Reticulospinal Vasomotor Neurons of the Rat Rostra1 Ventrolateral Medulla: Relationship to Sympathetic Nerve Activity and the Cl Adrenergic Cell Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Individual Neuronal Subtypes Control Initial Myelin Sheath Growth and Stabilization Heather N
Nelson et al. Neural Development (2020) 15:12 https://doi.org/10.1186/s13064-020-00149-3 RESEARCH ARTICLE Open Access Individual neuronal subtypes control initial myelin sheath growth and stabilization Heather N. Nelson, Anthony J. Treichel, Erin N. Eggum, Madeline R. Martell, Amanda J. Kaiser, Allie G. Trudel, James R. Gronseth, Samantha T. Maas, Silas Bergen and Jacob H. Hines* Abstract Background: In the developing central nervous system, pre-myelinating oligodendrocytes sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize, leading to the initiation of axon wrapping, nascent myelin sheath formation, concentric wrapping and sheath elongation, and sheath stabilization or pruning by oligodendrocytes. Although axonal signals influence the overall process of myelination, the precise oligodendrocyte behaviors that require signaling from axons are not completely understood. In this study, we investigated whether oligodendrocyte behaviors during the early events of myelination are mediated by an oligodendrocyte-intrinsic myelination program or are over-ridden by axonal factors. Methods: To address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish spinal cord during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes. Results: In the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and stabilization frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When descending reticulospinal axons were ablated, local spinal axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons. Conclusion: We conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization. -
Whole-Organism Imaging of Spinal Motor Neurons and Musculature with the Cytation C10 Confocal Imaging Reader
Application Bulletin Whole-Organism Imaging of Spinal Motor Neurons and Musculature with the Cytation C10 Confocal Imaging Reader Introduction Zebrafish have long held an essential oler in developmental biology research due to their many and often cited advantages, both biological and practical. Recently, zebrafish amenability to genome editing techniques such as CRISPR, high-throughput screening, and predictive value in drug discovery toxicol- ogy studies1, combined with their exceptional accessibility to optogenetic manipulation and live-imaging techniques highlight the essential place zebrafish have in the toolkit of health-driven research. Indeed, zebrafish are lowering the barrier toin vivo research of devastating neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease)2, as their complete spinal neuron and muscle unit organization is entirely accessible to observation through light microscopy. This application bulletin demonstrates the capability of whole-organism imaging on the newly intro- duced BioTek Cytation C10 confocal imaging reader, with a focus on spinal motor neurons, neuromus- cular synapses, and musculature of the zebrafish model organism. The optical sectioning of the spin- ning disk confocal system is essential to resolving the deep tissue structures, such as the fine neuronal processes, and provides a literal clearer view of subcellular details when imaging thick samples. Materials and Methods Key Words: Unless otherwise noted, all chemicals were obtained from Sigma Aldrich (St. Louis, MO). General main- tenance of zebrafish followed established methods3. Wild-type male and female Danio rerio were main- Confocal Microscopy tained at 28 °C on a 14/10 hour light/dark cycle. Adults were crossed and eggs promptly collected in Optical Sectioning EM3 media4. -
Motor Circuits in Action: Specification, Connectivity, and Function
Neuron Review Motor Circuits in Action: Specification, Connectivity, and Function Silvia Arber1,2,* 1Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland 2Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland *Correspondence: [email protected] DOI 10.1016/j.neuron.2012.05.011 Mammalian motor behavior is enabled by a hierarchy of interleaved circuit modules constructed by interneu- rons in the spinal cord, sensory feedback loops, and bilateral communication with supraspinal centers. Neuronal subpopulations are specified through a process of precisely timed neurogenesis, acquisition of transcriptional programs, and migration to spatially confined domains. Developmental and genetic programs instruct stereotyped and highly specific connectivity patterns, binding functionally distinct neuronal subpop- ulations into motor circuit modules at all hierarchical levels. Recent work demonstrates that spatial organi- zation of motor circuits relates to precise connectivity patterns and that these patterns frequently correlate with specific behavioral functions of motor output. This Review highlights key examples of how develop- mental specification dictates organization of motor circuit connectivity and thereby controls movement. Introduction Through specific perturbations of functional or genetic differen- Movement is generated by the activity of neuronal circuits tiation programs in defined neuronal populations, recent studies collecting and integrating -
The Nerve Lesion in the Carpal Tunnel Syndrome
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.39.7.615 on 1 July 1976. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1976, 39, 615-626 The nerve lesion in the carpal tunnel syndrome SYDNEY SUNDERLAND From the Department of Experimental Neurology, University of Melbourne, Parkville, Victoria, Australia SYNOPSIS The relative roles of pressure deformation and ischaemia in the production of compres- sion nerve lesions remain a controversial issue. This paper concerns the genesis of the structural changes which follow compression of the median nerve in the carpal tunnel. The initial lesion is an intrafunicular anoxia caused by obstruction to the venous return from the funiculi as the result of increased pressure in the tunnel. This leads to intrafunicular oedema and an increase in intrafunicular pressure which imperil and finally destroy nerve fibres by impairing their blood supply and by compression. The final outcome is the fibrous tissue replacement of the contents of the funiculi. Protected by copyright. In 1862 Waller described the motor, vasomotor, (Gasser, 1935; Allen, 1938; Bentley and Schlapp, and sensory changes which followed the com- 1943; Richards, 1951; Moldaver, 1954; Gelfan pression of nerves in his own arm. His account and Tarlov, 1956). carried no reference to the mechanism In the 1940s Weiss and his associates (Weiss, responsible for blocking conduction in the nerve 1943, 1944; Weiss and Davis, 1943; Weiss and fibres, presumably because he regarded it as Hiscoe, 1948), who were primarily concerned obvious that pressure was the offending agent. with the technical problem of uniting severed Interest in the effects of nerve compression nerves, observed that a divided nerve enclosed was not renewed until the 1920s when cuff or in a tightly fitting arterial sleeve became swollen tourniquet compression was used to produce a proximal and distal to the constriction. -
Deconstructing Spinal Interneurons, One Cell Type at a Time Mariano Ignacio Gabitto
Deconstructing spinal interneurons, one cell type at a time Mariano Ignacio Gabitto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Mariano Ignacio Gabitto All rights reserved ABSTRACT Deconstructing spinal interneurons, one cell type at a time Mariano Ignacio Gabitto Abstract Documenting the extent of cellular diversity is a critical step in defining the functional organization of the nervous system. In this context, we sought to develop statistical methods capable of revealing underlying cellular diversity given incomplete data sampling - a common problem in biological systems, where complete descriptions of cellular characteristics are rarely available. We devised a sparse Bayesian framework that infers cell type diversity from partial or incomplete transcription factor expression data. This framework appropriately handles estimation uncertainty, can incorporate multiple cellular characteristics, and can be used to optimize experimental design. We applied this framework to characterize a cardinal inhibitory population in the spinal cord. Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. By using our Sparse Bayesian approach, we showed that V1 interneurons, a major inhibitory population that controls motor output, fractionate into diverse subsets on the basis of the expression of nineteen transcription factors. Transcriptionally defined subsets exhibit highly structured spatial distributions with mediolateral and dorsoventral positional biases. These distinctions in settling position are largely predictive of patterns of input from sensory and motor neurons, arguing that settling position is a determinant of inhibitory microcircuit organization. -
Meninges,Cerebrospinal Fluid, and the Spinal Cord
The Nervous System SPINAL CORD Spinal Cord Continuation of CNS inferior to foramen magnum (medulla) Simpler Conducts impulses to and from brain Two way conduction pathway Reflex actions Spinal Cord Passes through vertebral canal Foramen magnum L2 Conus medullaris Filum terminale Cauda equina Cervical Cervical spinal nerves enlargement Dura and arachnoid Thoracic mater spinal nerves Lumbar enlargement Conus medullaris Lumbar Cauda spinal nerves equina Filum (a) The spinal cord and its nerve terminale Sacral roots, with the bony vertebral spinal nerves arches removed. The dura mater and arachnoid mater are cut open and reflected laterally. Figure 12.29a Spinal Cord Spinal nerves 31 pairs Cervical and lumbar enlargements The nerves serving the upper and lower limbs emerge here Cervical Cervical spinal nerves enlargement Dura and arachnoid Thoracic mater spinal nerves Lumbar enlargement Conus medullaris Lumbar Cauda spinal nerves equina Filum (a) The spinal cord and its nerve terminale Sacral roots, with the bony vertebral spinal nerves arches removed. The dura mater and arachnoid mater are cut open and reflected laterally. Figure 12.29a Spinal Cord Protection Bone, meninges, and CSF Spinal tap-inferior to second lumbar vertebra T12 Ligamentum flavum L5 Lumbar puncture needle entering subarachnoid space L4 Supra- spinous ligament L5 Filum terminale S1 Inter- Cauda equina vertebral Arachnoid Dura in subarachnoid disc matter mater space Figure 12.30 Spinal Cord Cross section Central gray matter Cortex of white matter Epidural -
Spinal Cord Organization
Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges. -
Major Motor & Sensory Projections
Major Motor & Sensory Projections Neuroanatomy > Brainstem > Brainstem MAJOR MOTOR & SENSORY PROJECTIONS  FULL TEXT OVERVIEW • Here, we will learn a consolidated view of the major descending (motor) and ascending (sensory) pathways from the cerebrum through the brainstem into the spinal cord. • Start a table, specify that we will learn about the following major pathway projections: Motor • Corticospinal tract (CST) • Corticobulbar (aka corticonuclear) tract Sensory • Posterior column/medial lemniscus • Anterolateral system (spinothalamic) tract • Trigeminothalamic tract MOTOR PATHWAYS Anatomical Structures Begin with the motor pathways. • Label the superior/inferior axes. • Draw a coronal view of the right brain. • Then, the brainstem. • The upper cervical spinal cord. 1 / 5 • And the lumbar cord. Innervation • Start another table. Write that for the motor fibers: • The corticospinal tract fibers innervate the body via spinal motor neurons. - Specify that the lateral CST innervates distal musculature for fine motor movements - Whereas the anterior CST innervates proximal musculature for gross motor movements. • The corticobulbar fibers (aka corticonuclear fibers) innervate the face via the CNs. Projections • Now, demarcate the internal capsule deep within the cerebrum – the motor fibers consolidate here before entering the ipsilateral cerebral peduncle in the midbrain. • Next, draw the twisting descent of each fiber group through the subcortical white matter. • Show that the facial fibers [RED] emerge from the lateral convexity, descend medially and, generally, decussate to synapse on different cranial nerve nuclei throughout their descent. • Then, show that the leg fibers [GREEN] emerge paracentrally, descend laterally through the brainstem into the ipsilateral medullary pyramid. • Show that the arm fibers [BLUE] emerge from the upper convexity, descend in between the facial and leg fibers, medial to the leg fibers through the brainstem into the ipsilateral medullary pyramid. -
Glia Are a Unique Substrate for the in Vitro Growth of Central Nervous System Neurons1
0270.6474/84/0407-1892$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 7, pp. 1892-1903 Printed in U.S.A. July 1984 GLIA ARE A UNIQUE SUBSTRATE FOR THE IN VITRO GROWTH OF CENTRAL NERVOUS SYSTEM NEURONS1 MARK NOBLE,*s2 JUIN FOK-SEANG,$ AND 31M COHENS * Department of Clinical Neurology, Institute of Neurology, London WClN 3BG, England and $ Medical Research Council Neuroimmunology Project, Department of Zoology, University College London, London WClE 6BT, England Received July 6,1983; Revised November 29, 1983; Accepted February 7, 1984 Abstract We have examined the consequences of surface interactions with glial and nonglial cells on the in vitro growth of CNS neurons. When cerebellar or spinal cord cells were plated onto monolayers highly enriched in cortical astrocytes or sciatic nerve Schwann cells, neurons generally grew as single cells and showed relatively little tendency to aggregate. Similarly, neurites showed little tendency to fasciculate. In contrast, when plated onto fibroblast, heart muscle-fibroblast, or astrocyte-free meningeal monolayers, neurons rapidly aggregated, and neurite outgrowth was primarily in large fascicles. There were no glia detectable in the majority of aggregates or fascicles, suggesting that aggregation and fasciculation were due to interactions between neurons. Neurite outgrowth over 24 hr was also greater on astrocytes than on nonglia. Whether or not aggregation and fasciculation occurred was due to surface properties of the glial and nonglial cells. When neurons were added to astrocyte and nonglial monolayers growing in medium conditioned by a large excess of co-cultured nonglia or astrocytes, respectively, the pattern of neuronal growth was determined by the type of monolayer with which the neurons were in contact. -
Nerve and Nerve Injuries” Sunderland : 50 Years Later
2019 Nerve and Nerve Injuries” Sunderland : 50 years later Faye Chiou Tan, MD Professor, Dir. EDX, H. Ben Taub PMR, Baylor College of Medicine Chief PMR, Dir. EDX, Harris Health System 2019 Financial Disclosure • Elsevier Book Royalties for “EMG Secrets” textbook • Revance, consultation panel 2019 Warning Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution. Introduction – Sydney Sunderland was Professor of Experimental Neurology at the University of Melbourne. – His textbook “Nerve and Nerve lnjuries” published in 1968 is no longer in print (copies $1000 on the internet) – Here is a review as relates to new technology: Ultrahigh frequency musculoskeletal ultrasound Part I – I. Anatomic and physiologic features of A. Peripheral nerve fibers B. Peripheral nerve trunks I.A. Peripheral nerve fibers – Axoplasm – Increased flow of cytoplasm from cell body into axons during electrical stimulation (Grande and Richter 1950) – Although overall proximal to distal axoplasmic flow, the pattern of streaming in the axon is bidirectional and faster (up to 3-7 cm/day) (Lubinska 1964). I. A. Peripheral nerve fibers – Sheath – Myelinated – Length of internode elongates with growth (Vizoso and Young 1948, Siminoff 1965) – In contrast, remyelination in adults produce short internodes of same length (Leegarrd 1880, Young 1945,…) – Incisures of Schmidt-Lantermann are clefts conical clefts that open when a nerve trunk is stretched thereby preventing distortion of myelin. (Glees, 1943) Schmidt-Lantermann Clefts Sunderland S. Nerve and Nerve Injuries, Sunderland, Livingstone,LTD, Edinburgh/London, 1968, p. 8 I. A. -
Relating Reflex Gain Modulation in Posture Control to Underlying Neural Network Properties Using a Neuromusculoskeletal Model
J Comput Neurosci (2011) 30:555–565 DOI 10.1007/s10827-010-0278-8 Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model Jasper Schuurmans · Frans C. T. van der Helm · Alfred C. Schouten Received: 25 March 2010 / Revised: 1 September 2010 / Accepted: 14 September 2010 / Published online: 24 September 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract During posture control, reflexive feedback the neural, sensory and synaptic parameters on the joint allows humans to efficiently compensate for unpre- dynamics. The results showed that the lumped reflex dictable mechanical disturbances. Although reflexes gains positively correlate to their most direct neural are involuntary, humans can adapt their reflexive set- substrates: the velocity gain with Ia afferent velocity tings to the characteristics of the disturbances. Reflex feedback, the positional gain with muscle stretch over modulation is commonly studied by determining reflex II afferents and the force feedback gain with Ib afferent gains: a set of parameters that quantify the contribu- feedback. However, position feedback and force feed- tions of Ia, Ib and II afferents to mechanical joint be- back gains show strong interactions with other neural havior. Many mechanisms, like presynaptic inhibition and sensory properties. These results give important and fusimotor drive, can account for reflex gain mod- insights in the effects of neural properties on joint ulations. The goal of this study was to investigate the dynamics and in the identifiability of reflex gains in effects of underlying neural and sensory mechanisms experiments. on mechanical joint behavior. -
Review of Spinal Cord Basics of Neuroanatomy Brain Meninges
Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Parts of Nervous System Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Neurons and Neuroglia Neuron Human brain contains per 1011-12 (trillions) neurons Body (soma) Perikaryon Nissl substance or Tigroid Dendrites Axon Myelin Terminals Synapses Neuronal types Unipolar, pseudounipolar, bipolar, multipolar Afferent (sensory, centripetal) Efferent (motor, centrifugal, effector) Associate (interneurons) Synapse Presynaptic membrane Postsynaptic membrane, receptors Synaptic cleft Synaptic vesicles, neuromediator Mitochondria In human brain – neurons 1011 (100 trillions) Synapses – 1015 (quadrillions) Neuromediators •Acetylcholine •Noradrenaline •Serotonin •GABA •Endorphin •Encephalin •P substance •Neuronal nitric oxide Adrenergic nerve ending. There are many 50-nm-diameter vesicles (arrow) with dark, electron-dense cores containing norepinephrine. x40,000. Cell Types of Neuroglia Astrocytes - Oligodendrocytes – Ependimocytes - Microglia Astrocytes – a part of hemoencephalic barrier Oligodendrocytes Ependimocytes and microglial cells Microglia represent the endogenous brain defense and immune system, which is responsible for CNS protection against various types of pathogenic factors. After invading the CNS, microglial precursors disseminate relatively homogeneously throughout the neural tissue and acquire a specific phenotype, which clearly distinguish them from their precursors, the blood-derived monocytes. The ´resting´ microglia