Idaho State Department of Agriculture (Isda) Division of Plant Industries

Total Page:16

File Type:pdf, Size:1020Kb

Idaho State Department of Agriculture (Isda) Division of Plant Industries IDAHO STATE DEPARTMENT OF AGRICULTURE (ISDA) DIVISION OF PLANT INDUSTRIES 2013 SUMMARIES OF PLANT PESTS, INVASIVE SPECIES, NOXIOUS WEEDS, PLANT LAB, NURSERY AND FIELD INSPECTION PROGRAMS, WITH SURVEY RESULTS INTRODUCTION ISDA’s Division of Plant Industries derives its statutory authority from multiple sections of Idaho Code, Title 22, including the Plant Pest Act, the Noxious Weed Law, the Nursery and Florist Law, and the Invasive Species Act. These laws give the Division of Plant Industries clear directives to conduct pest surveys and manage invasive species and plant pests for the purpose of protecting Idaho’s agricultural industries, valued at over $4 billion, which include crops, nursery, and ranching. The Division of Plant Industries also cooperates with other agencies, including the Idaho Department of Lands (IDL), the University of Idaho (UI), the United States Forest Service (USFS), the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS), Plant Protection and Quarantine (PPQ), county governments, Cooperative Weed Management Areas (CWMA), industry groups and other stakeholders to protect Idaho’s landscapes and environments from invasive species. Finally, the Division of Plant Industries helps accomplish the ISDA’s broader mission to serve consumers and agriculture by safeguarding the public, plants, animals and the environment through education and regulation. This report summarizes the comprehensive and cooperative programs conducted during 2013 to enforce Idaho statutes and fulfill the mission of ISDA. PEST SURVEYS APPLE MAGGOT (AM) (Rhagoletis pomonella (Walsh)) In 1990, ISDA established by administrative rule an AM-free regulated area (the “Apple Maggot Free Zone” or AMFZ) encompassing the major apple production areas of the state. Every year, ISDA conducts an area- wide survey for AM using yellow panel traps and ammonium carbonate bait. 2013 Summary of trapping for apple maggot in Idaho County Total number of Positive Negative AM traps placed AM traps AM traps Boise 20 10 10 Boundary 14 0 14 Canyon 127 1 126 Gem 92 8 84 Owyhee 35 0 35 Payette 69 1 68 Washington 97 9 88 TOTAL 454 29 425 In 2013 454 traps were placed in commercial apple orchards and home landscape trees in Boise, Boundary, Canyon, Gem, Owyhee, Payette and Washington counties. Positive specimens were identified by the ISDA entomologist. ISDA had two new finds: 1 AM in Canyon and 1 AM in Payette County. Seven of the 9 AM traps in Washington County were located within the AMFZ, and all 8 of the positive traps in Gem County were located within the AMFZ. All AM located within the AMFZ were found on traps that had been placed in hawthorn trees or in undermanaged or neglected apple trees in non-commercial settings. Gem and Washington counties are considered partially infested and regulated under a state interior quarantine. http://adminrules.idaho.gov/rules/current/02/0608.pdf 1 During 2014, ISDA will continue to conduct detection surveys in the seven-county area. In Canyon, Gem, Payette and Washington counties, ISDA will set out supplementary detection traps around the positive locations. See page 44 of this report for a map of 2013 AM survey activity in Idaho. BROWN MARMORATED STINK BUG (BMSB) (Halyomorpha halys Stal) The Brown Marmorated Stink Bug is an invasive insect native to Asia. It was accidentally introduced near Allentown, PA in 1996 and has spread since then. In recent years BMSB has been found in Colorado, Oregon and Washington. BMSB is an agricultural pest because it feeds on a wide range of tree fruits, seed pods and vegetables including tomatoes, peppers, and corn. For homeowners it is mainly a nuisance pest as it invades houses in the winter looking for a place to overwinter. In 2012 ISDA collected a live BMSB adult from a household in Nampa, ID after a concerned homeowner reported finding it on his property. The homeowner had recently moved to Idaho from Maryland so most likely this insect “hitchhiked” to Idaho as a stowaway in household items. In July 2012, viable eggs were discovered on an outdoor ornamental plant and in October an additional live specimen was collected inside the house. In 2013 ISDA received a call from a Meridian, ID resident who believed he had caught a BMSB in his yard. An ISDA official was sent to retrieve the specimen. It was later determined that the specimen was not a BMSB and was a native stink bug. During 2013 ISDA conducted visual surveys for BMSB on corn fields in several Idaho counties. These results (all negative) are detailed in the Corn Commodity Survey section of this report. WESTERN CHERRY FRUIT FLY (WCFF) (Rhagoletis indifferens Curran) ISDA routinely conducts an annual trapping program to detect first emergence of WCFF. In 2013 WCFF adults were first observed in ISDA sentinel traps on May 23rd near Caldwell in Canyon County and on May 24th near Emmett in Gem County. The agency also tracks degree-day accumulation calculations as required by the California Department of Food and Agriculture (CDFA) to comply with their WCFF quarantine, which is aimed at states wishing to export fresh sweet cherries into or through California. To comply with the California Quarantine Permit statutes, and at the request of the Idaho Cherry Commission, commercial cherry growers were notified by mail during the week of May 28, 2013 that the 1,060 degree-day threshold had been reached, this having been established as an indicator to begin pesticide treatment for WCFF. In addition, electronic notifications were sent out with assistance from the University of Idaho Cooperative Extension Service via the PNW Pest Alert Network Web Site (http://www.pnwpestalert.net/index.php). 2009-2013: Degree-day accumulations relevant to the start of pesticide treatments for WCFF 2013 2012 2011 2010 2009 Forecast for first Site treatment Historical 1060 degree day accumulations forecast dates (recommended at 1060 degree-days) Boise June 2 May 26 June 15 June 12 June 3 Caldwell May 26 May 26 June 12 June 12 June 6 Nampa May 31 June 1 June 17 June 13 June 4 Ontario May 30 May 30 June 17 June 11 May 31 Parma June 4 May 25 June 17 June 12 June 1 Emmett June 2 June 2 June 21 N/A N/A Degree-day calculations used to decide when to begin pesticide treatments for WCFF are determined by use of a degree-day computer model from the Department of Entomology at Oregon State University. Control applications are recommended on or prior to accumulations of 1,060 degree-days according to the publication, “Orchard Pest Management”, published by the Good Fruit Grower, Yakima, WA, in 1993. SPOTTED WING DROSOPHILA (SWD) (Drosophila suzukii (Matsumura)) Spotted Wing Drosophila, an Asian vinegar fly, can damage a wide variety of soft fruits, such as berries, cherries, grapes, peaches, apricots and plums. In the US SWD was initially found in California and is fast 2 becoming a problem in the Pacific Northwest. In 2012 a homeowner in Moscow, Idaho (Latah County) reported the first SWD in Idaho on Bing cherry trees on his property. Later that year SWD was found in Nez Perce and Canyon counties. In August of 2013 SWD was detected in Payette County by extension entomologists at the University of Idaho. Although the insect is not regulated by ISDA, its discovery in the state is of concern to Idaho orchardists, grape growers and gardeners, who are encouraged to monitor for the pests by placing appropriate traps. If SWD is found, spraying or other control methods are an option. Those who suspect they’ve found SWD are encouraged to submit specimens to University of Spotted Wing Drosophila Idaho Extension offices for identification. Insect specimens and infested fruit should be preserved in alcohol and packaged in crush-proof containers. Note: Absolutely no live specimens should be sent through the mail. Visit http://www.uidaho.edu/extension to locate the nearest extension office. EUROPEAN PINE SHOOT MOTH (EPSM) (Rhyacionia bouliana Denis & Schiffermuller) The Idaho EPSM survey is conducted annually to comply with California and Montana quarantines by tracking the insect’s presence within the state. In 2013 ISDA staff placed 65 EPSM traps in nurseries and pine tree plantations throughout the 13 Idaho counties in which EPSM have, so far, never been detected. In addition, at the request of nurseries seeking phytosanitary data to allow export of nursery stock, traps were deployed and monitored in four counties where EPSM had been captured in the past. No newly confirmed infested counties were reported in 2013. Finding effective control regimes and complying with Montana and California EPSM quarantines continue to challenge this segment of the Idaho nursery industry. A map of Idaho counties historically positive for EPSM is located on page 43 of this report. ELM SEED BUG (ESB) (Arocatus melanocephalus (Fabricius)) Elm Seed Bug, which until 2012 had never been found in North America, is common in central-southern Europe. It was first detected in the US in the following Idaho counties: Ada, Canyon, Elmore, Gem, Owyhee and Payette. During 2013 ESB was confirmed in four more counties in Idaho: Bannock, Bingham, Bonneville and Twin Falls. ESB, which are related to boxelder bugs, stink bugs and other seed bugs, most likely arrived in Idaho in packing containers from Italy. The insect preferentially feeds on the seeds of elm trees, but has also been observed on seeds of other trees. ESB adults are 1/3 inch long and dark chocolate-colored with rusty red triangular markings on their backs. The insect does not damage trees or buildings, nor does it present any threat to human health. However, due to its habit of entering houses and other buildings in large numbers to escape summer heat and later to overwinter, it can be viewed as a significant nuisance to homeowners.
Recommended publications
  • Universidade Tecnológica Federal Do Paraná Campus Dois Vizinhos Bacharelado Em Agronomia
    UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS DOIS VIZINHOS BACHARELADO EM AGRONOMIA ANA PAULA RIZZOTTO BIOECOLOGIA DA CYDIA POMONELLA L. EM MACIEIRA TRABALHO DE CONCLUSÃO DE CURSO DOIS VIZINHOS 2018 ANA PAULA RIZZOTTO BIOECOLOGIA DA CYDIA POMONELLA L. EM MACIEIRA Projeto de Trabalho de Conclusão de Curso apresentado ao Curso de Agronomia da Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, como requisito parcial à obtenção do título de Engenheira Agrônoma. Orientador: Prof. Dr. Américo Wagner Júnior Coorientador: Prof. Dr. Albino António Bento DOIS VIZINHOS 2018 Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Dois Vizinhos Diretoria de Graduação e Educação Profissional Coordenação do Curso de Agronomia TERMO DE APROVAÇÃO BIOECOLOGIA DA Cydia pomonella L. EM MACIEIRA por ANA PAULA RIZZOTTO Este Trabalho de Conclusão de Curso (TCC) foi apresentado em 11 de junho de 2018 como requisito parcial para a obtenção do título de Engenheira Agrônoma. A Ana Paula Rizzotto foi arguida pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado. ____________________________________ ____________________________________ Américo Wagner Júnior Maristela dos Santos Rey Borin UTFPR UTFPR ____________________________________ Juliana Cristina Radaelli UTFPR __________________________________ ____________________________________ Angélica Signor Mendes Lucas Domingues da Silva UTFPR UTFPR – Dois Vizinhos RESUMO RIZZOTTO, A. P. Bioecologia da Cydia pomonella L. em Macieira. Trabalho de Conclusão de Curso II – Bacharel em Agronomia, Universidade Tecnológica Federal do Paraná. Dois Vizinhos, 2018. O bicho da maçã, Cydia pomonella L. é a praga com maior importância econômica para a cultura da macieira, Malus domestica Borkh. em todo o mundo. Quando não devidamente controlada, pode provocar prejuízos em até 80% da produção.
    [Show full text]
  • Economic Cost of Invasive Non-Native Species on Great Britain F
    The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat.
    [Show full text]
  • Grapholita Funebrana
    Grapholita funebrana Scientific Name Grapholita funebrana (Treitschke) Synonyms: Carpocapsa funebrana, Cydia funebrana, Enarmonia funebrana, Endopisa funebrana, Grapholita funebrana, Grapholitha funebrana, Laspeyresia cerasana, Laspeyresia funebrana, Opadia funebrana, and Tortrix funebrana. Note: Grapholita funebrana is often incorrectly referred to as Cydia funebrana. The correct generic placement is in Grapholita (see Komai (1999) for more details). Common Names Plum fruit moth, prune moth, red plum maggot Type of Pest Moth Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Tortricidae Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List – 2003 through 2009 Pest Description Grapholita funebrana is able to develop on many wild and cultivated stone fruits and other plants in the family Rosaceae. This pest occurs in Europe, the Middle East, and northern Asia with losses of 25 to 100% reported. The information provided below is from Alford (1978), Bradley et al. (1979), and Whittle (1984). Eggs: Eggs are deposited singly and measure about 0.7 mm (0.28 in.) across by 0.6 mm (0.24 in.) wide, are lenticular to ovate (flattened and slightly elliptical), and are translucent white, becoming yellow as they mature. When they turn yellow, the egg has a central dome-shape area, circled by a flat ring. Eggs are generally laid during June and July at the base of a fruit stalk, hatching in about 10 days. Larvae: At their longest, larvae are about 10 to 12 mm (0.39 to 0.47 in.) long. The head is dark brown to black. The prothorax is pale yellow; while the prothoracic plate is pale brown with the posterior margin mottled darker brown.
    [Show full text]
  • Do Grapholita Funebrana Infestation Rely on Specific Plum Fruit
    insects Article Do Grapholita funebrana Infestation Rely on Specific Plum Fruit Features? Roberto Rizzo 1 , Vittorio Farina 2 , Filippo Saiano 2 , Alberto Lombardo 3, Ernesto Ragusa 2 and Gabriella Lo Verde 2,* 1 CREA-Research Centre for Plant Protection and Certification, SS.113, Km 245,5, 90011 Bagheria, PA, Italy; [email protected] 2 Department of Agricultural, Food and Forest Sciences, University of Palermo Viale delle Scienze, 90128 Palermo, Italy; [email protected] (V.F.); fi[email protected] (F.S.); [email protected] (E.R.) 3 Engineering Department, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-09123896021 Received: 25 September 2019; Accepted: 9 December 2019; Published: 11 December 2019 Abstract: The effective control of the plum fruit moth, Grapholita funebrana (Lepidoptera: Tortricidae) still represents a difficult challenge for organic plum farming. Little information is available on the susceptibility of plum cultivars to this moth pest. We investigated the roles of several fruit parameters (i.e., shape, volume, hardness, fruit colour, and physiochemical properties) on the susceptibility of four different plum cultivars (Angeleno, Friar, President and Stanley) to G. funebrana attack. Field data demonstrated the importance of some fruit parameters (i.e., elongation index, sugar degree, titratable acidity, cover colour percentage) on susceptibility to G. funebrana infestation. Under laboratory conditions, colour and shape had a significant role in determining the time spent on false fruits, i.e., female moths preferred yellow and rounded fruits over elongated red or green fruits. Angeleno (yellow and rounded fruits) and Stanley (green and elongated fruits) were the most and least susceptible cultivars, respectively.
    [Show full text]
  • Pheromone Production, Male Abundance, Body Size, and the Evolution of Elaborate Antennae in Moths Matthew R
    Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths Matthew R. E. Symonds1,2, Tamara L. Johnson1 & Mark A. Elgar1 1Department of Zoology, University of Melbourne, Victoria 3010, Australia 2Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia. Keywords Abstract Antennal morphology, forewing length, Lepidoptera, phylogenetic generalized least The males of some species of moths possess elaborate feathery antennae. It is widely squares, sex pheromone. assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically Correspondence released in minute quantities. Accordingly, females of species in which males have Matthew R. E. Symonds, School of Life and elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce Environmental Sciences, Deakin University, 221 the smallest quantities of pheromone. Alternatively, antennal morphology may Burwood Highway, Burwood, Victoria 3125, Australia. Tel: +61 3 9251 7437; Fax: +61 3 be associated with the chemical properties of the pheromone components, with 9251 7626; E-mail: elaborate antennae being associated with pheromones that diffuse more quickly (i.e., [email protected] have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence Funded by a Discovery Project grant from the more elaborate antennae. We conducted a phylogenetic comparative analysis to test Australian Research Council (DP0987360). these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing Received: 13 September 2011; Revised: 23 length), which suggests a biological cost that smaller moth species cannot bear.
    [Show full text]
  • Download (375.14
    No'8-108/2018-P P'll Government of lndia & Farmers Welfare Ministry of Agriculture " ' & Farmers welfare o"partm"ni' Ji igii"'it"", cooperation Krishi Bhawan, New Delhi Dated: FMarch,2019 OFFlC EME ORANDU regarding Plant to be made in the SPS Committee.ofll/TO Subject : Notification l"i" i"Jia order' 2003 (second Quarantine (Resulation "i':;; Amendment) 2019' the text of the draft is directed to enclose herewith The undersigned (Regulation of import into (in WTO to''"tl-ot tn"-Oratt e^flllOuarantine notification certain amendments to the Amendment) 2019 proposing lndia) order, 2003 (second plant materials import ot certain plants and phytosanitary conditions g;'^'t;'tn" into lndia. to notify the same to the WTO that further necessary action 2. lt is requested Division) at the earliest oV O"partment ClTl::" ("' Secretariat may be t'f"n :l prease be intimated by wro secretaiiat may and wro notification nrri", Plant Quarantine "irott"dof the notification containing the to this Department. Th" i;; will be 2003(Second Amendment) 20't9 (Regulation of import into rnili O'o"r' Plant Head "circulars and Notifications' - available at www.aqricooo.nicl;;J;i" Protection - WTO Notifications of Joint Secretary (Plant Protection)' 3. This issues with the approval CooPeration & Farmers Welfare. Department of Agriculture' fll"r (S R' Raja) of lndia Under Secretary to the Govt' Tele: 2307 0047 E-mail: raja sr@nic in Trade PolicY Division' id;;ir;"-;;, Ravi, Joint secretary)' beoartment of Commerce' rr/li,ii.tw of Commerce & lndustry' Udyog'Bhawan, New Delhi ,b Copy for information to : herewith the Adviser, Dte' Of PPQ&S' Faridabad enclosing 1.
    [Show full text]
  • Universidad Central Del Ecuador Facultad De Ciencias Agrícolas Carrera De Ingeniería Agronómica
    UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS AGRÍCOLAS CARRERA DE INGENIERÍA AGRONÓMICA ANÁLISIS DE RIESGO DE PLAGAS DE FRUTA FRESCA DE MANZANA (Malus domestica B.) PARA CONSUMO, ORIGINARIA DE COREA DEL SUR Trabajo de Titulación presentado como requisito previo a la obtención del Título de Ingeniera Agrónoma AUTOR: Marca Mallamas Geoconda Monserrat TUTORA: ClaraIng. Agr. Cecilia Clara Iza Iza, Madruñero M.Sc. Quito, abril 2017 DERECHOS DE AUTOR Yo, Geoconda Monserrat Marca Mallamas en calidad de autora del trabajo de investigación: "ANÁLISIS DE RIESGO DE PLAGAS DE FRUTA FRESCA DE MANZANA (Malas domestica B.) PARA CONSUMO, ORIGINARIA DE COREA DEL SUR", autorizo a la Universidad Central del Ecuador a hacer uso del contenido total o parcial que me pertenece, con fines estrictamente académicos o de investigación. Los derechos que como autora me corresponden, con excepción de la presente autorización., seguirán vigentes a mi favor, de conformidad con lo establecido en los artículos 5, 6, 8; 19 y demás pertinentes de la Ley de Propiedad Intelectual y su Reglamento. También, autorizo a la Universidad Central del Ecuador realizar la digitalización y publicación de este trabajo de investigación en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior. < £t Geoconda Monserrat Marca Mallamas CC. N°: 1721772836 Av. Eloy Alfaro N3G-350 y Amazonas '. íí>,ft& Edif. MAGAP. Piso 9 ••>'-. • Código Postal: 170516 * ' • • L • , Telf: (593) 2 2567 232 ;..í? i: ... ,.. •, .- [email protected] gub.ec y www.agrocalidad.gob.ee i Oficio Nro. MAGAP-CSV/AGROCALmAD-2016-000736-OF Quito, D.1VL, 14 de diciembre de 2016 Asunto: Aprobación del estudio de ARP de fruta fresca de manzana originaria de Corea del Sur ingeniero Antonio Gaibor Decano UNIVERSIDAD CENTRAL DEL ECUADOR - FACULTAD DE CIENCIAS AGRÍCOLAS En su Despacho De mi consideración: Como es de su conocimiento la Srta.
    [Show full text]
  • Entomolojide DNA Barkodlama Tekniğinin Kullanımı
    YYÜ TAR BİL DERG (YYU J AGR SCI) 2018, 28(1): 126-134 Geliş tarihi (Received): 08.10.2017 Kabul tarihi (Accepted): 25.03.2018 doi: 10.29133/yyutbd.350146 Derleme/Review Entomolojide DNA Barkodlama Tekniğinin Kullanımı Gökhan YATKIN1 Nurper GÜZ2* 1 Ankara Zirai Mücadele Merkez Araştırma Enstitüsü, Ankara, Türkiye 2Ankara Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü, Ankara, Türkiye *e-posta: [email protected] Özet: DNA barkodlama, herhangi bir organizmaya ait DNA’nın PCR teknikleri ile çoğaltılacak büyüklükteki kısa ve standart bir fragmanının dizilenmesi ile tanılanmasını sağlayan taksonomik bir yöntem olarak ifade edilebilir. Bu amaçla böceklerle yapılan çalışmalarda ‘DNA barkodu’ olarak bilinen mitokondriyal sitokrom c oksidaz alt ünite I (COI) geninin yaklaşık 600-700 baz çiftine (bç) ait kısmı kullanılmaktadır. Bu kısa standart DNA sekansı türlerin tanılanmasını kolaylaştırmasının yanı sıra yeni türlerin keşfi için de oldukça iyi bir araçtır. Ayrıca DNA barkodlama türlerin sınırlarını belirleyerek kriptik türlerin ayrımına katkı sağlar. Bu derlemede DNA barkodlama teriminin tarihsel ve kavramsal olarak ortaya çıkışı, DNA barkodu olarak kullanılan gen bölgeleri ve böcekler için ideal tür tanımlama markörü olan COI gen bölgesi hakkında bilgi verilmiştir. Son olarak DNA barkodlamanın avantajları ve kısıtlamaları irdelenerek entomolojide DNA barkodlama çalışmalarından örnekler sunulmuştur. Anahtar kelimeler: COI, DNA barkodlama, Entomoloji, Taksonomi, Tür tanımlama The Use of DNA Barcoding in Entomology Abstract: DNA barcoding is a taxonomic method that uses a short and standard genomic DNA fragment to discriminate species. An approximately 600-700 base pair (bp) region of the mitochondrial cytochrome c oxidase subunit I (COI) gene referred as ‘DNA barcode’ is used in insect barcoding studies.
    [Show full text]
  • Variability in the Efficacy of Sex Pheromone Lures for Monitoring
    J. Appl. Entomol. ORIGINAL CONTRIBUTION Variability in the efficacy of sex pheromone lures for monitoring oriental fruit moth (Lepidoptera: Tortricidae) A. L. Knight1, E. Basoalto2 & L. L. Stelinski3 1 Yakima Agricultural Research Laboratory, Agricultural Research Service, USDA, Wapato, WA, USA 2 Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile 3 Citrus Research and Education Center, Entomology and Nematology Department, University Florida, Lake Alfred, FL, USA Keywords Abstract Cydia pomonella, Grapholita molesta, monitoring, peach Studies were conducted in Chile and the United States to compare the attractiveness of various commercial sex pheromone lures and two experi- Correspondence mental lures for oriental fruit moth, Grapholita molesta (Busck), in peach Alan L. Knight (corresponding author), USDA, orchards treated with or without sex pheromone dispensers. The experi- Agricultural Research Service, 5230 Konnowac mental lures contained the three-component sex pheromone blend of Pass Road, Wapato, WA 98951, USA. G. molesta: Z-8-dodecenyl acetate, E-8-dodecenyl acetate and Z-8-dodece- E-mail: [email protected] nol (Z8-12:OH), and the sex pheromone of codling moth, Cydia pomonella Received: April 29, 2015; accepted: June 6, (L.), (E,E)-8,10-dodecadien-1-ol, (codlemone). Commercial lures varied in 2015. their substrate, initial loading and blend ratio of components. Significant differences in male catches were found among commercial lures doi: 10.1111/jen.12253 in orchards treated with or without sex pheromone dispensers. Experi- mental lures with the addition of codlemone significantly increased the catches of G. molesta using lures loaded with 0%, 1% or 5% Z8-12:OH in the G.
    [Show full text]
  • Grapholita Funebrana)
    6–71RYHPEHU 2019, Brno, Czech Republic Comparison of the effectiveness of different types of pheromone traps and lures on the plum fruit moth (Grapholita funebrana) Zaneta Prazanova, Hana Sefrova Department of Crop Science, Breeding and Plant Medicine Mendel University in Brno Zemedelska 1, 613 00 Brno CZECH REPUBLIC [email protected] Abstract: In 2019 (May–July) the efficiency of two delta traps and pheromone lures from two manufacturers (Pherobank B.V. and Propher s.r.o.) for the plum fruit moth (Grapholita funebrana) were compared. The monitoring was carried out in 3 study areas, namely Kyjov, Starý Lískovec and Soběšice. In total, 6 traps from the manufacturer Pherobank and 6 traps from the manufacturer Propher were placed. Grapholita funebrana was found in all the study areas and 5,667 adults were caught in total. Most individuals were caught in Kyjov (3,083 in total). The green traps attracted 3,081 adults and the transparent traps 2,586 adults. A total of 3,581 adults were captured using the Pherobank pheromone lure, and 2,086 using the Propher lure. A total of 459 non-target species individuals were captured from the families Tortricidae, Noctuidae, and Autostichidae. The Pherobank pheromone lure attracted 201 less of the non-target species than the Propher pheromone lure. The largest number of non-target species were attracted in Kyjov (191 adults). Key Words: delta pheromone trap, pheromone lure, Grapholita funebrana, monitoring INTRODUCTION Monitoring and signalling are essential in integrated plant protection. The pheromone lure is a very useful tool for monitoring a number of harmful insect species (Hrdý and Pultar 1998), allowing the course and intensity of flight activity of the pest to be determined (Kocourek 2012).
    [Show full text]
  • CAPS PRA: Cydia Funebrana 1 Mini Risk Assessment Plum Fruit Moth
    Mini Risk Assessment Plum fruit moth, Cydia funebrana (Treitschke) [Lepidoptera: Tortricidae] Robert C. Venette, Erica E. Davis, Michelle DaCosta, Holly Heisler, & Margaret Larson Department of Entomology, University of Minnesota St. Paul, MN 55108 September 28, 2003 Introduction Cydia funebrana is an oligophagous pest, attacking the fruits of plum, cherry, peach, and other hosts typically within the plant family Rosaceae. This species is generally distributed in Europe, the Middle East, and northern Asia (CIE 1978). The likelihood and consequences of establishment by C. funebrana have been evaluated previously in a pathway-initiated risk assessment. Cydia funebrana was considered highly likely of becoming established in the US, if introduced; the consequences of its establishment for US agricultural and natural ecosystems were rated high (i.e., severe) (Cave and Lightfield 1997). This pest is also known as the red plum maggot and the plum fruit maggot (Zhang 1994). Figure 1. Larva and adult of Cydia funebrana. Images not to scale. [Larval image from Entopix; adult image from http://www.inra.fr/Internet/Produits/HYPPZ/IMAGES/7030280.jpg.] 1. Ecological Suitability. Rating: High. Cydia funebrana is found throughout most of the Palearctic, excluding the Near East and southeast Asia (USDA 1984). This climate within its range is generally characterized as dry or temperate (CAB 2003). The currently reported global distribution of C. funebrana suggests that the pest may be most closely associated with biomes that are generally classified as temperate broadleaf and mixed forests; temperate coniferous forests; or temperate grasslands, savannas, and shrublands. Based on the distribution of climate zones in the US, we estimate that approximately 79% of the continental US may be suitable for C.
    [Show full text]
  • Plum Fruit Moth Grapholita Funebrana
    6 Rhode Island Department of Environmental Management/Division of Agriculture Cooperative Agricultural Pest Survey (CAPS) Plum Fruit Moth Grapholita funebrana Also known as the red plum maggot and the plum fruit maggot, this insect can develop on many wild and cultivated stone fruits as well as other plants in the Rosaceae family. It is currently found in Europe, the Middle East, and northern Asia where it causes crop and plant losses ranging from 25 to 100 percent. R.Coutin Life Cycle and Characteristics Moths usually begin to appear in April or May and produce one to three generations a year depending on the climate. Eggs are laid beginning in May and hatch in 5 to 9 days. Larvae then chew into the fruit where they remain and feed for 15 to 17 days before emerging to pupate under bark or in the soil. R.Coutin Adult moths have a wingspan of 11-15mm, a dark brown forewing, and a grey and brown hind wing. Damage Its appearance is similar to the common Oriental peach moth. Larval feeding inside the fruit causes fluid to exude from the entrance hole as well as a Information Sources buildup of frass which can render the fruit New Pest Response Guidelines: Plum Fruit Moth. 2012. http://www.aphis.usda.gov/import_export/plants/manuals/emergency/downloads/nprg- unmarketable. The larvae also cause cfunebranapra.pdf Plum Fruit Moth. 2011. http://caps.ceris.purdue.edu/webfm_send/1082 discoloration and premature fruit drop. Image Source Plum Fruit Moth. 2011. http://caps.ceris.purdue.edu/webfm_send/1082 This fact sheet was made possible, in part, by a Cooperative Agreement from the United States Department of Agriculture’s Animal and Plant Health Inspection Service .
    [Show full text]