Synapsids

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Phylogeny Continued O Evolution of the Tetrapods O Evolution of the Amniotes O Evolution of the Sauropsids O Evolution of the Synapsids Lesson 4 ◊ Lesson Outline: ♦ Vertebrate Phylogeny Continued o Evolution of the Tetrapods o Evolution of the Amniotes o Evolution of the Sauropsids o Evolution of the Synapsids ◊ Objectives: At the end of this lesson you should be able to: ♦ Describe the major groups of Tetrapod Vertebrates ♦ Describe the major steps in the evolution of each group ◊ References: ♦ Chapter 4: 57-85 ◊ Reading for Next Lesson: ♦ Chapter 5: 86-104 Anamniotes Amniotes Osteichthyes Tetrapods Actinop Crossop Amphibia terygii terygii Dipnoi The Tetrapods include the Amphibia and the Amniotes The shift from an aquatic to a terrestrial habitat was a challenging one. Fish were well adapted to their habitat. In the late Paleozoic, an offshoot of the fishes gave rise to the tetrapods. At the time there appear to have been long periods of persistent drought and a few Crossopterygian fishes (Rhipidistians) became increasingly adapted for terrestrial life and gave rise to the Labyrinthodonts, the predecessors of the amphibians. Preadaptations were important here. Again, it is believed that this was a period of global persistent drought. This gave rise to stagnant pools which would warm up, become hypoxic, become salty and deprived of food. Two anatomical features appear to have allowed fish to escape these problems. Lungs and Legs (7, 8) Today there are five genera of fish that have true lungs (and all live in areas of seasonal drought). The fossil record indicates that in the late Paleozoic, a great majority of fish possessed lungs. If droughts were severe and ponds dried up, fish with larger fins that could "crawl" along river channels could find another pond. The limbs and girdles of early tetrapods were generally more ossified and stronger and the vertebral column tended to increase in prominence. Connection of the shoulder girdle with the skull was lost and a mobile neck region developed that allowed the head to move relative to the body. Thus, tetrapods inherited paired appendages, jaws, backbones and lungs from fishes. Note: 1) higher vertebrates are the fortuitous outcome of a climatic change and 2) highly adapted fish had to evolve through a transition form that was poorly adapted and struggling to take advantage of a new habitat. Amphibia are distinguished as tetrapods that lay eggs which lack shells and extraembryonic membranes. Their eggs must be laid in water. Class Amphibia Subclass Lissamphibia Order Gymnophiona (Apoda (no feet) = caecilians) Order Urodela (salamanders) Order Salientia (Anura = frogs and toads) The history of how the living amphibians descended from their ancestors is obscure. All are specialized and represent considerable departure in morphology, ecology and behaviour from ancient tetrapods. They retain an aquatic larval stage but, for the most part, have a semi-terrestrial or terrestrial adult stage. The real distinction of the Amniotes is their break from water. The Amniotes bear embryos enveloped in extraembryonic membranes (9). The embryo with these membranes is usually packaged in a calcareous or leathery shelled egg. Some believe this to be the most significant step in vertebrate history. Not only can the egg now be laid on land, it also eliminates the need for a larval stage. The young are born as terrestrial miniatures of their parents. So, which came first - the Reptile or the Egg? It is currently believed that the earliest reptiles developed the amniotic egg but remained semi-terrestrial for some time, living in water and eating fish. They developed the amniotic egg due to selection pressures from predation (laying caviar for others) and seasonal drought. Thus, they could lay eggs on land but still lived in water. With the rise of the insects, a food source was created that favoured the complete move to a terrestrial life style and this came later. Amniota Sauropsida (Reptilia) Synapsida Parareptilia Eureptilia Lepidosauria Archosauria Testudinata Sphenodonta Squamata Crocodilia Dinosaurs Aves (Chelonia) The amniotes are composed of two main lineages, the Synapsida (the mammals) and the Sauropsida (the reptiles, dinosaurs and birds) Traditionally, the primary distinguishing feature of these different groups was the characteristics of the temporal region of the skull (10), the area behind the eye. Differences in this region appear to be a reliable indication of evolutionary lineage - even if it reveals little about the animals themselves. In primitive amniotes (and anamniotes), the temporal region is covered completely by bone. This is referred to as an anapsid skull and is retained by the turtles and their allies. Two variations arise from this basic skull type. The synapsid skull found in mammals has a single pair of temporal openings bordered above by a temporal bar formed by squamosal and postorbital bones. In the other group that diverged from the anapsids, there are two pairs of temporal openings separated by the temporal bar. These are the diapsids and this group includes the dinosaurs and gave rise to all living reptiles except the turtles, and to the birds. The Sauropsida include the reptiles, dinosaurs and birds. These groups are distinguished by having anapsid, and the latter derived diapsid skulls. Living reptiles have scales (but no hair or feathers) composed partly of surface epidermis. They are ectothermic and respiration is primarily pulmonary and not cutaneous. Class Reptilia Subclass Parareptilia (Anapsida) Order Testudinata (Chelonia) The Parareptilia have a distinctive ear region wherein the eardrum is supported by the squamosal bone rather than the quadrate bone and by the retroarticular process of the lower jaw. Furthermore the foot is unique in the way the digits articulate with the ankle bone. The only living members are the turtles. The terms tortoise and terrapin are sometimes applied to terrestrial and brackish water species but there is no formal taxonomic distinction between them. The Eureptilia are diapsids with two temporal fenestrae as well as a palatine fenestra within the roof of the mouth. The two major groups are the Lepidosauria and the Archosauria Subclass Eureptilia (Diapsida) Superorder Lepidosauria Order Sphenodonta Sphenodon (tuatara) Order Squamata snakes, lizards and amphisbaenids (The Sphenodon has a complete diapsid skull. In lizards the lower temporal bar is absent and in snakes both upper and lower temporal bars are now gone. These are secondarily derived features that give the jaws greater mobility- this is especially true of snakes where it allows them to swallow prey whole) (Amphisbaenids are limbless burrowers that feed on arthropods. Many species of lizards are also secondarily limbless. Thus presence or absence of limbs does not distinguish snakes from other reptiles. Differences in internal anatomy, especially of the skull are needed to distinguish the two groups. Also, lizards have moveable eyelids and most have an external auditory meatus (opening) which snakes do not. [Thus we have finless fish (eels and symbranchus), limbless amphibians (caecilians) and reptiles (amphisbaenids, snakes and lizards) as well as some urodele amphibians that are almost limbless (Siren and Amphiuma)] Superorder Archosauria Order Crocodilia crocodiles, caimans and alligators Note: the Archosauria also include the dinosaurs and the birds. The Archosaurs are distinguished by teeth set in individual sockets (thecodont) rather than a common groove, a large mandibular foramen in the skull in front of the eye and a unique ankle design in the hindlimb with a tendency to bipedal upright posture (not seen in the crocodilia) The dinosaurs include two groups distinguished by the arrangement of the three bones that make up the pelvic girdle - the ornithischians and the saurischians. While the birds have traditionally been placed in a Class of their own (Aves), technically, they are diapsids and are included in the Eureptilia and Archosauria. They are a natural but specialized derivative of earlier reptiles. Birds outnumber all vertebrates except fishes (3D vs 2D?). They are most closely related to the crocodiles and share many of the same basic features. (similar eggs, bones and muscles) Class Aves (also Diapsida) Superorder Palaeognathae (Ratites = ostriches, rheas, emus and cassowaries) all are flightless Superorder Neognathae (Carinates) Size, flight and anatomy alone do not distinguish birds from other vertebrates. What makes birds unique is the presence of feathers and endothermy (11). Sauropsids Synapsids (mammals) Prototheria Theria Metatheria Eutheria monotremes marsupials placentals The Synapsids gave rise to the mammals. The two primary characteristics of the mammals are hair and mammary glands (12). They are endothermic furry animals nourished from birth with milk secreted by their mothers. In present day mammals, the thick coat of hair that normally distinguishes a mammal primarily acts as an insulating layer. Sebaceous or sweat glands arise in the skin of mammals in association with the hair to condition the skin and contribute to evaporative heat loss. It is believed that the other mammalian trait, mammary glands were derived from specialized skin glands. Note: they were one of the earliest groups to evolve from the stem reptiles The stem group of ancient reptiles giving rise to the mammals (therapsids) were quadrapedal, their feet had five digits, their limb position was less sprawled, their legs were positioned more directly under the weight of the body. This gives rise to a more efficient mode of locomotion. They also had teeth specialized for slicing and muscular cheeks. The bones and muscles of the skull changed substantially giving them a specialized ear and modified jaw mechanics. They also are the only group to have an inner ear composed of three bones (incus, maleus, stapes) (13), and a lower jaw composed of only one bone. The Monotremes include the duck-billed platypus and the spiny anteaters. Their distinguishing features are that their embryos develop in a shelled egg (oviparous) and they have a cloaca The Theria (or placental mammals) give rise to live young (viviparous) and are distinguished into groups that have a yolk sac placenta (the marsupials) and those that have a chorioallantoic placenta (14).
Recommended publications
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions Gilles Didier, Michel Laurin
    Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions. 2021. hal-03258099v2 HAL Id: hal-03258099 https://hal.archives-ouvertes.fr/hal-03258099v2 Preprint submitted on 20 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1 IMAG, Univ Montpellier, CNRS, Montpellier, France 2 CR2P (\Centre de Pal´eontologie { Paris"; UMR 7207), CNRS/MNHN/SU, Mus´eumNational d'Histoire Naturelle, Paris, France September 16, 2021 Abstract Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently.
    [Show full text]
  • Osteological Connections of the Petrosal Bone of the Extant Hippopotamidae Hippopotamus Amphibius and Choeropsis Liberiensis Maeva Orliac, Franck Guy, Renaud Lebrun
    Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis Maeva Orliac, Franck Guy, Renaud Lebrun To cite this version: Maeva Orliac, Franck Guy, Renaud Lebrun. Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis. MorphoMuseum, Association Palæovertebrata, 2014, 1 (1), pp.e1. 10.18563/m3.1.1.e1. hal-01902601 HAL Id: hal-01902601 https://hal.archives-ouvertes.fr/hal-01902601 Submitted on 26 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANATOMY ATLAS Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis ORLIAC M.J*, GUY F.†, LEBRUN R.* * Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2, place Eugène Bataillon, F-34095 Montpellier Cedex 05, France † Université de Poitiers - UFR SFA, iPHEP UMR CNRS 7262, Bât B35 - TSA 51106, 6 rue Michel brunet, 86073, Poitiers Cedex 9, France Abstract: This project presents the osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis by a virtual osteological dissection of the ear region.
    [Show full text]
  • The Mammary Gland and Its Origin During Synapsid Evolution
    P1: GMX Journal of Mammary Gland Biology and Neoplasia (JMGBN) pp749-jmgbn-460568 January 9, 2003 17:51 Style file version Nov. 07, 2000 Journal of Mammary Gland Biology and Neoplasia, Vol. 7, No. 3, July 2002 (C 2002) The Mammary Gland and Its Origin During Synapsid Evolution Olav T. Oftedal1 Lactation appears to be an ancient reproductive trait that predates the origin of mammals. The synapsid branch of the amniote tree that separated from other taxa in the Pennsylva- nian (>310 million years ago) evolved a glandular rather than scaled integument. Repeated radiations of synapsids produced a gradual accrual of mammalian features. The mammary gland apparently derives from an ancestral apocrine-like gland that was associated with hair follicles. This association is retained by monotreme mammary glands and is evident as ves- tigial mammary hair during early ontogenetic development of marsupials. The dense cluster of mammo-pilo-sebaceous units that open onto a nipple-less mammary patch in monotremes may reflect a structure that evolved to provide moisture and other constituents to permeable eggs. Mammary patch secretions were coopted to provide nutrients to hatchlings, but some constituents including lactose may have been secreted by ancestral apocrine-like glands in early synapsids. Advanced Triassic therapsids, such as cynodonts, almost certainly secreted complex, nutrient-rich milk, allowing a progressive decline in egg size and an increasingly altricial state of the young at hatching. This is indicated by the very small body size, presence of epipubic bones, and limited tooth replacement in advanced cynodonts and early mammali- aforms. Nipples that arose from the mammary patch rendered mammary hairs obsolete, while placental structures have allowed lactation to be truncated in living eutherians.
    [Show full text]
  • Controle Cardiovascular Autonômico E Metabolismo Em Embriões De Lagartos (Reptilia; Lepidosauria)
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” unesp INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ÁREA DE ZOOLOGIA (DOUTORADO) Controle cardiovascular autonômico e metabolismo em embriões de lagartos (Reptilia; Lepidosauria) MARINA RINCON SARTORI Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Área de Zoologia). Setembro - 2016 Controle cardiovascular autonômico e metabolismo em embriões de lagartos (Reptilia; Lepidosauria) MARINA RINCON SARTORI Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Área de Zoologia). Orientador: Augusto Shinya Abe Setembro - 2016 598.1 Sartori, Marina Rincon S251c Controle cardiovascular autonômico e metabolismo em embriões de lagartos (Reptilia; Lepidosauria) / Marina Rincon Sartori. - Rio Claro, 2016 141 f. : il., figs., gráfs., tabs., fots. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Augusto Shinya Abe 1. Réptil. 2. Regulação cardiovascular. 3. Desenvolvimento embrionário. 4. Iguana. 5. Squamata. 6. Frequência cardíaca. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Agradecimentos Um doutorado se resume a anos de dedicação e aprendizado. Nesse período há um grande amadurecimento, pessoal e profissional. E não é possível chegar até o fim sem o apoio e suporte de diversas pessoas, tanto as diretamente quanto as indiretamente envolvidas. Muitas não serão citadas nesta breve seção de agradecimentos mas a todos os que compartilharam comigo muitos desses momentos gostaria de deixar o meu sentimento de gratidão.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • Reptiles A. Cladistics 1. Many Groups of Organisms
    Reptiles A. Cladistics 1. Many groups of organisms are “polyphyletic” a. This means that the group combines 2 or more lineages - example=fish 2. Cladistics follows only pure lineages going back in time - example Osteichthys B. Reptile Classifiecation - looks like a polyphyletic group 1. Dry skin - no loss of water through skin like amphibians 2. Aminotic egg - an egg that can survive on dry land - in contrast with the amphibian egg C. Mammals and Birds are derived from different lineages of reptiles (We will see below) D. Stem Reptiles 1. Different lineages based on the temporal region of their skulls - number of holes (or bars) a. These holes are necessary to accommodate large jaw muscles b. Anapsid Skull - no holes in temporal - jaws can move fast, but with little force 1. Muscles that move the jaw are small 2. There is no good paleotological evidence for the transition between amphibians and reptiles - no fossil intermediates a. Fossil amphibians have lots of dermal bones in skull b. Amphibians have no temporal openings in skull 1. (Aside) both fossil amphibians and primitive reptiles have a parietal “eye” that senses light and dark (“third” eye in middle of head) c. Reptile skull is higher than amphibian to accomodate larger jaw muscles d. Of the modern reptiles only turtles are anapsids 2. Diapsid Skull - has holes in the temporal region a. Diapsid reptiles gave rise to lizards and snakes - they have a diapsid skull 1. Also Tuatara, crocodiles, dinosaurs and pterydactyls Reptiles b. One group of diapsids also had a pre-orbital hole in the skull in front of eye - this hole is still preserved in the birds - this anatomy suggests strongly that the birds are derived from the diapsid reptiles 3.
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • The Treeness of the Tree of Historical Trees of Life
    RESEARCH ARTICLE The treeness of the tree of historical trees of life 1 2 3 1 Marie Fisler , CeÂdric CreÂmière , Pierre Darlu , Guillaume LecointreID * 1 UMR 7205 CNRS-MNHN-SU-EPHE « Institut de SysteÂmatique, Evolution et Biodiversite », deÂpartement « Origines & E volution », MuseÂum National d'Histoire Naturelle, Paris, France, 2 MuseÂe d'Histoire Naturelle du Havre, Place du vieux marcheÂ, Le Havre, France, 3 UMR 7206 CNRS-MNHN-UPD « Eco-anthropologie et Ethnobiologie », deÂpartement « Hommes, Nature et SocieÂteÂs », MuseÂum National d'Histoire Naturelle, Paris, France a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 This paper compares and categorizes historical ideas about trees showing relationships among biological entities. The hierarchical structure of a tree is used to test the global con- sistency of similarities among these ideas; in other words we assess the ªtreenessº of the OPEN ACCESS tree of historical trees. The collected data are figures and ideas about trees showing rela- Citation: Fisler M, CreÂmière C, Darlu P, Lecointre G tionships among biological entities published or drawn by naturalists from 1555 to 2012. (2020) The treeness of the tree of historical trees of They are coded into a matrix of 235 historical trees and 141 descriptive attributes. From the life. PLoS ONE 15(1): e0226567. https://doi.org/ most parsimonious ªtreeº of historical trees, treeness is measured by consistency index, 10.1371/journal.pone.0226567 retention index and homoplasy excess ratio. This tree is used to create sets or categories of Editor: Marc Robinson-Rechavi, Universite de trees, or to study the circulation of ideas. From an unrooted network of historical trees, tree- Lausanne Faculte de biologie et medecine, ness is measured by the delta-score.
    [Show full text]
  • The Skull O Neurocranium, Form and Function O Dermatocranium, Form
    Lesson 15 ◊ Lesson Outline: ♦ The Skull o Neurocranium, Form and Function o Dermatocranium, Form and Function o Splanchnocranium, Form and Function • Evolution and Design of Jaws • Fate of the Splanchnocranium ♦ Trends ◊ Objectives: At the end of this lesson, you should be able to: ♦ Describe the structure and function of the neurocranium ♦ Describe the structure and function of the dermatocranium ♦ Describe the origin of the splanchnocranium and discuss the various structures that have evolved from it. ♦ Describe the structure and function of the various structures that have been derived from the splanchnocranium ♦ Discuss various types of jaw suspension and the significance of the differences in each type ◊ References: ♦ Chapter: 9: 162-198 ◊ Reading for Next Lesson: ♦ Chapter: 9: 162-198 The Skull: From an anatomical perspective, the skull is composed of three parts based on the origins of the various components that make up the final product. These are the: Neurocranium (Chondocranium) Dermatocranium Splanchnocranium Each part is distinguished by its ontogenetic and phylogenetic origins although all three work together to produce the skull. The first two are considered part of the Cranial Skeleton. The latter is considered as a separate Visceral Skeleton in our textbook. Many other morphologists include the visceral skeleton as part of the cranial skeleton. This is a complex group of elements that are derived from the ancestral skeleton of the branchial arches and that ultimately gives rise to the jaws and the skeleton of the gill
    [Show full text]
  • Clades™ Prehistoric Card Game a Clade Is a Section of the Evolutionary Family Tree­—Basically Any Branch, Including All Its Sub-Branches
    CLADES™ PREHISTORIC Card Game A clade is a section of the evolutionary family tree —basically any branch, including all its sub-branches. A clade is a family of organisms, or living things, that are all more closely related to each other than they are to any other organisms. In this game you match cards according to their clades. Contents: Deck of 83 Clades Prehistoric cards. Includes 27 cards of each color and 2 bonus cards. There are also 5 animal description cards not used in play. Object: Spot matching card triples to collect the biggest animal pile! Setup Deal 1 face-down card to each player as their personal card. For now, players keep these cards face-down and don’t look at them. Deal 12 face-down shared cards to the middle of the play area. If you’re learning or teaching the game: • Before dealing, set aside the bonus cards and the cards showing only one or two animals. Play with just the cards showing three animals. • Deal 7 shared cards instead of 12. CLADESPrehistoricRules2.indd 1 10/17/17 10:15 AM All players help flip the 12 shared cards face-up. Sort the cards into three Making Triples rows according to their clades: top for Mammalia (mammals), middle for Sauropsida (sauropsids, or reptiles and birds), and bottom for Arthropoda In Clades Prehistoric, any two cards can make a triple with exactly one other (arthropods, or “bugs”). When the table is ready, each player picks up their card in the deck. personal card and looks at it.
    [Show full text]