Quantum Field Theory Notes

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory Notes QFT Lectures Notes Jared Kaplan Department of Physics and Astronomy, Johns Hopkins University Abstract Various QFT lecture notes to be supplemented by other course materials. Contents 1 Introduction 2 1.1 What are we studying? . .2 1.2 Useful References and Texts . .3 2 Fall Semester 4 2.1 Philosophy . .4 2.2 Review of Lagrangians and Harmonic Oscillators . .8 2.3 Balls and Springs . 11 2.4 Special Relativity and Anti-particles . 17 2.5 Canonical Quantization and Noether's Theorem . 24 2.6 Free Scalar Quantum Field Theory with Special Relativity . 27 2.7 Dimensional Analysis, or Which Interactions Are Important? . 33 2.8 Interactions in Classical Field Theory with a View Towards QFT . 36 2.9 Overview of Scattering and Perturbation Theory . 39 2.10 Relating the S-Matrix to Cross Sections and Decay Rates . 41 2.11 Old Fashioned Perturbation Theory . 46 2.12 LSZ Reduction Formula { S-Matrix from Correlation Functions . 51 2.13 Feynman Rules as a Generalization of Classical Physics . 56 2.14 The Hamiltonian Formalism for Perturbation Theory . 59 2.15 Feynman Rules from the Hamiltonian Formalism . 64 2.16 Particles with Spin 1 . 72 2.17 Covariant Derivatives and Scalar QED . 78 2.18 Scattering and Ward Identities in Scalar QED . 83 2.19 Spinors and QED . 87 2.20 Quantization and Feynman Rules for QED . 95 2.21 Overview of `Renormalization' . 100 2.22 Casimir Effect . 102 2.23 The Exact 2-pt Correlator { Kallen-Lehmann Representation . 106 2.24 Basic Loop Effects { the 2-pt Correlator . 109 2.25 General Loop Effects, Renormalization, and Interpretation . 116 2.26 Large Logarithms and Renormalization Flows . 121 2.27 QM Example of Wilsonian Renormalization . 128 2.28 Wilsonian Renormalization Flows . 130 2.29 Path Integrals . 134 2.30 Generating Function(al)s and Feynman Rules . 140 2.31 Path Integrals and Statistical Physics . 146 2.32 Soft Limits and Weinberg's Theorem . 148 1 3 Spring Semester 151 3.1 Effective Actions, Renormalization, and Symmetry . 151 3.2 Schwinger-Dyson from the PI and Ward Identities . 153 3.3 Discrete Symmetries and Spinors . 157 3.4 More on Spin and Statistics . 164 3.5 QED Vacuum Polarization and Anomalous Magnetic Moment . 169 3.6 Renormalization and QED . 176 3.7 IR Divergences and Long Wavelength Physics . 182 3.8 Implications of Unitarity . 191 3.9 Interlude on Lie Groups and Lie Algebras . 197 3.10 Overview of Lie Algebra Classification and Representations . 201 3.11 Spontaneously Broken Global Symmetries and Goldstone Bosons . 207 3.12 Non-Abelian Gauge Theories . 216 3.13 Quantization of Yang-Mills Theories . 222 3.14 Renormalization in YM and Asymptotic Freedom . 225 3.15 Higgs Mechanism . 227 3.16 Lattice Gauge Theory, QCD, and Confinement . 234 3.17 Parton Model and Deep Inelastic Scattering . 238 3.18 DIS, CFTs, and the OPE . 245 3.19 Anomalies { A Summary . 249 3.20 Anomalies as Almost Local Effects . 251 3.21 A Lecture on Cosmological Perturbation Theory . 254 1 Introduction 1.1 What are we studying? Almost everything. • The Standard Model of particle physics, which accounts for all observed phenomena on length scales larger than ∼ 10−18 meters, is a quantum field theory. In traditional QFT courses one mostly learns how to compute the probabilities for various scattering processes in the standard model. • General Relativity can also be viewed as a quantum field theory, or an ‘effective quantum field theory' describing the long-distance behavior of a massless spin 2 particle, the graviton, as it interacts with the particles from the rest of the standard model. (The division between GR and the SM is linguistic/historical, and not very sensible coneptually.) • The perturbations in the energy density in the early universe, which seeded structure formation, seem to have arisen from quantum fluctuations of a quantum field that we refer to as `the inflaton’. 2 • The behavior of systems near phase transitions, especially the universality of such systems. For example, systems of spins behave in the same way as water near its critical point { both are well-described by a simple quantum field theory, which we will study. • The universal long-distance theory of metals, as Fermi liquids of weakly interacting electrons. This accounts for the universal properties of metals as shiny materials that are good at conducting electricity and heat, and that superconduct at low temperatures. • Fluids and superfluids. Strangely enough, the latter are easier to understand than the former. • Sound waves in materials, such as metals and crystals, as we will discuss. • The quantum hall effect can be described using a very simple `topological' quantum field theory, which is like electrodynamics, but much simpler. What aren't we studying? Basically, all that's left are some systems from condensed matter physics that have a finite size, or a detailed lattice structure that's crucially important for the physics. Or systems full of dirt (e.g. systems exhibiting localization). Systems with very little symmetry usually aren't well described by QFT. 1.2 Useful References and Texts Here's a list of useful references with a brief summary of what they are good for. • Official Course Textbook: Quantum Field Theory and the Standard Model, by Matt Schwartz • Weinberg's Quantum Theory of Fields { A profound, instant classic, which you should eventually absorb as completely as possible. It's not used as a primary textbook for a first course in QFT because of its sophistication and its various ideosyncrasies. • Zee's QFT in a Nutshell { This book provides a wealth of the conceptual information about QFT and its applications; it can't be used as a text because it's not very systematic, and it doesn't teach you how to calculate anything. • Howard Georgi's Lie Algebras and Particle Physics { One major stumbling block for students learning QFT is that an understanding of Lie Groups and their Representation Theory is absolutely essential, and yet this sujbect is almost never taught. This book is the most useful way to learn Lie Theory... I've read mathematics books on the subject, but they are far less useful because they rarely compute anything. • Banks Modern Quantum Field Theory { This is an interesting alternative text, which basically forces readers to teach themselves QFT by working through a number of exercises. If you're (re-)learning QFT on your own, or want a different, more self-directed perspective, this would probably be great... doing all the exercises would insure that you really understand the subject. 3 • Srednicki's Quantum Field Theory { This seems to be a well-liked standard text based on the path integral. If you want to see everything developed from that perspective, this is probably the reference for you. • Peskin & Schroeder's Introduction to QFT { This has been a standard text for teaching for a long time, because it immediately involves students in relevant particle physics calculations... it's a great reference for computing Feynman diagrams and for some Standard Model subjects. • Weinberg's Quantum Mechanics { this is a good reference for background on Lagrangian and Hamiltonian mechanics, as applied to Quantum Mechanics and Canonical Quantization (see chapter 9). It also has a lot of background on scattering. Here are a few more advanced texts that are a natural place to go after this course, or for independent reading this year: • Sidney Coleman's Aspects of Symmetry { This is a classic text with many important and fascinating advanced topics in QFT. • Polyakov's Gauge Fields and Strings { This is basically Polyakov's notebook... deep and fascinating, touching on condensed matter and particle physics. • Wess and Bagger Supersymmetry { Classic, bare-bones text on supersymmetry. • Slava Rychkov's CFT Lectures notes and my lectures notes on AdS/CFT from fall 2013. • Donoghue, Golowich, & Holstein's Dynamics of the Standard Model { Nice book about all sorts of standard model phenomenology and processes, especially the description of low-energy QCD phenomena. • Whatever you find interesting and engaging from Inspire searches, hearsay, etc. 2 Fall Semester 2.1 Philosophy Why is Quantum Field Theory the way it is? Does it follow inevitably from a small set of more fundamental principles? These questions have been answered by two very different, profoundly compatible philosophies, which I will refer to as Wilsonian and Weinbergian. Together with the Historical approach to QFT, we have three philosophies that motivate the introduction and quantization of spacetime fields. Now a bit about each philosophy. The Historical philosophy arose from the discovery of quantum mechanics, and the subsequent realization that theories should be `quantized'. This means that for any given classical theory of physics, we should look for a quantum mechanical theory that reduces to the classical theory in a classical limit. Since Maxwell's theory of the electromagnetic field was known long before the 4 discovery of QM, physicists in the early twentieth century had the immediate task of `quantizing' it. There is a general procedure for quantizing a classical theory, called `Canonical Quantization' (Canonical just means standard; you can read about these ideas in chapters 2 and 6 of Shankar's Quantum Mechanics textbook). So one can motivate QFT by attempting to quantize classical field theories, such as the theory of the electromagnetic field. We will start with a simpler theory in this course, but the motivation remains. The Wilsonian philosophy is based on the idea of zooming out. Two different physical systems that look quite different at short distances may behave the same way at long distances, because most of the short distance details become irrelevant. In particular, we can think of our theories as an expansion in `short=L, where `short is some microscopic distance scale and L is the length scale relevant to our experiment.
Recommended publications
  • A New Renormalization Scheme of Fermion Field in Standard Model
    A New Renormalization Scheme of Fermion Field in Standard Model Yong Zhoua a Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China (Jan 10, 2003) In order to obtain proper wave-function renormalization constants for unstable fermion and consist with Breit-Wigner formula in the resonant region, We have assumed an extension of the LSZ reduction formula for unstable fermion and adopted on-shell mass renormalization scheme in the framework of without field renormaization. The comparison of gauge dependence of physical amplitude between on-shell mass renormalization and complex-pole mass renormalization has been discussed. After obtaining the fermion wave-function renormalization constants, we extend them to two matrices in order to include the contributions of off-diagonal two-point diagrams at fermion external legs for the convenience of calculations of S-matrix elements. 11.10.Gh, 11.55.Ds, 12.15.Lk I. INTRODUCTION We are interested in the LSZ reduction formula [1] in the case of unstable particle, for the purpose of obtaining a proper wave function renormalization constant(wrc.) for unstable fermion. In this process we have demanded the form of the unstable particle’s propagator in the resonant region resembles the relativistic Breit-Wigner formula. Therefore the on-shell mass renormalization scheme is a suitable choice compared with the complex-pole mass renormalization scheme [2], as we will discuss in section 2. We also discard the field renormalization constants which have been proven at question in the case of having fermions mixing [3]. The layout of this article is as follows.
    [Show full text]
  • Arxiv:Cond-Mat/0203258V1 [Cond-Mat.Str-El] 12 Mar 2002 AS 71.10.-W,71.27.+A PACS: Pnpolmi Oi Tt Hsc.Iscoeconnection Close Its High- of Physics
    Large-N expansion based on the Hubbard-operator path integral representation and its application to the t J model − Adriana Foussats and Andr´es Greco Facultad de Ciencias Exactas Ingenier´ıa y Agrimensura and Instituto de F´ısica Rosario (UNR-CONICET). Av.Pellegrini 250-2000 Rosario-Argentina. (October 29, 2018) In the present work we have developed a large-N expansion for the t − J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagram- matic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J = 0, the renormalized O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature. PACS: 71.10.-w,71.27.+a I. INTRODUCTION this constrained theory leads to the commutation rules of the Hubbard-operators. Next, by using path-integral The role of electronic correlations is an important and techniques, the correlation functional and effective La- open problem in solid state physics. Its close connection grangian were constructed. 1 with the phenomena of high-Tc superconductivity makes In Ref.[ 11], we found a particular family of constrained this problem relevant in present days. Lagrangians and showed that the corresponding path- One of the most popular models in the context of high- integral can be mapped to that of the slave-boson rep- 13,5 Tc superconductivity is the t J model.
    [Show full text]
  • The Lamb Shift Experiment in Muonic Hydrogen
    The Lamb Shift Experiment in Muonic Hydrogen Dissertation submitted to the Physics Faculty of the Ludwig{Maximilians{University Munich by Aldo Sady Antognini from Bellinzona, Switzerland Munich, November 2005 1st Referee : Prof. Dr. Theodor W. H¨ansch 2nd Referee : Prof. Dr. Dietrich Habs Date of the Oral Examination : December 21, 2005 Even if I don't think, I am. Itsuo Tsuda Je suis ou` je ne pense pas, je pense ou` je ne suis pas. Jacques Lacan A mia mamma e mio papa` con tanto amore Abstract The subject of this thesis is the muonic hydrogen (µ−p) Lamb shift experiment being performed at the Paul Scherrer Institute, Switzerland. Its goal is to measure the 2S 2P − energy difference in µp atoms by laser spectroscopy and to deduce the proton root{mean{ −3 square (rms) charge radius rp with 10 precision, an order of magnitude better than presently known. This would make it possible to test bound{state quantum electrody- namics (QED) in hydrogen at the relative accuracy level of 10−7, and will lead to an improvement in the determination of the Rydberg constant by more than a factor of seven. Moreover it will represent a benchmark for QCD theories. The experiment is based on the measurement of the energy difference between the F=1 F=2 2S1=2 and 2P3=2 levels in µp atoms to a precision of 30 ppm, using a pulsed laser tunable at wavelengths around 6 µm. Negative muons from a unique low{energy muon beam are −1 stopped at a rate of 70 s in 0.6 hPa of H2 gas.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • 3. Models of EWSB
    The Higgs Boson and Electroweak Symmetry Breaking 3. Models of EWSB M. E. Peskin Chiemsee School September 2014 In this last lecture, I will take up a different topic in the physics of the Higgs field. In the first lecture, I emphasized that most of the parameters of the Standard Model are associated with the couplings of the Higgs field. These parameters determine the Higgs potential, the spectrum of quark and lepton masses, and the structure of flavor and CP violation in the weak interactions. These parameters are not computable within the SM. They are inputs. If we want to compute these parameters, we need to build a deeper and more predictive theory. In particular, a basic question about the SM is: Why is the SU(2)xU(1) gauge symmetry spontaneously broken ? The SM cannot answer this question. I will discuss: In what kind of models can we answer this question ? For orientation, I will present the explanation for spontaneous symmetry breaking in the SM. We have a single Higgs doublet field ' . It has some potential V ( ' ) . The potential is unknown, except that it is invariant under SU(2)xU(1). However, if the theory is renormalizable, the potential must be of the form V (')=µ2 ' 2 + λ ' 4 | | | | Now everything depends on the sign of µ 2 . If µ2 > 0 the minimum of the potential is at ' =0 and there is no symmetry breaking. If µ 2 < 0 , the potential has the form: and there is a minimum away from 0. That’s it. Don’t ask any more questions.
    [Show full text]
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Effective Field Theories, Reductionism and Scientific Explanation Stephan
    To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics.
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • Casimir Effect Mechanism of Pairing Between Fermions in the Vicinity of A
    Casimir effect mechanism of pairing between fermions in the vicinity of a magnetic quantum critical point Yaroslav A. Kharkov1 and Oleg P. Sushkov1 1School of Physics, University of New South Wales, Sydney 2052, Australia We consider two immobile spin 1/2 fermions in a two-dimensional magnetic system that is close to the O(3) magnetic quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long range attraction between the fermions, with potential V (r) 1/rν , ν 0.75, where r is separation between the fermions. The mechanism of the enhanced∝ − attraction≈ is similar to Casimir effect and corresponds to multi-magnon exchange processes between the fermions. While we consider a model system, the problem is originally motivated by recent establishment of magnetic QCP in hole doped cuprates under the superconducting dome at doping of about 10%. We suggest the mechanism of magnetic critical enhancement of pairing in cuprates. PACS numbers: 74.40.Kb, 75.50.Ee, 74.20.Mn I. INTRODUCTION in the frame of normal Fermi liquid picture (large Fermi surface). Within this approach electrons interact via ex- change of an antiferromagnetic (AF) fluctuation (param- In the present paper we study interaction between 11 fermions mediated by magnetic fluctuations in a vicin- agnon). The lightly doped AF Mott insulator approach, ity of magnetic quantum critical point. To address this instead, necessarily implies small Fermi surface. In this case holes interact/pair via exchange of the Goldstone generic problem we consider a specific model of two holes 12 injected into the bilayer antiferromagnet.
    [Show full text]
  • Arxiv:0809.1003V5 [Hep-Ph] 5 Oct 2010 Htnadgaio Aslimits Mass Graviton and Photon I.Scr N Pcltv Htnms Limits Mass Photon Speculative and Secure III
    October 7, 2010 Photon and Graviton Mass Limits Alfred Scharff Goldhaber∗,† and Michael Martin Nieto† ∗C. N. Yang Institute for Theoretical Physics, SUNY Stony Brook, NY 11794-3840 USA and †Theoretical Division (MS B285), Los Alamos National Laboratory, Los Alamos, NM 87545 USA Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity have probed length scales increasing dramatically over time. Historically, these studies have passed through three stages: (1) Testing the power in the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, (3) Considering more degrees of freedom, allowing mass while preserving explicit gauge or general-coordinate invariance. Since our previous review the lower limit on the photon Compton wavelength has improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomy makes further advance likely. For gravity there have been vigorous debates about even the concept of graviton rest mass. Meanwhile there are striking observations of astronomical motions that do not fit Einstein gravity with visible sources. “Cold dark matter” (slow, invisible classical particles) fits well at large scales. “Modified Newtonian dynamics” provides the best phenomenology at galactic scales. Satisfying this phenomenology is a requirement if dark matter, perhaps as invisible classical fields, could be correct here too. “Dark energy” might be explained by a graviton-mass-like effect, with associated Compton wavelength comparable to the radius of the visible universe. We summarize significant mass limits in a table. Contents B. Einstein’s general theory of relativity and beyond? 20 C.
    [Show full text]
  • Probing the Minimal Length Scale by Precision Tests of the Muon G − 2
    Physics Letters B 584 (2004) 109–113 www.elsevier.com/locate/physletb Probing the minimal length scale by precision tests of the muon g − 2 U. Harbach, S. Hossenfelder, M. Bleicher, H. Stöcker Institut für Theoretische Physik, J.W. Goethe-Universität, Robert-Mayer-Str. 8-10, 60054 Frankfurt am Main, Germany Received 25 November 2003; received in revised form 20 January 2004; accepted 21 January 2004 Editor: P.V. Landshoff Abstract Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale Mf are explored. First-order deviations from the theoretical SM value for g − 2 due to these string theory- motivated effects are derived. Constraints for the fundamental scale Mf are given. 2004 Elsevier B.V. All rights reserved. String theory suggests the existence of a minimum • the need for a higher-dimensional space–time and length scale. An exciting quantum mechanical impli- • the existence of a minimal length scale. cation of this feature is a modification of the uncer- tainty principle. In perturbative string theory [1,2], Naturally, this minimum length uncertainty is re- the feature of a fundamental minimal length scale lated to a modification of the standard commutation arises from the fact that strings cannot probe dis- relations between position and momentum [6,7]. Ap- tances smaller than the string scale. If the energy of plication of this is of high interest for quantum fluc- a string reaches the Planck mass mp, excitations of the tuations in the early universe and inflation [8–16]. string can occur and cause a non-zero extension [3].
    [Show full text]
  • Goldstone Theorem, Higgs Mechanism
    Introduction to the Standard Model Lecture 12 Classical Goldstone Theorem and Higgs Mechanism The Classical Goldstone Theorem: To each broken generator corresponds a massless field (Goldstone boson). Proof: 2 ∂ V Mij = ∂φi∂φj φ~= φ~ h i V (φ~)=V (φ~ + iεaT aφ~) ∂V =V (φ~)+ iεaT aφ~ + ( ε 2) ∂φj O | | ∂ ∂V a Tjlφl =0 ⇒∂φk ∂φj 2 ∂ ∂V a ∂ V a ∂V a Til φl = Tjlφl + Tik ∂φk ∂φi ∂φi∂φj ∂φi φ~= φ~ h i 0= M T a φ +0 ki il h li =~0i | 6 {z } If T a is a broken generator one has T a φ~ = ~0 h i 6 ⇒ Mik has a null eigenvector null eigenvalues massless particle since the eigenvalues of the mass matrix are the particle⇒ masses. ⇒ We now combine the concept of a spontaneously broken symmetry to a gauge theory. The Higgs Mechanism for U(1) gauge theory Consider µ 2 2 1 µν = D φ∗ D φ µ φ∗φ λ φ∗φ F F L µ − − − 4 µν µν µ ν ν µ with Dµ = ∂µ + iQAµ and F = ∂ A ∂ A . Gauge symmetry here means invariance under Aµ Aµ ∂µΛ. − → − 2 2 2 case a) unbroken case, µ > 0 : V (φ)= µ φ∗φ + λ φ∗φ with a minimum at φ = 0. The ground state or vaccuum is U(1) symmetric. The corresponding theory is known as Scalar Electrodynamics of a massive spin-0 boson with mass µ and charge Q. 1 case b) nontrivial vaccuum case 2 µ 2 v iα V (φ) has a minimum for 2 φ∗φ = − = v which gives φ = e .
    [Show full text]