Military Vehicle Options Arising from the Barrel Type Piston Engine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conseil International
Prof. Günter Elsbett: Controlled shift-liners for optimized scavenging, improved thermal efficiency and multi- stroke capability for opposed piston engines and conventional engines Page 2 Prof. Günter Elsbett: Controlled shift-liners for optimized scavenging, improved thermal efficiency and multi- stroke capability for opposed piston engines and conventional engines INTRODUCTION they are guided and supported by the surrounding cylinder material, leading to Opposed Piston Engines (OPEs) are low oscillating liner masses during shifting. looking back to 120 years of history and have been produced as Otto and Diesel engines, offering a promising challenge in specific output and thermal efficiency. Diesel-OPEs have been used regularly for commercial aircraft due to excellent power/weight ratio, but powering also merchant ships with big engines of several thousands of kW. Already 75 years ago a brake efficiency of more than 40% could be achieved. In recent decades these Fig.1 Cross-section of the 4SOPE engines seem to be forgotten while the research and development engineers put The presented experimental-OPE was just their main focus on emission improvement. created demonstrating the functions of the Conventional OPE-technology is known for hydraulically shifted liners in a fired engine. emission problems, especially caused by The parts are machined from full pieces of scraping lubrication oil into in- and outlet material. This OPE is applied with a simple ports, as common OPEs scavenging is mechanical fuel injection system, single- limited for use in 2-stroke engines only. hole pintle-nozzles and electric governor. Any emission treatment is not applied. Now some new developments in OPE- Data: Single-cylinder, 4-stroke, natural technology show their relevance to future aspirated, 108mm bore, 2x118mm stroke, power-train challenges. -
2020 Annual Noise Contour Report
Minneapolis St. Paul International Airport (MSP) 2020 Annual Noise Contour Report Comparison of the 2020 Actual and the 2007 Forecast Noise Contours February 2021 MAC Community Relations Office and HNTB Corporation MSP 2020 Annual Noise Contour Report Metropolitan Airports Commission Table of Contents ES EXECUTIVE SUMMARY .................................................................................................. 1 ES.1 BACKGROUND ...................................................................................................................... 1 ES.2 AIRPORT NOISE LITIGATION AND CONSENT DECREE .............................................................. 1 ES.3 MSP 2020 IMPROVEMENTS EA/EAW ..................................................................................... 2 ES.4 THE AMENDED CONSENT DECREE ......................................................................................... 2 ES.5 2020 NOISE CONTOURS ......................................................................................................... 3 ES.6 AMENDED CONSENT DECREE PROGRAM ELIGIBILITY ............................................................. 3 ES.7 AMENDED CONSENT DECREE PROGRAM MITIGATION STATUS ............................................. 3 1. INTRODUCTION AND BACKGROUND ................................................................................. 8 1.1 CORRECTIVE LAND USE EFFORTS TO ADDRESS AIRCRAFT NOISE ............................................ 8 1.2 2007 FORECAST CONTOUR ................................................................................................. -
Projected Acquisition Costs for the Army's Ground Combat Vehicles
Projected Acquisition Costs for the Army’s Ground Combat Vehicles © MDart10/Shutterstock.com APRIL | 2021 At a Glance The Army operates a fleet of ground combat vehicles—vehicles intended to conduct combat opera- tions against enemy forces—and plans to continue to do so. Expanding on the Army’s stated plans, the Congressional Budget Office has projected the cost of acquiring such vehicles through 2050. Those projections include costs for research, development, test, and evaluation (RDT&E) and for procurement but not the costs of operating and maintaining the vehicles. CBO’s key findings are as follows: • Total acquisition costs for the Army’s ground combat vehicles are projected to average about $5 billion per year (in 2020 dollars) through 2050—$4.5 billion for procurement and $0.5 billion for RDT&E. • The projected procurement costs are greater (in constant dollars) than the average annual cost for such vehicles from 2010 to 2019 but approximately equal to the average annual cost from 2000 to 2019 (when spending was boosted because of operations in Iraq). • More than 40 percent of the projected acquisition costs of Army ground combat vehicles are for Abrams tanks. • Most of the projected acquisition costs are for remanufactured and upgraded versions of current vehicles, though the Army also plans to acquire an Optionally Manned Fighting Vehicle, which will replace the Bradley armored personnel carrier; an Armored Multi-Purpose Vehicle, which will replace the M113 armored personnel carrier; and a new Mobile Protected Firepower tank, which will be lighter than an Abrams tank. • The Army is also considering developing an unmanned Decisive Lethality Platform that might eventually replace Abrams tanks. -
Decision 2005/07/R
DECISION No 2005/07/R OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 19-12-2005 amending Decision No 2003/19/RM of 28 November 2003 on acceptable means of compliance and guidance material to Commission Regulation (EC) No 2042/2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks THE EXECUTIVE DIRECTOR OF THE EUROPEAN AVIATION SAFETY AGENCY, Having regard to Regulation (EC) No 1592/2002 of 15 July 2002 on common rules in the field of civil aviation (hereinafter referred to as the Basic Regulation) and establishing a European Aviation Safety Agency1 (hereinafter referred to as the “Agency”), and in particular Articles 13 and 14 thereof. Having regard to the Commission Regulation (EC) No 2042/2003 of 28 November 2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks.2 Whereas: (1) Annex IV Acceptable Means of Compliance to Part- 66 Appendix 1 Aircraft type ratings for Part-66 aircraft maintenance licence (hereinafter referred to as Part-66 AMC Appendix I) is required to be up to date to serve as reference for the national aviation authorities. (2) To achieve this requirement the text of Part-66 AMC Appendix I should be amended regularly to add new aircraft type rating. (3) The regular amendment of Part-66 AMC Appendix I is considered as a permanent rulemaking task for the Agency. This decision represents the first update according to an accelerated procedure accepted by AGNA and SSCC. -
Comparison of Helicopter Turboshaft Engines
Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle. -
Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998. -
General Electric Company Turbofan Engines
50320 Federal Register / Vol. 78, No. 160 / Monday, August 19, 2013 / Rules and Regulations 11. Markings and Placards— Vibration levels imposed on the DEPARTMENT OF TRANSPORTATION Miscellaneous Markings and Placards— airframe can be mitigated to an Fuel, and Oil, Filler Openings acceptable level by utilization of Federal Aviation Administration (Compliance With § 23.1557(c)(1)(ii) isolators, damper clutches, and similar Requirements) provisions so that unacceptable 14 CFR Part 39 Instead of compliance with vibration levels are not imposed on the [Docket No. FAA–2013–0195; Directorate § 23.1557(c)(1)(i), the applicant must previously certificated structure. Identifier 2013–NE–08–AD; Amendment 39– comply with the following: 14. Powerplant Installation—One 17553; AD 2013–16–15] Fuel filler openings must be marked Cylinder Inoperative RIN 2120–AA64 at or near the filler cover with— Tests or analysis, or a combination of For diesel engine-powered Airworthiness Directives; General methods, must show that the airframe airplanes— Electric Company Turbofan Engines can withstand the shaking or vibratory (a) The words ‘‘Jet Fuel’’; and forces imposed by the engine if a AGENCY: Federal Aviation (b) The permissible fuel designations, cylinder becomes inoperative. Diesel Administration (FAA), DOT. or references to the Airplane Flight engines of conventional design typically Manual (AFM) for permissible fuel ACTION: Final rule. have extremely high levels of vibration designations. when a cylinder becomes inoperative. SUMMARY: We are adopting a new (c) A warning placard or note that Data must be provided to the airframe airworthiness directive (AD) for all states the following or similar: installer/modifier so either appropriate General Electric Company (GE) model ‘‘Warning—this airplane is equipped design considerations or operating GEnx–2B67B turbofan engines with with an aircraft diesel engine; service procedures, or both, can be developed to booster anti-ice (BAI) air duct, part with approved fuels only.’’ prevent airframe and propeller damage. -
The “Michell” Crankless Engine – Why Was It Not a Commercial Success?
The Piston Engine Revolution The “Michell” Crankless Engine – Why was it not a commercial success? John A. Anning At the beginning of the twentieth century, when the internal combustion engine was being developed for automobiles and aircraft, some designers arranged for the cylinders to be parallel to the output shaft. These became known as axial or barrel engines. They utilised either the swash plate or wobbleplate principles. The most promising was the Michell Crankless Engine, which was patented in 1917. AGM Michell FRS (1870-1959) was an Australian engineer best known for the design of the “Michell” tilting pad thrust bearing, patented in the UK and Australia in 1905. By the end of WWI Michell was a wealthy man from royalties and applied the tilting pad principle to an axial engine. The principle was first applied to compressors and by 1920 the first IC engine was made. An advantage is that perfect primary and secondary balance can be achieved at all rotational speeds. Michell formed Crankless Engines (Australia) Pty Ltd. A number of engines were built and installed in existing production vehicles. He realised that for the future commercialisation an overseas involvement was essential so offices were opened in London and New York. The Michell crankless principle still remains the most efficient method of converting linear into rotary motion. By the late 1920s with the world depression the Australian company was forced into receivership. A business analysis is given as to the possible reasons for its failure to achieve commercial success. It deserves its place in the panoply of IC engine history. -
Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber. -
Annex III to Decision 2015/029/R
AMC/GM TO ANNEX III (PART-66) TO REGULATION (EU) No 1321/2014 APPENDICES TO AMC TO PART-66 APPENDICES TO AMC TO PART-66 APPENDIX I AIRCRAFT TYPE RATINGS FOR PART-66 AIRCRAFT MAINTENANCE LICENCES The following aircraft type ratings should be used to ensure a common standard throughout the Member States. The inclusion of an aircraft type in the licence does not indicate that the aircraft type has been granted a type certificate under the Regulation (EC) No 216/2008 and its Implementing Rules; this list is only intended for maintenance purposes. In order to keep this list current and the type ratings consistent, such information should be first passed on to the Agency using the Rulemaking Enquiry form (http://easa.europa.eu/webgate/rulemaking-enquiry/) in case a Member State needs to issue a type rating that is not included in this list. Notes on when the licences should be modified: When a modification is introduced by this Decision to an aircraft type rating or to an engine designation in the rating which affect licences already issued, the ratings on the Aircraft Maintenance Licences (AMLs) may be modified at the next renewal or when the licence is reissued, unless there is an urgent reason to modify the licence. Notes on aircraft modified by Supplemental Type Certificate (STC): — This Appendix I intends to include the type ratings of aircraft resulting from STCs for installation of another engine. These STCs are those approved by the Agency and those approved by the Member States before 2003 and grandfathered by the Agency. -
Brazilian Tanks British Tanks Canadian Tanks Chinese Tanks
Tanks TANKS Brazilian Tanks British Tanks Canadian Tanks Chinese Tanks Croatian Tanks Czech Tanks Egyptian Tanks French Tanks German Tanks Indian Tanks Iranian Tanks Iraqi Tanks Israeli Tanks Italian Tanks Japanese Tanks Jordanian Tanks North Korean Tanks Pakistani Tanks Polish Tanks Romanian Tanks Russian Tanks Slovakian Tanks South African Tanks South Korean Tanks Spanish Tanks Swedish Tanks Swiss Tanks Ukrainian Tanks US Tanks file:///E/My%20Webs/tanks/tanks_2.html[3/22/2020 3:58:21 PM] Tanks Yugoslavian Tanks file:///E/My%20Webs/tanks/tanks_2.html[3/22/2020 3:58:21 PM] Brazilian Tanks EE-T1 Osorio Notes: In 1982, Engesa began the development of the EE-T1 main battle tank, and by 1985, it was ready for the world marketplace. The Engesa EE-T1 Osorio was a surprising development for Brazil – a tank that, while not in the class of the latest tanks of the time, one that was far above the league of the typical third-world offerings. In design, it was similar to many tanks of the time; this was not surprising, since Engesa had a lot of help from West German, British and French armor experts. The EE-T1 was very promising – an excellent design that several countries were very interested in. The Saudis in particular went as far as to place a pre- order of 318 for the Osorio. That deal, however, was essentially killed when the Saudis saw the incredible performance of the M-1 Abrams and the British Challenger, and they literally cancelled the Osorio order at the last moment. This resulted in the cancellation of demonstrations to other countries, the demise of Engesa, and with it a promising medium tank. -
The Uncertain Role of the Tank in Modern War: Lessons from the Israeli Experience in Hybrid Warfare
No. 109 JUNE 2016 The Uncertain Role of the Tank in Modern War: Lessons from the Israeli Experience in Hybrid Warfare Michael B. Kim The Uncertain Role of the Tank in Modern War: Lessons from the Israeli Experience in Hybrid Warfare by Michael B. Kim The Institute of Land Warfare ASSOCIATION OF THE UNITED STATES ARMY AN INSTITUTE OF LAND WARFARE PAPER The purpose of the Institute of Land Warfare is to extend the educational work of AUSA by sponsoring scholarly publications, to include books, monographs and essays on key defense issues, as well as workshops and symposia. A work selected for publication as a Land Warfare Paper represents research by the author which, in the opinion of ILW’s editorial board, will contribute to a better understanding of a particular defense or national security issue. Publication as an Institute of Land Warfare Paper does not indicate that the Association of the United States Army agrees with everything in the paper but does suggest that the Association believes the paper will stimulate the thinking of AUSA members and others concerned about important defense issues. LAND WARFARE PAPER No. 109, June 2016 The Uncertain Role of the Tank in Modern War: Lessons from the Israeli Experience in Hybrid Warfare by Michael B. Kim Major Michael B. Kim currently serves as the Squadron Executive Officer for the 8th Squadron, 1st Cavalry Regiment, 2d Stryker Brigade Combat Team, 2d Infantry Division. Prior to his current position, he graduated from the Command and General Staff College (CGSC), Fort Leavenworth, Kansas, and completed the Art of War Scholars Program.