Copyright and Use of This Thesis This Thesis Must Be Used in Accordance with the Provisions of the Copyright Act 1968
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3. -
Molecular Identification of Aspergillus Species Collected for The
JOURNAL OF CLINICAL MICROBIOLOGY, Oct. 2009, p. 3138–3141 Vol. 47, No. 10 0095-1137/09/$08.00ϩ0 doi:10.1128/JCM.01070-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Molecular Identification of Aspergillus Species Collected for the Transplant-Associated Infection Surveillance Networkᰔ S. Arunmozhi Balajee,1* Rui Kano,1 John W. Baddley,2,11 Stephen A. Moser,3 Kieren A. Marr,4,5 Barbara D. Alexander,6 David Andes,7 Dimitrios P. Kontoyiannis,8 Giancarlo Perrone,9 Stephen Peterson,10 Mary E. Brandt,1 Peter G. Pappas,2 and Tom Chiller1 Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia1; Department of Medicine2 and Department of Pathology,3 University of Alabama at Birmingham, and Department of Medicine, Birmingham Veterans Affairs Medical Center,11 Birmingham, Alabama; Fred Hutchinson Cancer Research Center, Seattle, Washington4; Johns Hopkins University, Baltimore, Maryland5; Duke University, Durham, North Carolina6; University of Wisconsin, Madison, Wisconsin7; M. D. Anderson Cancer Center, Houston, Texas8; Institute of Sciences of Food Production, Downloaded from National Research Council, Bari, Italy9; and National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois10 Received 2 June 2009/Returned for modification 29 July 2009/Accepted 3 August 2009 jcm.asm.org from transplant patients with proven (218 ؍ A large aggregate collection of clinical isolates of aspergilli (n or probable invasive aspergillosis was available from the Transplant-Associated Infection Surveillance Net- work, a 6-year prospective surveillance study. To determine the Aspergillus species distribution in this collec- tion, isolates were subjected to comparative sequence analyses by use of the internal transcribed spacer and -tubulin regions. -
Polyphasic Taxonomy of Aspergillus Section Fumigati and Its Teleomorph Neosartorya
available online at www.studiesinmycology.org STUDIE S IN MYCOLOGY 59: 147–203. 2007. doi:10.3114/sim.2007.59.14 Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya R.A. Samson1*, S. Hong2, S.W. Peterson3, J.C. Frisvad4 and J. Varga1,5 1CBS Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Korean Agricultural Culture Collection, NIAB, Suwon, 441-707, Korea; 3Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A.; 4BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 5University of Szeged, Faculty of Science and Informatics, Department of Microbiology, P.O. Box 533, H-6701 Szeged, Hungary *Correspondence: Robert A. Samson, [email protected] Abstract: The taxonomy of Aspergillus section Fumigati with its teleomorph genus Neosartorya is revised. The species concept is based on phenotypic (morphology and extrolite profiles) and molecular (β-tubulin and calmodulin gene sequences) characters in a polyphasic approach. Four new taxa are proposed: N. australensis N. ferenczii, N. papuaensis and N. warcupii. All newly described and accepted species are illustrated. The section consists of 33 taxa: 10 strictly anamorphic Aspergillus species and 23 Neosartorya species. Four other Neosartorya species described previously were not available for this monograph, and consequently are relegated to the category of doubtful species. Taxonomic novelties: Neosartorya australensis, N. ferenczii, N. papuaensis, N. warcupii. Key words: Aspergillus section Fumigati, extrolite profiles, Neosartorya, phylogenetics, polyphasic taxonomy. INTRODUCTION can be used for the complete enzymatic recovery of ferulic acid from corn residues (Shin et al. -
Livro-Inpp.Pdf
GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610). -
The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible. -
AR TICLE a Plant Pathology Perspective of Fungal Genome Sequencing
IMA FUNGUS · 8(1): 1–15 (2017) doi:10.5598/imafungus.2017.08.01.01 A plant pathology perspective of fungal genome sequencing ARTICLE Janneke Aylward1, Emma T. Steenkamp2, Léanne L. Dreyer1, Francois Roets3, Brenda D. Wingfield4, and Michael J. Wingfield2 1Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; corresponding author e-mail: [email protected] 2Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 4Department of Genetics, University of Pretoria, Pretoria 0002, South Africa Abstract: The majority of plant pathogens are fungi and many of these adversely affect food security. This mini- Key words: review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically genome size available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathogen evolution pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential pathogen lifestyle reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October plant pathology 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category FORTHCOMING MEETINGS FORTHCOMING (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size. -
Fungal Pathogenesis in Humans the Growing Threat
Fungal Pathogenesis in Humans The Growing Threat Edited by Fernando Leal Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes Fungal Pathogenesis in Humans Fungal Pathogenesis in Humans The Growing Threat Special Issue Editor Fernando Leal MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Fernando Leal Instituto de Biolog´ıa Funcional y Genomica/Universidad´ de Salamanca Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Genes (ISSN 2073-4425) from 2018 to 2019 (available at: https://www.mdpi.com/journal/genes/special issues/Fungal Pathogenesis Humans Growing Threat). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-900-5 (Pbk) ISBN 978-3-03897-901-2 (PDF) Cover image courtesy of Fernando Leal. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Fernando Leal Special Issue: Fungal Pathogenesis in Humans: The Growing Threat Reprinted from: Genes 2019, 10, 136, doi:10.3390/genes10020136 .................. -
Discovery of a Sexual Cycle in Aspergillus Lentulus, a Close Relative of A
Discovery of a Sexual Cycle in Aspergillus lentulus, a Close Relative of A. fumigatus Sameira S. Swilaiman,a Céline M. O’Gorman,a S. Arunmozhi Balajee,b Paul S. Dyera School of Biology, University of Nottingham, University Park, Nottingham, United Kingdoma; Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USAb Aspergillus lentulus was described in 2005 as a new species within the A. fumigatus sensu lato complex. It is an opportunistic human pathogen causing invasive aspergillosis with high mortality rates, and it has been isolated from clinical and environmen- tal sources. The species is morphologically nearly identical to A. fumigatus sensu stricto, and this similarity has resulted in their frequent misidentification. Comparative studies show that A. lentulus has some distinguishing growth features and decreased in vitro susceptibility to several antifungal agents, including amphotericin B and caspofungin. Similar to the once-presumed-asex- ual A. fumigatus, it has only been known to reproduce mitotically. However, we now show that A. lentulus has a heterothallic sexual breeding system. A PCR-based mating-type diagnostic detected isolates of either the MAT1-1 or MAT1-2 genotype, and examination of 26 worldwide clinical and environmental isolates revealed similar ratios of the two mating types (38% versus 62%, respectively). MAT1-1 and MAT1-2 idiomorph regions were analyzed, revealing the presence of characteristic alpha and high-mobility-group (HMG) domain genes, together with other more unusual features such as a MAT1-2-4 gene. We then dem- onstrated that A. lentulus possesses a functional sexual cycle with mature cleistothecia, containing heat-resistant ascospores, being produced after 3 weeks of incubation. -
Identification of Culture-Negative Fungi in Blood and Respiratory Samples
IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers. -
New Species and Changes in Fungal Taxonomy and Nomenclature
Journal of Fungi Review From the Clinical Mycology Laboratory: New Species and Changes in Fungal Taxonomy and Nomenclature Nathan P. Wiederhold * and Connie F. C. Gibas Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; [email protected] * Correspondence: [email protected] Received: 29 October 2018; Accepted: 13 December 2018; Published: 16 December 2018 Abstract: Fungal taxonomy is the branch of mycology by which we classify and group fungi based on similarities or differences. Historically, this was done by morphologic characteristics and other phenotypic traits. However, with the advent of the molecular age in mycology, phylogenetic analysis based on DNA sequences has replaced these classic means for grouping related species. This, along with the abandonment of the dual nomenclature system, has led to a marked increase in the number of new species and reclassification of known species. Although these evaluations and changes are necessary to move the field forward, there is concern among medical mycologists that the rapidity by which fungal nomenclature is changing could cause confusion in the clinical literature. Thus, there is a proposal to allow medical mycologists to adopt changes in taxonomy and nomenclature at a slower pace. In this review, changes in the taxonomy and nomenclature of medically relevant fungi will be discussed along with the impact this may have on clinicians and patient care. Specific examples of changes and current controversies will also be given. Keywords: taxonomy; fungal nomenclature; phylogenetics; species complex 1. Introduction Kingdom Fungi is a large and diverse group of organisms for which our knowledge is rapidly expanding. -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104). -
Pdf Many of the Provisions Included in IHR (2005) Came 5
Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 1159–1340 EDITOR-IN-CHIEF D. Peter Drotman Managing Senior Editor EDITORIAL BOARD Polyxeni Potter, Atlanta, Georgia, USA Dennis Alexander, Addlestone Surrey, United Kingdom Senior Associate Editor Barry J. Beaty, Ft. Collins, Colorado, USA Brian W.J. Mahy, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA Christopher Braden, Atlanta, GA, USA Associate Editors Carolyn Bridges, Atlanta, GA, USA Paul Arguin, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Charles Ben Beard, Ft. Collins, Colorado, USA Kenneth C. Castro, Atlanta, Georgia, USA David Bell, Atlanta, Georgia, USA Thomas Cleary, Houston, Texas, USA Charles H. Calisher, Ft. Collins, Colorado, USA Anne DeGroot, Providence, Rhode Island, USA Michel Drancourt, Marseille, France Vincent Deubel, Shanghai, China Paul V. Effler, Perth, Australia Ed Eitzen, Washington, DC, USA K. Mills McNeill, Kampala, Uganda David Freedman, Birmingham, AL, USA Nina Marano, Atlanta, Georgia, USA Kathleen Gensheimer, Cambridge, MA, USA Martin I. Meltzer, Atlanta, Georgia, USA Peter Gerner-Smidt, Atlanta, GA, USA David Morens, Bethesda, Maryland, USA Duane J. Gubler, Singapore J. Glenn Morris, Gainesville, Florida, USA Richard L. Guerrant, Charlottesville, Virginia, USA Patrice Nordmann, Paris, France Scott Halstead, Arlington, Virginia, USA Tanja Popovic, Atlanta, Georgia, USA David L. Heymann, Geneva, Switzerland Jocelyn A. Rankin, Atlanta, Georgia, USA Daniel B. Jernigan, Atlanta, Georgia, USA Didier Raoult, Marseille, France Charles King, Cleveland, Ohio, USA Pierre Rollin, Atlanta, Georgia, USA Keith Klugman, Atlanta, Georgia, USA Dixie E. Snider, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan Frank Sorvillo, Los Angeles, California, USA S.K. Lam, Kuala Lumpur, Malaysia David Walker, Galveston, Texas, USA Bruce R.