United States Patent Office 2,175,811

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office 2,175,811 Patented Oct. 10, 1939 2,175,811 UNITED STATES PATENT OFFICE 2,175,811 . MANUFACTURE OF KETENES Donald J. Loder, Wilmington, Del, assignor to E. I. du Pont de Nemours & Company, Will mington, Del, a corporation of Delaware No Drawing. Application October 28, 1936, Serial No. 108,005 19 Claims. (C. 260-550) This invention relates to a process for the manufacture of ketenes and more particularly Spectively. These terms are used since the mech to a process for the manufacture of ketenes by anism of the reaction appears to be, in most the thermal decomposition of aliphatic car instances, that as the ester decomposes an alco 5 boxylic acid esters. hol is split of leaving the ketene or substituted The industrial pyrolysis of acetone to acetic ketene. anhydride and ketene is well known, as well as The esters which may be used in the process the similar treatment of acetaldehyde and alkyl of the present invention are primarily the ali ketones generally to produce ketene or substi phatic monocarboxylic acid esters of the aliphatic 10 tuted ketenes. These processes, however, have monohydric alcohols, such, for example, as methyl acetate, ethyl acetate, propyl acetate, isobutyl 0 not been attractive from the commercial stand acetate, and the higher esters of acetic acid with point for the primary reason that the raw ma straight or branched chain aliphatic Saturated terials have been obtainable only at high cost or unsaturated alcohols, of these esters methyl 15 economicaland the ketenes yield. produced therefrom only in un acetate decomposes to ketene and methanol much An object of the present invention is to pro more readily and efficiently than do the higher 5 vide a process for the preparation of ketenes by ester to their corresponding products. Not Only the thermal decomposition of organic esters. can esters of acetic acid be thermally decomposed Another object of the invention is to provide a in accord with the process of this invention to 20 process wherein ketenes generally, such, for ex give ketene, but likewise the higher aliphatic ample, as ketene, methyl ketene, diethyl ketene, acid esters may be treated to give substituted 20 and the like, may be prepared by dehydroal ketenes. For example, when methyl propionate koxylating appropriate esters of the carboxylic is dehydromethoxylated, a methyl ketene and acids. A more specific object is to provide a methanol will be the major products; when ethyl 25 process for the preparation of ketene by ther isobutyrate is dehydroethoxylated, dimethyl ke mally decomposing methyl acetate. A still more tene and ethanol will be the major reaction prod 25 Specific object is to provide a process wherein ucts. Accordingly, in a Substantially analogous methyl acetate is passed at elevated tempera manner, other substituted ketenes may be pro tures and subatmospheric pressures over a cata duced from the higher monocarboxylic acid es 30 lyst which accelerates the thermal decomposi ters of the straight or branched chain type alco tion of the ester into ketene and methanol. Other hols. Generally speaking the methyl esters of 30 objects of the invention will hereinafter appear. the higher acid ester acylates give the substituted The above objects are realized by subjecting in ketenes and alcohols more readily than do the the vapor phase an aliphatic carboxylic acid ester . higher alkyl esters of the corresponding acids. to comparatively high temperatures and pref While usually the monocarboxylic acid esters may erably pressures somewhat lower than atmos be thermally decomposed to ketenes much more 35 pheric. With these conditions, under which the readily than polycarboxylic acid esters, never reaction is preferably accelerated in the presence theless, the latter type esters, and more particu of a suitable catalyst, the ester is decomposed to larly the di and tricarboxylic acid esters, can be 40 give ketene and an alcohol. In many instances, treated in accord with the process herein de owing to the high reactivity of the ketene, it scribed to produce valuable compounds. 40 may react with the products formed, such as, The process is preferably conducted in the water and the alcohol produced, to give, in ad -vapor phase, the ester is vaporized either prior dition to the ketene and alcohol, acids and an to or during the reaction, and is thermally de 45 hydrides. In order, however, to control the di composed at a temperature of from approximately 500 to 1000° C. and preferably from 650-800° C. 45 rection of the reaction and obtain the desired in the presence of a suitable type catalyst, such, product, namely, ketene, various expedients are for example, as sodium meta phosphate, silica. hereinafter.resorted to which will be more fully described gel or silica gel supporting a suitable promoter 50 When reference is made to dehydroalkoxylat such as phosphoric acid or hydrated or anhydrous ing, dehydromethoxylating, and the like, in the boron oxide and like dehydrating catalysts. 50 specification and claims appended hereto, it will It has been found that the reaction proceeds, be understood that these terms will connote the particularly when methyl acetate is being ther removal from the ester of an aikosy group and mally decomposed to ketene, at subatmospheric hydrogen or a methoxy group and is 'droger, re pressures preferably ranging between 10 and 700 mm, with space velocities ranging between 500 55 2 2,175,811 and 10,000 under these pressures. (The space Eacample IW velocity is the number of unit volumes of gas, Methyl ketene was obtained by charging a cop at standard conditions, passing per hour through per lined catalyst converter with a silica gel cata a unit volume of the catalyst.) lyst, and approximately, 1.03 mols of methyl 5 In order to inhibit the decomposition of the propionate were passed through the converter at ester of valueless by-products the presence of a Space velocity of approximately 1,500. The water vapor has proved to be remarkably effec converter was maintained at a temperature rang tive. For example, if announts of up to 8% are ing between 500 and 650 C. and the pressure introduced with the ester, it has been found that Within the converter at approximately 90 mm. 10 while the yields of ketene continue to be high, Eacanape V O a much larger part of the ester decomposed in the absence of water vapor is converted to a Into a copper converter containing no catalyst uSable product, namely, the acid corresponding to approximately 0.315 mol of liquid methyl acetate was injected. The converter was held at a ten the ester used. Higher amounts are not usually perature of approximately 763 C. and its con- 15 5 advisable because of greater dilution of the prod tents at approximately 28 mm. pressure. A luct.Catalyst, temperatures, and space velocity are 21.5% yield of ketene was obtained. more or less interdependent, that is, to avoid un Various methods may be employed for recov due decomposition, an increase of temperature ery of the ketene, e. g., compressing the gaseous requires, for optimum results, a like increase in products and scrubbing the thus compressed 20 20 Space velocity. AS is usual in chemical reac products with acetone or nethyl acetate or if tions the higher the temperature the more favor desired the ketene may be absorbed, without the able the reaction rate, and accordingly in this necessity of the compression step, directly in reaction also when high temperatures are en aceticFrom acid. a consideration of the above specifica-2r 25 ployed, in which reaction rates are high, com tion it will be appreciated that many changes paratively high space velocities should be en may be made in the details therein given with ployed. It has been found that to limit side out departing from the invention or Sacrificing reactions it is advisable to operate at diminished any of the advantages that may be derived there pressures, and pressures around 100 mm. of mer from. O 30 cury or lower have generally produced optimum operating conditions, although at higher pres 1.I claim:A process for the preparation of a ketene Sures decreased yield of ketene is partially con which comprises thermally decomposing, in the pensated for by increased conversion to the acid vapor phase, a lower alkyl ester of a lower ali corresponding to the ester treated. phatic monocarboxylic acid at a temperature 35 I shall now describe by way of examples meth ranging between approximately 500 and approxi ods for carrying into practice my invention but mately 1000 C. it will be understood that the details therein given 2. The process according to claim 1 conducted will not limit in any way the scope of the in under pressures lower than atmospheric. vention. 3. The process according to claim 1 conducted 40 cample I - by contacting the ester of the aliphatic carboxylic Into a copper lined catalyst tube maintained at acid with a silica gel catalyst. a temperature between 506 and 631 C., 1.15 4. The process according to claim i in which mols of methyl acetate was injected at a space the ester of the aliphatic carboxylic acid is con tacted with boric oxide supported on silica gel. 45 velocity of approximately 1400. The catalyst 5. A process for the preparation of ketene tube was filled with a silica gel catalyst support which comprises thermally decomposing, in the ing boric acid. This catalyst was prepared by vapor phase, a methyl ester of a mono-basic adding 100 parts of silica gel to 200 parts of lower aliphatic acid at a temperature between boiling water containing 40 parts of boric acid, approximately 500 and approximately 1000° C.
Recommended publications
  • UNITED STATES PATENT of FICE 1926,642 PROCESS of OBTAINING REACTION PRODUCTS of RETENE Charles O
    Patented Sept. 12, 1933 1926,642 UNITED STATES PATENT of FICE 1926,642 PROCESS OF OBTAINING REACTION PRODUCTS OF RETENE Charles O. Young and George H. Reid, South Charleston, W. Wa, assignors to Carbide & Carbon Chemicals. Corporation, a corporation of New York No Drawing. Application December 2, 1930 Serial No. 502,005 8 Claims. (C. 260-06) The invention is an improved process of mak plied in any desired manner, for example the ap ing reaction products of ketene (CH2=C-O). In paratus for quenching the hot vapors may take general, the process of our invention comprises the form of a packed tower scrubber, spray-scrub thermally decomposing a substance which will ber or any other suitable means for rapidly cool form ketene, and rapidly cooling the hot gaseous ing the hot vapors in intimate contact with the 80 products of this pyrolysis in intimate contact with abSOrbing medium. a reacting absorbing medium. The absorption or quenching means may be The principal object of the invention is to pro operated at ordinary temperatures, and in such Wide a method of making ketene and reaction a case the resultant liquid will contain the reac 0 products thereof which will result in the forma tion product of ketene and the absorbing medium, 65 tion of a maximum amount of valuable product excess absorbing medium and condensed un and which will minimize losses of the ketene changed acetone. The liquid may be circulated formed. until Sufficiently reacted with ketene and then sep In the manufacture of ketene by the pyrolysis arated from the diluent acetone, or it may be oth 15 of organic compounds, e.g., acetone, two primary erwise treated for the separation or recovery of O difficulties in Securing useful quantities of ketene its several constituents.
    [Show full text]
  • Nov 15, Ketene Chemistry and the Application in Synthesis by Xuan Zhou
    Ketene chemistry and the application in synthesis Dong group at UT Austin Xuan Zhou Nov 14, 2013 Ketene chemistry Content • A brief history of ketene • Type of ketenes • Ketene preparation • Ketenes in synthesis Reviews about ketenes: T. T. Tidwell, Ketenes, 2nd ed., wiley interscience, Hoboken, NJ, 2006. T. T. Tidwell, Eur. J. Org. Chem. 2006, 563-576. T. T. Tidwell, Angew. Chem. Int. Ed. 2005, 44, 5778-5785. A brief history of ketene The first reported ketene: Diphenylketene Wedekind Ketene and its Dimer: N.T.M. Wilsmore, J. Chem. Soc. 1907, 91, 1938 Asymmetric reactions of ketene: H. Pracejus, Justus liebigs Ann. Chem. 1969, 722, 1-11 Bisketenes First prepared bisketenes by Wolf in 1906 O. Diels, B. Wolf, Ber. Dtsch. Chem. Ges. 1906, 39, 689-697 First observed bisketenes in 1982 G. Maier, H. P. Reisenauer, T. Sayrac, Chem. Ber. 1982, 115, 2192 Substituent effects of ketene Melvin Newman Shchukovskaya Cycloadditions of ketenes Lee Irvin Smith Derek H.R. Barton Angew. Chem. Int. Ed. 2005, 44, 5779-5785 Type of ketenes Carbon-substituted ketenes • Alkylketenes 2 3 4 • Alkenylketenes 5 6 7 • alkynylketenes and cyanoketenes 8 9 10 Type of ketenes • Arylketenes 1 2 3 • Acylketenes 4 5 6 • Imidoylketenes 7 azetinones 8 Nitrogen-substituted ketenes 1 Nitroketene Azidoketene Isocyanatoketene 2 Oxygen-substituted ketenes 3 4 5 6 Halogen-substituted ketenes 1 2 3 4 Silyl-ketenes 5 6 7 Phosphorous, sulfur, metal-substituted and bis ketenes 1 2 5 6 7 8 9 10 11 12 Ketene preparation Ketenes from ketene dimers •Pyrolysis of ketene dimer 1 2 3 4 •Photolysis
    [Show full text]
  • The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains
    The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains A thesis submitted for the degree of Doctor of Philosophy Helen Jessica Kimber Department of Chemistry University College London 2016 -I, Helen Jessica Kimber, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed, i Abstract The elemental composition of the known universe comprises almost exclusively light atoms (~99.9% hydrogen and helium). However, to date, close to 200 different molecules have been detected in the interstellar medium (ISM) where their distribution is far from uniform. The vast majority of these molecules are contained within vast clouds of gas and dust referred to as interstellar clouds. Within these interstellar clouds, many of the molecules present are formed via gas-phase ion-neutral reactions. However, there are several molecules for which known gas-phase kinetics cannot account for observed gas-phase abundances. As a result, reactions occurring on the surface of interstellar dust grains are invoked to account for the observed abundances of some of these molecules. This thesis presents results of experimental investigations into the interaction and reactions of atoms and molecules on the surface of model interstellar dust grains. Chapters three and four present results for the reaction of (3P)O on molecular ices. Specifically, the reaction of (3P)O and propyne or acrylonitrile. After a one hour dosing period, temperature programmed desorption (TPD), coupled with time-of-flight mass spectrometry (TOFMS), are used to identify (3P)O addition products.
    [Show full text]
  • The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of Â-Lactams Andrew E
    Published on Web 00/00/0000 The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of â-Lactams Andrew E. Taggi, Ahmed M. Hafez, Harald Wack, Brandon Young, Dana Ferraris, and Thomas Lectka* Contribution from the Department of Chemistry, Johns Hopkins UniVersity, 3400 North Charles Street, Baltimore, Maryland 21218 Received February 5, 2002 Abstract: We report practical methodology for the catalytic, asymmetric synthesis of â-lactams resulting from the development of a catalyzed reaction of ketenes (or their derived zwitterionic enolates) and imines. The products of these asymmetric reactions can serve as precursors to a number of enzyme inhibitors and drug candidates as well as valuable synthetic intermediates. We present a detailed study of the mechanism of the â-lactam forming reaction with proton sponge as the stoichiometric base, including kinetics and isotopic labeling studies. Stereochemical models based on molecular mechanics (MM) calculations are also presented to account for the observed stereoregular sense of induction in our reactions and to provide a guidepost for the design of other catalyst systems. Introduction this structural motif a worthwhile goal for the synthetic organic 10 The clinical relevance of â-lactams continues to expand at a chemist, thus the synthesis of these nonantibiotic â-lactams surprising rate. Although their use as antibiotics is being will be the focus of this contribution. While considerable effort compromised to some extent by bacterial resistance pressures,1 has been put into synthetic methodology to construct the basic recently â-lactams (especially nonnatural ones) have achieved â-lactam skeleton, there have been few general methods many important nonantibiotic uses.
    [Show full text]
  • Book of Abstracts
    THE PHYSICS AND CHEMISTRY OF THE INTERSTELLAR MEDIUM Celebrating the first 40 years of Alexander Tielens' contribution to Science Book of Abstracts Palais des Papes - Avignon - France 2-6 September 2019 CONFERENCE PROGRAM Monday 2 September 2019 Time Speaker 10:00 Registration 13:00 Registration & Welcome Coffee 13:30 Welcome Speech C. Ceccarelli Opening Talks 13:40 PhD years H. Habing 13:55 Xander Tielens and his contributions to understanding the D. Hollenbach ISM The Dust Life Cycle 14:20 Review: The dust cycle in galaxies: from stardust to planets R. Waters and back 14:55 The properties of silicates in the interstellar medium S. Zeegers 15:10 3D map of the dust distribution towards the Orion-Eridanus S. Kh. Rezaei superbubble with Gaia DR2 15:25 Invited Talk: Understanding interstellar dust from polariza- F. Boulanger tion observations 15:50 Coffee break 16:20 Review: The life cycle of dust in galaxies M. Meixner 16:55 Dust grain size distribution across the disc of spiral galaxies M. Relano 17:10 Investigating interstellar dust in local group galaxies with G. Clayton new UV extinction curves 17:25 Invited Talk: The PROduction of Dust In GalaxIES C. Kemper (PRODIGIES) 17:50 Unravelling dust nucleation in astrophysical media using a L. Decin self-consistent, non steady-state, non-equilibrium polymer nucleation model for AGB stellar winds 19:00 Dining Cocktail Tuesday 3 September 2019 08:15 Registration PDRs 09:00 Review: The atomic to molecular hydrogen transition: a E. Roueff major step in the understanding of PDRs 09:35 Invited Talk: The Orion Bar: from ALMA images to new J.
    [Show full text]
  • Organic Chemical Characterization of Primary and Secondary Biodiesel Exhaust Particulate Matter John Kasumba University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Organic Chemical Characterization Of Primary And Secondary Biodiesel Exhaust Particulate Matter John Kasumba University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Environmental Engineering Commons, and the Place and Environment Commons Recommended Citation Kasumba, John, "Organic Chemical Characterization Of Primary And Secondary Biodiesel Exhaust Particulate Matter" (2015). Graduate College Dissertations and Theses. 358. https://scholarworks.uvm.edu/graddis/358 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. ORGANIC CHEMICAL CHARACTERIZATION OF PRIMARY AND SECONDARY BIODIESEL EXHAUST PARTICULATE MATTER A Dissertation Presented by John Kasumba to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Civil and Environmental Engineering May, 2015 Defense Date: October 29, 2014 Dissertation Examination Committee: Britt A. Holmén, Ph.D, Advisor Giuseppe A. Petrucci, Ph.D, Chairperson Donna M. Rizzo, Ph.D Robert G. Jenkins, Ph.D Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Biodiesel use and production has significantly increased in the United States and in other parts of the world in the past decade. This change is driven by energy security and global climate legislation mandating reductions in the use of petroleum-based diesel.
    [Show full text]
  • Ketenes 25/01/2014 Part 1
    Baran Group Meeting Hai Dao Ketenes 25/01/2014 Part 1. Introduction Ph Ph n H Pr3N C A brief history Cl C Ph + nPr NHCl Ph O 3 1828: Synthesis of urea = the starting point of modern organic chemistry. O 1901: Wedekind's proposal for the formation of ketene equivalent (confirmed by Staudinger 1911) Wedekind's proposal (1901) 1902: Wolff rearrangement, Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. 2 Wolff adopt a ketene structure in 1912. R 2 hν R R2 1905: First synthesis and characterization of a ketene: in an efford to synthesize radical 2, 1 ROH R C Staudinger has synthesized diphenylketene 3, Staudinger, H. et al., Chem. Ber. 1905, 1735. N2 1 RO CH or Δ C R C R1 1907-8: synthesis and dicussion about structure of the parent ketene, Wilsmore, O O J. Am. Chem. Soc. 1907, 1938; Wilsmore and Stewart Chem. Ber. 1908, 1025; Staudinger and Wolff rearrangement (1902) O Klever Chem. Ber. 1908, 1516. Ph Ph Cl Zn Ph O hot Pt wire Zn Br Cl Cl CH CH2 Ph C C vs. C Br C Ph Ph HO O O O O O O O 1 3 (isolated) 2 Wilsmore's synthesis and proposal (1907-8) Staudinger's synthesis and proposal (1908) wanted to make Staudinger's discovery (1905) Latest books: ketene (Tidwell, 1995), ketene II (Tidwell, 2006), Science of Synthesis, Vol. 23 (2006); Latest review: new direactions in ketene chemistry: the land of opportunity (Tidwell et al., Eur. J. Org. Chem. 2012, 1081). Search for ketenes, Google gave 406,000 (vs.
    [Show full text]
  • Ketene Reactions. I. the Addition of Acid Chlorides
    KETENE REACTIONS. I. THE ADDITION OF ACID CHLORIDES TO DIMETHYLKETENE. II. THE CYCLOADDITION OF KETENES TO CARBONYL COMPOUNDS APPROVED: Graduate Committee: Major Professor Committee Member.rr^- Committee Member Committee Member Director of the Department of Chemistry Dean' of the Graduate School Smith, Larry, Ketene Reactions. I. The Addition of Acid Chlorides to DimethyIketene. II. The Cycloaddition of Ketenes to Carbonvl Compounds. Doctor of Philosophy (Chemistry), December, 1970, 63 pp., 3 tables, bibliography, 62 titles. Part I describes the addition of several acid chlorides to dimethylketene. The resulting 3-ketoacid chlorides were isolated and characterized. The reactivities of acid chlorides were found to parallel the parent acid pKa's. A reactivity order of ketenes toward acid chlorides was established. Dimethylketene is more reactive than ketene which is more reactive than diphenylketene. Attempts to effect the addition of an acid halide to a ketene produced by in situ dehydro- halogenation yielded a-halovinyl esters. The addition of acid chlorides to ketenes was concluded to be an ionic process dependent upon the nucleophilic character of the ketene oc- carbon and the polarity of the carbon-chlorine bond in the acid chloride. Part II describes the cycloaddition of several aldo- ketenes to chloral. The ketenes were generated in situ by dehydrohalogenation and dehalogenation of appropriately substituted acyl halides. Both cis- and trans-4-trichloro- Miyl-2-oxetanones are produced in the cycloadditions with the sterically hindered cis isomer predominating. Isomer distributions were determined by vpc or nmr analysis of the reaction solutions. Production of the ketenes by dehalo- genation resulted in enhanced reactivity of the carbonyl compounds.
    [Show full text]
  • Potential for Release of Pulmonary Toxic Ketene from Vaping Pyrolysis of Vitamin E Acetate
    Potential for release of pulmonary toxic ketene from vaping pyrolysis of vitamin E acetate Dan Wua,1 and Donal F. O’Sheaa,1 aDepartment of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland Edited by Scott H. Randell, The University of North Carolina at Chapel Hill, and accepted by Editorial Board Member Brigid L. Hogan February 11, 2020 (received for review December 3, 2019) A combined analytical, theoretical, and experimental study has shown and the mode of user usage (9, 10). In reality, a vaping device should that the vaping of vitamin E acetate has the potential to produce be considered as a crude uncontrollable minipyrolysis apparatus ca- exceptionally toxic ketene gas, whichmaybeacontributingfactorto pable of causing changes to the chemical composition of a vaping the upsurge in pulmonary injuries associated with using e-cigarette/ mixture in an unpredictable manner. Specifically, the aryl acetate vaping products. Additionally, the pyrolysis of vitamin E acetate also functional group present within 1 attracted our attention as a func- produces carcinogen alkenes and benzene for which the negative long- tional group sensitive to pyrolysis. The same functional group is term medical effects are well recognized. As temperatures reached in present in phenyl acetate 3, the simplest aryl acetate, which is known vaping devices can be equivalent to a laboratory pyrolysis apparatus, to liberate the highly toxic gas ketene 4 under pyrolysis (Fig. 1). In this the potential for unexpected chemistries to take place on individual article, we describe our initial efforts to illustrate and highlight the components within a vape mixture is high.
    [Show full text]
  • Flakeboards Made from Aspen and Southern Pine Wood Flakes Reacted with Gaseous Ketene
    JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, 6(3), 449-471 (1986) FLAKEBOARDS MADE FROM ASPEN AND SOUTHERN PINE WOOD FLAKES REACTED WITH GASEOUS KETENE Roger M. Rowelll Forest Products Laboratory, Forest Service U.S. Department of Agriculture Madison, WI 53705-2398 and Richard H.S. Wang and John A. Hyatt Research Laboratories, Eastman Chemicals Division Eastman Kodak Company Kingsport, TN 37662 Keywords: Ketene, chemical modification, flakeboards, dimensional stability, acetylation ABSTRACT Southern pine and aspen wood flakes were chemically modified by reaction at ca. 55°C with ketene in the absence of solvent. Reactiona were relatively slow, with weight gains of up to 17% and 20%, respectively, obtained. Acetyl content correlated with weight gain only up to the 12% level. Water and solvent extraction of ketene-modified southern pine and aspen flakes showed very little loss in acetyl. Flakeboards made from southern pine and aspen flakes treated with ketene showed a greatly reduced rate and extent of swelling resulting from liquid water sorption as compared to control boards. Similar results were obtained in swelling tests done in water vapor. Ketene modification had a much greater effect on improving dimensional stability properties of aspen flakeboards than on southern pine flakeboards. 449 450 ROWELL, WANG, AND HYATT INTRODUCTION Acetylation of wood flakes prior to flakeboard production has been shown to greatly improve dimensional stability of the 2 resulting boards. Various techniques of acetylation have been 2 3 reviewed in earlier publications. ’ Flakeboard made from flakes acetylated with refluxing liquid acetic anhydride diluted with xylene and made into flakeboards showed a greatly reduced rate and extent of moisture tiptake and reduced thickness swelling in both 2 4 5 liquid water and water vapor tests.
    [Show full text]
  • Study on the Mechanism of Ethanol Synthesis from Syngas by In-Situ Chemical Trapping and Isotopic Exchange Reactions 1
    Catalysis Letters 12 (1992) 87-96 87 Study on the mechanism of ethanol synthesis from syngas by in-situ chemical trapping and isotopic exchange reactions 1 Haiyou Wang, Jinpo Liu, Jinkung Fu, Huilin Wan, Khirui Tsai * Department of Chemistry, Xiamen University, Xiamen 361005, China The mechanism of ethanol synthesis from syngas over promoted rhodium catalysts has been studied by chemical trapping and isotopic exchange experiments. Mono-deuterated acetaldehyde (CH3CDO) was formed in chemical trapping reaction with CO+D 2 as the syngas source and CH3I as the trapping agent, indicating that formyl adspecies was a Cl-intermediate in the ethanol synthesis. In the experiment of in-situ chemical trapping and isotopic exchange reactions with D2aSo followed by purging with methanol in N 2 stream, CH2DC18(16)OOCH3, CH3ClS(16)OOCH3 and CH3CH21SOH, CH3CHlSO were formed, showing the existence of ketene and acetyl intermediate adspecies and the occurrence of oxygen-isotope exchange between these intermediates and D2180, respectively. Based on the mode of oxygen-isotope exchange between ketene (as well as acetyl) intermediate adspecies and the water formed in reaction, the isotopic repartitioning previously observed by Takeuchi and Katzer [1] can be explained without recourse to the hypothesis of the existence of highly strained oxirene intermediate. These results give further support to the ethanol-formation mechanism proposed by us [2]. Besides these, with substitution of D 2 for H 2 in the syngas conversion reaction, noticeable deuterium inverse isotope effects both on methanol and on ethanol formation were observed. Keywords: Mechanism of ethanol synthesis; rhodium-based catalysts; chemical trapping reaction; isotopic exchange reaction 1.
    [Show full text]
  • Evidence of Ketene Emissions from Petrochemical Industries and Implications for Ozone Production Potential Chinmoy Sarkar Et Al
    Evidence of ketene emissions from petrochemical industries and implications for ozone production potential Chinmoy Sarkar et al. (acp-2020-1103) We would like to thank Prof. Wisthaler and both the referees for the interactive comments/suggestions on the manuscript. The comments from the referees are in black and our responses are in blue. The texts that have been added to the manuscript are in bold blue. We have also included Sanjeevi Nagalingam and Nicole Jenna Gross as co-authors in the revised manuscript who helped us to carry out laboratory experiments. Interactive comment from Prof. Armin Wisthaler: I am posting a quick comment for saving some time to the reviewers. + I think the assignment of the m/z 43.018 (CH3CO ) signal to ketene is incorrect. We flew our PTR- TOF-MS instrument on the NASA DC-8 during KORUS-AQ, and we also observed a high m/z 43.018 signal over the Daesan petrochemical complex. The signal was highly correlated with the + m/z 87.044 (C4H7O2 ) signal and a laboratory study confirmed that the signal ratio was the same as for vinyl acetate. Vinyl acetate produces a strong acetylium ion fragment upon protonation in the PTR-MS analyzers, especially under the PTR-MS operating conditions (high E/N) the authors were using. Vinyl acetate is expected to be emitted from the ethylene vinyl acetate (EVA) plants at Daesan. Thank you for pointing out the possible contribution of vinyl acetate (m/z 87.044) to the m/z 43.018 signal using PTR-TOF-MS. We have not observed any high peaks similar to the m/z 43.018 (attributed to ketene) in the timeseries of m87.044 signal.
    [Show full text]