Organic Chemical Characterization of Primary and Secondary Biodiesel Exhaust Particulate Matter John Kasumba University of Vermont

Total Page:16

File Type:pdf, Size:1020Kb

Organic Chemical Characterization of Primary and Secondary Biodiesel Exhaust Particulate Matter John Kasumba University of Vermont University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Organic Chemical Characterization Of Primary And Secondary Biodiesel Exhaust Particulate Matter John Kasumba University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Environmental Engineering Commons, and the Place and Environment Commons Recommended Citation Kasumba, John, "Organic Chemical Characterization Of Primary And Secondary Biodiesel Exhaust Particulate Matter" (2015). Graduate College Dissertations and Theses. 358. https://scholarworks.uvm.edu/graddis/358 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. ORGANIC CHEMICAL CHARACTERIZATION OF PRIMARY AND SECONDARY BIODIESEL EXHAUST PARTICULATE MATTER A Dissertation Presented by John Kasumba to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Civil and Environmental Engineering May, 2015 Defense Date: October 29, 2014 Dissertation Examination Committee: Britt A. Holmén, Ph.D, Advisor Giuseppe A. Petrucci, Ph.D, Chairperson Donna M. Rizzo, Ph.D Robert G. Jenkins, Ph.D Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Biodiesel use and production has significantly increased in the United States and in other parts of the world in the past decade. This change is driven by energy security and global climate legislation mandating reductions in the use of petroleum-based diesel. Recent air quality research has shown that emission of some pollutants such as CO, particulate matter (PM), SO2, hydrocarbons, and carcinogenic polycyclic aromatic hydrocarbons (PAHs) is greatly reduced with biodiesel. However, studies have also shown that some unregulated emissions, such as gas-phase carbonyls, are increased with biodiesel combustion. Very limited research has been done to investigate the particle- phase carbonyl and quinone emissions from biodiesel combustion. Also, very limited studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs) are found in high abundance in biodiesel exhaust PM. The presence of these FAMEs in biodiesel exhaust PM can potentially alter the kinetics of the reactions between ozone and particle-phase PAHs. In this study, an Armfield CM-12 automotive light-duty diesel engine operated on a transient drive cycle was used to generate PM from various waste vegetable oil (WVO) and soybean biodiesel blends (containing 0%, (B00), 10% (B10), 20% (B20), 50% (B50), and 100% (B100) biodiesel by volume). The primary PM emissions were sampled using Teflon-coated fiberfilm filters. Laboratory PAHs, FAMEs, and B20 exhaust PM were exposed to ~0.4 ppm ozone for time periods ranging from 0-24 hours in order to study the effect of FAMEs and biodiesel exhaust PM on the ozonolysis of PAHs. Organic chemical analysis of samples was performed using gas chromatography/mass spectrometry (GC/MS). PAHs, carbonyls, FAMEs, and n-alkanes were quantified in the exhaust PM of petrodiesel, WVO and soybean fuel blends. The emission rates of the total PAHs in B10, B20, B50, and B100 exhaust PM decreased by 0.006-0.071 ng/µg (5-51%) compared to B00, while the emission rates for the FAMEs increased with increasing biodiesel content in the fuel. The emission rates of the total n-alkanes in B10, B20, B50, and B100 exhaust PM decreased by 0.5-21.3 ng/µg (4-86%) compared to B00 exhaust PM. The total emission rates of the aliphatic aldehydes in biodiesel exhaust PM (B10, B20, B50, and B100) increased by 0.019-2.485 ng/µg (36-4800%) compared to petrodiesel. The emission rates of the total aromatic aldehydes, total aromatic ketones, and total quinones all generally decreased with increasing biodiesel content in the fuel. With the exception of benzo[a]pyrene, the pseudo-first order ozone reaction rate constants of all the PAHs decreased by 1.2-8 times in the presence of the FAMEs. Phenanthrene, fluoranthene, and pyrene were the only PAHs detected in the B20 exhaust PM, and their ozone reaction rate constants were about 4 times lower than those obtained when the PAHs alone were exposed to ozone. The findings of this study indicate that there are both positive and negative effects to emissions associated with biodiesel use in light-duty diesel engines operating on transient drive cycle. CITATIONS Material in Appendix D of this dissertation was published in the journal of Atmospheric Environment in the form: Kasumba, J., Holmén, B.A., Hiscox, A., Wang, J., Miller, D.. (2011). Agricultural PM10 Emissions from Cotton Field Disking in Las Cruces, NM. Atmospheric Environment, 45, 1668-1674. DOI: 10.1016/j.atmosenv.2011.01.004. Material in Appendix E of this dissertation was published in the Journal of Agricultural and Food Chemistry in the form: Holmén, B.A., Kasumba, J., Hiscox, A., Wang, J., Miller, D.. (2013). Mechanized and Natural Soil-to-Air Transfer of Trifluralin and Prometryn from a Cotton Field in Las Cruces, New Mexico. Journal of Agricultural and Food Chemistry, 61, 9776-9783. DOI: 10.1021/jf4020697. My contribution towards this publication was about 60%. I was responsible for developing the extraction and analysis procedures for all the field samples. I also wrote the initial draft of this publication. ii ACKNOWLEDGMENTS I would like to start by thanking Professor Britt Holmén, my advisor, for mentoring me during my graduate studies at UVM. Her continuous support and push for excellence helped me succeed through my Ph.D. program. I also thank her for reading through all the manuscripts in this dissertation. I would also like to thank Professor Giuseppe Petrucci for chairing my dissertation committee. I also thank Professors Donna Rizzo and Robert Jenkins for serving on my dissertation committee. I thank them for all the helpful suggestions they gave me when I was writing this dissertation. I also acknowledge the present members of the Holmén Research Group (Karen Sentoff, Tyler Feralio, Jim Dunshee, Matt Conger, and Ben Rukavina) and the past members (Dan Nielsen, Tucker Stevens, Mitchell Robinson, Terry Barrett, Phil Cannata, Chris Gavitt, Dan Cooney, Timothy Kelly, and Wesley Miller) for their help in the lab, advice, and contributions in group meetings. I also wish to thank Bruce O’Rourke for helping troubleshoot the GC/MS systems in our laboratory. Lastly, I thank my family and friends for supporting me throughout my Ph.D. journey. Special thanks to my friends John Hanley, Mr. Joseph Rogers, Mrs. Laurene Rogers, and Laura Obregon for the great love they showed me while I was in this cold part of the world. iii TABLE OF CONTENTS CITATIONS ....................................................................................................................... ii ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii TABLE OF ABBREVIATIONS ....................................................................................... ix Chapter 1 INTRODUCTION ........................................................................................ 1 1.1 Organization of Dissertation .................................................................................... 1 1.2 Background .............................................................................................................. 4 1.3 Overall Research Objectives .................................................................................... 7 1.4 Research Questions .................................................................................................. 8 1.5 Literature Review ..................................................................................................... 9 1.5.1 Chemical Composition of Biodiesel and Biodiesel Exhaust PM ...................... 9 1.5.2 Chemical Composition of Diesel and Diesel Exhaust PM .............................. 17 1.5.3 Effects of Biodiesel on the Organic Compounds in PM from Diesel Engines 19 1.5.4 Reaction of Ozone with Biodiesel Exhaust PM .............................................. 22 Chapter 2 METHODS .................................................................................................. 26 2.1 Methods for Organic Chemical Analysis of Diesel and Biodiesel Exhaust PM .... 26 2.1.1 Fuels used in Emission Tests ........................................................................... 26 2.1.2 Emissions Test Procedure and Sampling ......................................................... 29 2.1.3 Chemicals ........................................................................................................ 32 2.1.4 Extraction and Analysis of Target Organic Chemical Compounds ................ 35 2.1.5 Quality Control /Quality Assurance ................................................................ 38 2.1.6 Data Analysis ................................................................................................... 41 2.2 Methods for Analysis of Fuel Samples .................................................................
Recommended publications
  • UNITED STATES PATENT of FICE 1926,642 PROCESS of OBTAINING REACTION PRODUCTS of RETENE Charles O
    Patented Sept. 12, 1933 1926,642 UNITED STATES PATENT of FICE 1926,642 PROCESS OF OBTAINING REACTION PRODUCTS OF RETENE Charles O. Young and George H. Reid, South Charleston, W. Wa, assignors to Carbide & Carbon Chemicals. Corporation, a corporation of New York No Drawing. Application December 2, 1930 Serial No. 502,005 8 Claims. (C. 260-06) The invention is an improved process of mak plied in any desired manner, for example the ap ing reaction products of ketene (CH2=C-O). In paratus for quenching the hot vapors may take general, the process of our invention comprises the form of a packed tower scrubber, spray-scrub thermally decomposing a substance which will ber or any other suitable means for rapidly cool form ketene, and rapidly cooling the hot gaseous ing the hot vapors in intimate contact with the 80 products of this pyrolysis in intimate contact with abSOrbing medium. a reacting absorbing medium. The absorption or quenching means may be The principal object of the invention is to pro operated at ordinary temperatures, and in such Wide a method of making ketene and reaction a case the resultant liquid will contain the reac 0 products thereof which will result in the forma tion product of ketene and the absorbing medium, 65 tion of a maximum amount of valuable product excess absorbing medium and condensed un and which will minimize losses of the ketene changed acetone. The liquid may be circulated formed. until Sufficiently reacted with ketene and then sep In the manufacture of ketene by the pyrolysis arated from the diluent acetone, or it may be oth 15 of organic compounds, e.g., acetone, two primary erwise treated for the separation or recovery of O difficulties in Securing useful quantities of ketene its several constituents.
    [Show full text]
  • Cell Culture
    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014 SUPPLEMENTARY INFORMATION Bleomycin-induced trans lipid formation in cell membranes and in liposome models A. Cort, T. Ozben, A. Sansone, S. Barata-Vallejo, C. Chatgilialoglu, C. Ferreri* * email: [email protected] 1 MATERIALS and METHODS II Ferrous ammonium sulfate Fe(NH4)2(SO4)2 6 H20 (Fe AS, Carlo Erba, Milan), bleomycin sulfate (BLM, Cayman Chemical, USA) 2-mercaptoethanol (2-ME, Fluka, Sigma-Aldrich, Milan), commercially available cis and trans FAME, 1-palmitoyl-2-oleoyl phosphatidyl choline (POPC, Avanti Lipids, USA) and the phospholipids from soybean lecithin (Sigma-Aldrich, Milan), were used without further purification. Chloroform, methanol, n-hexane (HPLC grade, Merck KGaA, Germany) were used without further purification. Incubations were carried out in an incubating orbital shaker (Carlo Erba, Milan) keeping the temperature at 37 °C. When necessary silica gel thin-layer chromatography (analytical) was performed on Merck silica gel 60 plates (0.25 mm thickness, Merck KGaA, Germany) and the spots were detected by spraying the plate with cerium ammonium sulfate/ammonium molybdate reagent. Fatty acid methyl esters were analyzed by GC (Agilent 6850, Milan) equipped with a 60m × 0.25mm × 0.25μm (50%-cyanopropyl)-methylpolysiloxane column (DB23, Agilent, USA), and a flame ionization detector with the following oven program: temperature started from 165 °C, held for 3 min, followed by an increase of 1 °C/min up to 195 °C, held for 40 min, followed by a second increase of 10 °C/min up to 240 °C, and held for 10 min.
    [Show full text]
  • Nov 15, Ketene Chemistry and the Application in Synthesis by Xuan Zhou
    Ketene chemistry and the application in synthesis Dong group at UT Austin Xuan Zhou Nov 14, 2013 Ketene chemistry Content • A brief history of ketene • Type of ketenes • Ketene preparation • Ketenes in synthesis Reviews about ketenes: T. T. Tidwell, Ketenes, 2nd ed., wiley interscience, Hoboken, NJ, 2006. T. T. Tidwell, Eur. J. Org. Chem. 2006, 563-576. T. T. Tidwell, Angew. Chem. Int. Ed. 2005, 44, 5778-5785. A brief history of ketene The first reported ketene: Diphenylketene Wedekind Ketene and its Dimer: N.T.M. Wilsmore, J. Chem. Soc. 1907, 91, 1938 Asymmetric reactions of ketene: H. Pracejus, Justus liebigs Ann. Chem. 1969, 722, 1-11 Bisketenes First prepared bisketenes by Wolf in 1906 O. Diels, B. Wolf, Ber. Dtsch. Chem. Ges. 1906, 39, 689-697 First observed bisketenes in 1982 G. Maier, H. P. Reisenauer, T. Sayrac, Chem. Ber. 1982, 115, 2192 Substituent effects of ketene Melvin Newman Shchukovskaya Cycloadditions of ketenes Lee Irvin Smith Derek H.R. Barton Angew. Chem. Int. Ed. 2005, 44, 5779-5785 Type of ketenes Carbon-substituted ketenes • Alkylketenes 2 3 4 • Alkenylketenes 5 6 7 • alkynylketenes and cyanoketenes 8 9 10 Type of ketenes • Arylketenes 1 2 3 • Acylketenes 4 5 6 • Imidoylketenes 7 azetinones 8 Nitrogen-substituted ketenes 1 Nitroketene Azidoketene Isocyanatoketene 2 Oxygen-substituted ketenes 3 4 5 6 Halogen-substituted ketenes 1 2 3 4 Silyl-ketenes 5 6 7 Phosphorous, sulfur, metal-substituted and bis ketenes 1 2 5 6 7 8 9 10 11 12 Ketene preparation Ketenes from ketene dimers •Pyrolysis of ketene dimer 1 2 3 4 •Photolysis
    [Show full text]
  • The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains
    The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains A thesis submitted for the degree of Doctor of Philosophy Helen Jessica Kimber Department of Chemistry University College London 2016 -I, Helen Jessica Kimber, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed, i Abstract The elemental composition of the known universe comprises almost exclusively light atoms (~99.9% hydrogen and helium). However, to date, close to 200 different molecules have been detected in the interstellar medium (ISM) where their distribution is far from uniform. The vast majority of these molecules are contained within vast clouds of gas and dust referred to as interstellar clouds. Within these interstellar clouds, many of the molecules present are formed via gas-phase ion-neutral reactions. However, there are several molecules for which known gas-phase kinetics cannot account for observed gas-phase abundances. As a result, reactions occurring on the surface of interstellar dust grains are invoked to account for the observed abundances of some of these molecules. This thesis presents results of experimental investigations into the interaction and reactions of atoms and molecules on the surface of model interstellar dust grains. Chapters three and four present results for the reaction of (3P)O on molecular ices. Specifically, the reaction of (3P)O and propyne or acrylonitrile. After a one hour dosing period, temperature programmed desorption (TPD), coupled with time-of-flight mass spectrometry (TOFMS), are used to identify (3P)O addition products.
    [Show full text]
  • Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 6452-6456, July 1992 Medical Sciences Long-chain fatty acids activate calcium channels in ventricular myocytes (free fatty acids/arachidonic acid/olekic add) JAMES MIN-CHE HUANG, Hu XIAN, AND MARVIN BACANER* Department of Physiology, University of Minnesota, Minneapolis, MN 55455 Communicated by James Serrin, March 30, 1992 (receivedfor review September 15, 1991) ABSTRACT Nonesterified fatty acids accumulate at sites down (>70%o decrease in ICa) during the 10- to 15-min control of tissue injury and necrosis. In cardiac tissue the concentra- period were discarded. Whole-cell voltage-clamp experi- tions of oleic acid, arachidonic acid, leukotrienes, and other ments with myocytes were done at 320C with 2- to 3-MU glass fatty acids increase greatly during ischemia due to receptor or pipettes (Narishige PB 7 puller). Dagan 3900A patch-clamp nonreceptor-mediated activation of phospholipases and/or circuit, axon DMA interface, IBM cloned AT 386 computer, diminished reacylation. In ischemic myocardium, the time and P-CLAMP software were used for command pulses, data course of increase in fatty acids and tissue calcium closely acquisition, and analysis. All lipophilic agents were dissolved parallels irreversible cardiac damage. We postulated that fatty in 95% ethanol to make stock solutions and then diluted to acids released from membrane phospholipids may be involved <0.1% ethanol concentration before being applied by con- in the increase ofintraceilular calcium. We report here that low tinuous bath perfusion. In control studies, 0.1% ethanol in the concentrations (3-30 ,AM) of each long-chain unsaturated buffer solution had no influence on ICa or membrane response (oleic, linoleic, linolenic, and arachidonic) and saturated to fatty acids (see text and Fig.
    [Show full text]
  • Properties of Fatty Acids in Dispersions of Emulsified Lipid and Bile Salt and the Significance of These Properties in Fat Absorption in the Pig and the Sheep
    Downloaded from Br. y. Nutr. (1969), 23, 249 249 https://www.cambridge.org/core Properties of fatty acids in dispersions of emulsified lipid and bile salt and the significance of these properties in fat absorption in the pig and the sheep BY C. P. FREEMAN . IP address: Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford (Received I July 1968-Accepted 25 October 1968) 170.106.35.76 I. The behaviour of fatty acids in dilute bile salt solution and in dispersions of triglyceride in bile salt solution was examined. The properties of fatty acids in bile salt solution were defined in terms of their saturation ratio, and of the critical micellar concentration of bile , on salt for each fatty acid as solute. The partition of fatty acids between the oil phase and the micellar phase of the dispersions was defined as the distribution coefficient K M/O. The 25 Sep 2021 at 20:48:57 phases were separated by ultracentrifugation. 2. Of the fatty acids examined, palmitic and stearic acids behaved in bile salt solution as typical non-polar solutes. Lauric, oleic and linoleic acids had properties similar to typical amphiphiles. The effectiveness of these and other amphiphiles was expressed in terms of an amphiphilic index. 3. The trans-fatty acids, vaccenic acid and linolelaidic acid possessed solubility properties similar to their &-isomers. The properties of elaidic acid were intermediate between those , subject to the Cambridge Core terms of use, available at of the non-polar and the amphiphilic solutes. 4. The distribution coefficients of fatty acids differed less significantly than their solubilities in bile salt solution, but were influenced to some extent by the composition of the oil phase.
    [Show full text]
  • The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of Â-Lactams Andrew E
    Published on Web 00/00/0000 The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of â-Lactams Andrew E. Taggi, Ahmed M. Hafez, Harald Wack, Brandon Young, Dana Ferraris, and Thomas Lectka* Contribution from the Department of Chemistry, Johns Hopkins UniVersity, 3400 North Charles Street, Baltimore, Maryland 21218 Received February 5, 2002 Abstract: We report practical methodology for the catalytic, asymmetric synthesis of â-lactams resulting from the development of a catalyzed reaction of ketenes (or their derived zwitterionic enolates) and imines. The products of these asymmetric reactions can serve as precursors to a number of enzyme inhibitors and drug candidates as well as valuable synthetic intermediates. We present a detailed study of the mechanism of the â-lactam forming reaction with proton sponge as the stoichiometric base, including kinetics and isotopic labeling studies. Stereochemical models based on molecular mechanics (MM) calculations are also presented to account for the observed stereoregular sense of induction in our reactions and to provide a guidepost for the design of other catalyst systems. Introduction this structural motif a worthwhile goal for the synthetic organic 10 The clinical relevance of â-lactams continues to expand at a chemist, thus the synthesis of these nonantibiotic â-lactams surprising rate. Although their use as antibiotics is being will be the focus of this contribution. While considerable effort compromised to some extent by bacterial resistance pressures,1 has been put into synthetic methodology to construct the basic recently â-lactams (especially nonnatural ones) have achieved â-lactam skeleton, there have been few general methods many important nonantibiotic uses.
    [Show full text]
  • Book of Abstracts
    THE PHYSICS AND CHEMISTRY OF THE INTERSTELLAR MEDIUM Celebrating the first 40 years of Alexander Tielens' contribution to Science Book of Abstracts Palais des Papes - Avignon - France 2-6 September 2019 CONFERENCE PROGRAM Monday 2 September 2019 Time Speaker 10:00 Registration 13:00 Registration & Welcome Coffee 13:30 Welcome Speech C. Ceccarelli Opening Talks 13:40 PhD years H. Habing 13:55 Xander Tielens and his contributions to understanding the D. Hollenbach ISM The Dust Life Cycle 14:20 Review: The dust cycle in galaxies: from stardust to planets R. Waters and back 14:55 The properties of silicates in the interstellar medium S. Zeegers 15:10 3D map of the dust distribution towards the Orion-Eridanus S. Kh. Rezaei superbubble with Gaia DR2 15:25 Invited Talk: Understanding interstellar dust from polariza- F. Boulanger tion observations 15:50 Coffee break 16:20 Review: The life cycle of dust in galaxies M. Meixner 16:55 Dust grain size distribution across the disc of spiral galaxies M. Relano 17:10 Investigating interstellar dust in local group galaxies with G. Clayton new UV extinction curves 17:25 Invited Talk: The PROduction of Dust In GalaxIES C. Kemper (PRODIGIES) 17:50 Unravelling dust nucleation in astrophysical media using a L. Decin self-consistent, non steady-state, non-equilibrium polymer nucleation model for AGB stellar winds 19:00 Dining Cocktail Tuesday 3 September 2019 08:15 Registration PDRs 09:00 Review: The atomic to molecular hydrogen transition: a E. Roueff major step in the understanding of PDRs 09:35 Invited Talk: The Orion Bar: from ALMA images to new J.
    [Show full text]
  • Ketenes 25/01/2014 Part 1
    Baran Group Meeting Hai Dao Ketenes 25/01/2014 Part 1. Introduction Ph Ph n H Pr3N C A brief history Cl C Ph + nPr NHCl Ph O 3 1828: Synthesis of urea = the starting point of modern organic chemistry. O 1901: Wedekind's proposal for the formation of ketene equivalent (confirmed by Staudinger 1911) Wedekind's proposal (1901) 1902: Wolff rearrangement, Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. 2 Wolff adopt a ketene structure in 1912. R 2 hν R R2 1905: First synthesis and characterization of a ketene: in an efford to synthesize radical 2, 1 ROH R C Staudinger has synthesized diphenylketene 3, Staudinger, H. et al., Chem. Ber. 1905, 1735. N2 1 RO CH or Δ C R C R1 1907-8: synthesis and dicussion about structure of the parent ketene, Wilsmore, O O J. Am. Chem. Soc. 1907, 1938; Wilsmore and Stewart Chem. Ber. 1908, 1025; Staudinger and Wolff rearrangement (1902) O Klever Chem. Ber. 1908, 1516. Ph Ph Cl Zn Ph O hot Pt wire Zn Br Cl Cl CH CH2 Ph C C vs. C Br C Ph Ph HO O O O O O O O 1 3 (isolated) 2 Wilsmore's synthesis and proposal (1907-8) Staudinger's synthesis and proposal (1908) wanted to make Staudinger's discovery (1905) Latest books: ketene (Tidwell, 1995), ketene II (Tidwell, 2006), Science of Synthesis, Vol. 23 (2006); Latest review: new direactions in ketene chemistry: the land of opportunity (Tidwell et al., Eur. J. Org. Chem. 2012, 1081). Search for ketenes, Google gave 406,000 (vs.
    [Show full text]
  • PROFIL ASAM AMINO, ASAM LEMAK DAN KOMPONEN VOLATIL IKAN GURAME SEGAR (Osphronemus Gouramy) DAN KUKUS
    Profil Asam Amino, Asam Lemak, Pratama et al. JPHPI 2018, Volume 21 Nomor 2 Available online: journal.ipb.ac.id/index.php/jphpi PROFIL ASAM AMINO, ASAM LEMAK DAN KOMPONEN VOLATIL IKAN GURAME SEGAR (Osphronemus gouramy) DAN KUKUS Rusky Intan Pratama*, Iis Rostini, Emma Rochima Laboratorium Pengolahan Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran, Kampus Jatinangor, Jalan Raya Bdg-Sumedang Km. 21, Sumedang Jawa Barat Telepon (022) 87701519 , Faks (022) 87701518 *Korespondensi: [email protected] Diterima: 25 April 2018/Disetujui: 10 Juni 2018 Cara sitasi: Pratama RI, Rostini I, Rochima E. 2018. Profil asam amino, asam lemak dan komponen volatil ikan gurame segar (Osphronemus gouramy) dan kukus. Jurnal Pengolahan Hasil Perikanan Indonesia. 21(2): 218-231. Abstrak Komponen volatil merupakan kelompok senyawa-senyawa volatil yang berpengaruh terhadap karakteristik flavor komoditas dan penerimaannya secara keseluruhan oleh konsumen karena pengaruhnya terhadap karakteristik aroma. Tujuan dari penelitian ini ialah untuk mengidentifikasi komposisi senyawa- senyawa volatil, profil asam amino dan asam lemak salah satu jenis ikan budidaya air tawar khas Jawa Barat yaitu ikan gurame dalam kondisi segar dan kukus. Metode ekstraksi sampel Solid Phase Micro Extraction dilakukan dengan suhu ekstraksi 40oC untuk sampel segar dan 80oC untuk sampel kukus selama 45 menit kemudian senyawa volatil dideteksi dan diidentifikasi menggunakan Gas Chromatography/Mass Spectrometry. Analisis pendukung lain yang dilakukan ialah analisis profil asam amino dan profil asam lemak menggunakan High Performance Liquid Chromatography. Senyawa volatil pada sampel ikan gurame segar yang terdeteksi ialah 17 senyawa sedangkan pada hasil pengukusannya sebanyak 38 senyawa. Asam amino yang terkandung lebih tinggi untuk sampel ikan gurame segar dan kukus ialah asam glutamat (3,12%, 4,09%).
    [Show full text]
  • Comparison of Physicochemical Analysis and Antioxidant Activities
    Sains Malaysiana 43(4)(2014): 535–542 Comparison of Physicochemical Analysis and Antioxidant Activities of Nigella sativa Seeds and Oils from Yemen, Iran and Malaysia (Perbandingan Analisis Fizikokimia dan Aktiviti Antioksidan dalam Biji dan Minyak Nigella sativa dari Yemen, Iran dan Malaysia) HASNAH HARON*, CHONG GRACE-LYNN & SUZANA SHAHAR ABSTRACT The study was aimed to analyze the physicochemical properties and antioxidant activities in five batches of seeds and oils of Nigella sativa, obtained from Malaysia, Iran and Yemen. Proximate analysis showed that the seeds contained 20.63-28.71% crude fat, 11.35-14.04% crude protein, 5.37-7.93% total moisture, 4.15-4.51% total ash contents and 48.69-57.18% total carbohydrate contents. Physicochemical analysis showed a refractive index of 1.4697-1.4730, 3 specific gravity of 1.369-1.376 g/cm , peroxide value of 3.33-21.33 meq O2/kg, 184-220 mg/g in saponification number and unsaponifiable matter of 1.1-1.8% in the oil samples. The seeds showed high mineral content such as Ca (2242 mg/kg), K (6393 mg/kg) and Mg (2234 mg/kg). The oil sample from Kelantan, Malaysia contained the lowest saturated fatty acid (SFA) (1.42±0.29%) while Sudan, Yemen contained the highest content of polyunsaturated fatty acid (PUFA) (65.13±5.45%). Monounsaturated fatty acid (MUFA) were found the highest (20.45±2.61%) in the seed samples originated from Iran. Seeds from Iran showed the highest antioxidant activity (IC50 = 1.49 mg/mL) and total phenolic content (30.84 mg GAE/g) while oil sample from Sudan, Yemen has the highest antioxidant activity (IC50 = 4.48 mg/mL).
    [Show full text]
  • Ketene Reactions. I. the Addition of Acid Chlorides
    KETENE REACTIONS. I. THE ADDITION OF ACID CHLORIDES TO DIMETHYLKETENE. II. THE CYCLOADDITION OF KETENES TO CARBONYL COMPOUNDS APPROVED: Graduate Committee: Major Professor Committee Member.rr^- Committee Member Committee Member Director of the Department of Chemistry Dean' of the Graduate School Smith, Larry, Ketene Reactions. I. The Addition of Acid Chlorides to DimethyIketene. II. The Cycloaddition of Ketenes to Carbonvl Compounds. Doctor of Philosophy (Chemistry), December, 1970, 63 pp., 3 tables, bibliography, 62 titles. Part I describes the addition of several acid chlorides to dimethylketene. The resulting 3-ketoacid chlorides were isolated and characterized. The reactivities of acid chlorides were found to parallel the parent acid pKa's. A reactivity order of ketenes toward acid chlorides was established. Dimethylketene is more reactive than ketene which is more reactive than diphenylketene. Attempts to effect the addition of an acid halide to a ketene produced by in situ dehydro- halogenation yielded a-halovinyl esters. The addition of acid chlorides to ketenes was concluded to be an ionic process dependent upon the nucleophilic character of the ketene oc- carbon and the polarity of the carbon-chlorine bond in the acid chloride. Part II describes the cycloaddition of several aldo- ketenes to chloral. The ketenes were generated in situ by dehydrohalogenation and dehalogenation of appropriately substituted acyl halides. Both cis- and trans-4-trichloro- Miyl-2-oxetanones are produced in the cycloadditions with the sterically hindered cis isomer predominating. Isomer distributions were determined by vpc or nmr analysis of the reaction solutions. Production of the ketenes by dehalo- genation resulted in enhanced reactivity of the carbonyl compounds.
    [Show full text]