A Global Perspective on Conserving Butterflies and Moths and Their Habitats

Total Page:16

File Type:pdf, Size:1020Kb

A Global Perspective on Conserving Butterflies and Moths and Their Habitats 14 A global perspective on conserving butterflies and moths and their habitats Thomas Merckx1, Blanca Huertas2, Yves Basset3 and Jeremy Thomas4 1Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Oxford, UK 2Life Sciences Department, The Natural History Museum, Cromwell Road, London, UK 3Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Peru 4Department of Zoology, University of Oxford, Oxford, UK Just living is not enough, said the butterfly, one must have sunshine, freedom and a little flower. — Hans Christian Andersen Introduction The order represents a mega-diverse radiation of almost exclusively phytophagous insects, prob- ably correlated with the great diversification of Lepidoptera are one of the four major insect flowering plants since the Cretaceous (Menken orders, and one of the best studied invertebrate et al. 2010). They provide many vital and eco- groups, containing over 160,000 described species nomically important services within terrestrial and an estimated equal number of undescribed ecosystems (e.g. nutrient recycling, soil forma- species, arranged in 124 families (Kristensen et al. tion, food resources and pollination). The scale 2007). Lepidoptera occupy all except the very of these contributions is illustrated by the coldest terrestrial regions, but the Neotropics and estimate that blue tit (Parus caeruleus) chicks Indoaustralian region have five times more consume at least 35 billion caterpillars each year species per unit area than the Palaearctic and in the UK alone (Fox et al. 2006). Lepidoptera Nearctic, and three times more than the also have considerable human significance, both Afrotropical region (Heppner 1991). They are economic and scientific. A growing industry scale-winged insects, traditionally divided into farms pupae for supply to butterfly houses across three major assemblages: micro-moths, butter- the world. One moth species has been domesti- flies and macro-moths (Kristensen et al. 2007). cated in order to provide silk (i.e. Bombyx mori Key Topics in Conservation Biology 2, First Edition. Edited by David W. Macdonald and Katherine J. Willis. © 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. 0001738427.INDD 239 1/21/2013 3:38:54 PM 240 T. MERCKX, B. HUERTAS, Y. BASSET AND J. THOMAS from the wild B. mandarina). For scientists, changed dramatically since the 1850s. Some the group offers a model system valuable to species have increased their range but most studies of biodiversity conservation, ecology, have declined, and 7% of British species are ethology, genetics, (co)evolution and systemat- extinct. The mean decline in butterflies has been ics (Samways 1995; Boggs et al. 2003). an order of magnitude greater than that of birds Human appreciation of the beauty and or vascular plants (or, where monitored, mam- vulnerability of (especially) butterflies has grown mals), whether measured at the scale of single exponentially in recent decades, particularly in sites, regions or the entire nation (Thomas et al. developed nations. For example, among the 40 2004). Moreover, until the recent application of national biodiversity mapping schemes extant in ecological principles to conservation described the UK, more than 2.5 million records were sub- below, local extinction rates on nature reserves mitted for Lepidoptera thanks to the work of the often exceeded those on commercially managed Centre for Ecology and Hydrology, Rothamsted land, in sharp contrast to the stability achieved Research and Butterfly Conservation (BC) UK, for vertebrates and plants (Thomas 1991). with key input from amateur enthusiasts The four methods of assessment available in ( butterflies 2.2 m; macro-moths 384 k) prior to the UK (Red Data Books (RDBs), species sur- 2000, roughly double the number received for veys, mapping and population monitoring all other invertebrates combined, or indeed for schemes) are of shorter antiquity elsewhere but birds (1.2 m) (Thomas 2005). Despite a bur- it is clear that UK declines are typical of other geoning interest in UK moths that has seen 12.4 developed nations, and are exceeded by some million records amassed by over 5000 volunteer (Maes & Van Dyck 2001). In The Netherlands, recorders in recent years (BC’s Moths Count ini- for example, 24% of 71 butterfly species tiative) (see Chapter 8), butterflies are currently became extinct during the 20th century while (and regrettably) probably the only taxon of ter- the number of breeding birds increased by 20% restrial invertebrates across much of the world (Thomas 1995). for which it is realistic to assess the scale and There is some debate as to whether butterflies rates of change in species’ ranges or populations are indicators of change in other insects: Hambler (Lewis & Senior 2011). For the same reason, & Speight (2004) argued that butterflies have butterflies have been successfully used as char- suffered higher extinction rates than other ismatic flagships and umbrella species (see invertebrates according to UK RDBs; Thomas & Box 14.1) in insect conservation programmes Clarke (2004) attributed this discrepancy to an (New 1997; Thomas & Settele 2004; Fleishman artefactual underestimate of decline inherent in et al. 2005; Guiney & Oberhauser 2009). comparing poor with well-sampled taxa, and showed that butterflies experienced similar extinction rates to other groups when sampling Long-term change in populations intensity is factored in. Moreover, observed of Lepidoptera extinction rates in dragonflies, bumblebees and macro-moths have unequivocally been slightly higher than those of UK butterflies (Thomas Rates and causes 2005; Conrad et al. 2006). Whilst clearly unrep- resentative of certain species and functional Before discussing practical conservation of types, because of their popularity, ease of study Lepidoptera, it is necessary to consider their (e.g. conspicuous, day-active, often identifiable known rates and causes of change, and whether in the field) and patterns of species richness and these are representative of other insect species endemism that mirror those of many other (Thomas & Clarke 2004; Fleishman et al. 2005). insects, butterflies are increasingly used as indi- In the UK, which has the longest history of rig- cators of change in other taxa in Europe and to a orous recording, butterfly populations have lesser extent elsewhere. 0001738427.INDD 240 1/21/2013 3:38:55 PM A GLOBAL PERSPECTIVE ON CONSERVING BUTTERFLIES AND MOTHS AND THEIR HABITATS 241 Butterflies may be useful indicators of habitat able to remove more than a small proportion of change (Ricketts et al. 1999). We distinguish the effective breeding population of adult two types of indicator (Thomas et al. 2005): Lepidoptera per generation, because in most (i) the ’miners’ canary’ whose decline heralds studied species the majority of eggs are laid future losses for less sensitive species; and within 2–5 days of each female’s emergence, (ii) taxa which mirror change or predict the and for species with discrete generations, the presence (Fleishman et al. 2005) of poorly short-lived individuals emerge over a period of monitored organisms. Across Europe (Erhardt & 4–8 weeks. Thomas 1991; Thomas 2005), butterflies in Habitat loss, undoubtedly the prime culprit general are early warning systems for future (Stewart et al. 2007), can broadly be divided change in vertebrate (apart from mega-fauna) into two processes (Thomas 1991): (i) the and vascular plant populations. One family of destruction of primary and species-rich second- butterflies, the Lycaenidae, provides ultra- ary ecosystems by intensive modern agriculture, sensitive indicators of coming change in other exotic-species forestry, mining, armed conflict families, because many of them need two and illicit crops (Dávalos et al. 2011) and, to a specialized larval resources (foodplants, ants) lesser extent, urbanization; (ii) the reduced size, to co-occur (Thomas et al. 2005). We there- increased isolation and degradation in quality of fore advocate the application of standardized those fragments of potentially inhabitable bio- mapping and population monitoring schemes topes that survive. The first process effectively in nations where such schemes are absent, and eliminates all populations apart from pests of the monitoring of other arthropod taxa. crops and exploiters of ruderal plants. The sec- ond is less clear-cut but equally harmful, espe- cially in developed regions (see below). Drivers of change Another driver of population reductions is climate change. Its observed impacts on Of the main drivers of global biodiversity loss, Lepidoptera are relatively minor so far but it is the spread of exotic pest species and direct over- predicted to rival habitat change (with which it exploitation by humans have had negligible interacts) in future decades (van Swaay et al. detectable impacts on populations of 2010a). Already in the Holarctic, non-migra- Lepidoptera (e.g. Collins & Morris 1985). So the tory species have shown southern or lowland banning of trade and collecting – the main contractions that exceed their northward or measure applied in many nations today and for altitudinal shifts in ranges (e.g. Parmesan et al. the first century of conservation practice in the 1999), whilst similar altitudinal shifts are UK – is inappropriate (unless coupled with detectable in moth communities in Borneo habitat conservation), because it fails to account (Chen et al. 2009). The net impacts on for the very different
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • The Dusky Large Blue – Maculinea Nausithous Kijevensis (Sheljuzhko, 1928) in the Transylvanian Basin: New Data on Taxonomy and Ecology
    Nota lepid. 33 (1): 16931 – – 37 175 31 The Dusky Large Blue – Maculinea nausithous kijevensis (Sheljuzhko, 1928) in the Transylvanian basin: New data on taxonomy and ecology LÁSZLÓ RÁKOSY 1, ANDRÁS TARTALLY 2, 3, MARIN GOIA 4, CIPRIAN MIHALI 1 & ZOLTÁN VARGA 2, 5 1 Department of Taxonomy and Ecology, Babes-Bolyai University, RO-3400, Str. Clinicilor 5 – 7, Cluj-Napoca, Romania 2 Department of Evolutionary Zoology, University of Debrecen, H-4010 Debrecen, Egyetem-tér 1. Hungary 3 Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark; tartally@delÀ n.unideb.hu 4 Alea Azuga Nr9/32, RO-400451, Cluj-Napoca, Romania 5 Hungary; [email protected], corresponding author Abstract. Maculinea nausithous (Bergsträsser, 1779) was recently discovered in two parts of the Tran- sylvanian basin. External characters of these populations completely agree with the original description of Maculinea nausithous kijevensis (Sheljuzhko, 1928) and show some small but constant differences against the Central European nominotypic populations. Since the habitats and host ant selection of these popula- tions are also different from the Central European populations, we consider M. nausithous kijevensis stat. rev. as valid subspeciÀ c taxon. Specimens with the same external characters were also collected in north- eastern Romania, in Kazakhstan and in the western part of the Altai Mts. Therefore we believe that this subspecies has a wider Euro-Siberian distribution. Introduction The Dusky Large Blue, Maculinea nausithous (Bergsträsser, 1779) 1, has a Euro- Siberian distribution with a wide but sporadic range from Western and Central Europe to Kazakhstan, Southern Siberia and Mongolia (Lukhtanov & Lukhtanov 1994; Tuzov 1997; Wynhoff 1998; Munguira & Martín 1999).
    [Show full text]
  • 149 Genus Ypthimomorpha Van
    AFROTROPICAL BUTTERFLIES 17th edition (2018). MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Genus Ypthimomorpha van Son, 1955 Transvaal Museum Memoirs No. 8: 158 (1-166). Type-species: Ypthima itonia Hewitson, by original designation. The genus Ypthimomorpha belongs to the Family Nymphalidae Rafinesque, 1815; Subfamily Satyrinae Boisduval, 1833; Tribe Satyrini Boisduval, 1833; Subtribe Ypthimina, Reuter, 1896. The other genera in the Subtribe Ypthimina in the Afrotropical Region are Ypthima, Mashuna, Mashunoides, Strabena, Neocoenyra, Coenyropsis, Coenyra, Physcaeneura, Neita, Melampius, Cassionympha, Pseudonympha, Paternympha and Stygionympha. Ypthimomorpha (Marsh Ringlet) is an Afrotropical genus containing a single species. Closely related to the genus Ypthima. Several of the species of Ypthima from Asia have genitalia like those of Ypthimomorpha and more properly belong in this genus (Kielland, 1990d: 86). Emmel & Sourakov propose that Ypthimomorpha should be treated as a subgenus of Ypthima, a view with which Larsen (2005a) does not concur. *Ypthimomorpha itonia (Hewitson, 1865) Marsh Ringlet Ypthima itonia Hewitson, 1865. Transactions of the Entomological Society of London (3) 2: 287 (281-294). Ypthimomorpha itonia (Hewitson, 1865). Van Son, 1955. Ypthimomorpha itonia (Hewitson, 1865). Dickson & Kroon, 1978. Ypthimomorpha itonia (Hewitson, 1865). Pringle et al., 1994: 72. Ypthimomorpha itonia. Male (Wingspan 31 mm). Left – upperside; right – underside. Victoria Falls, Zimbabwe. 17 June 2006. J. Dobson. Images M.C. Williams ex Dobson Collection. 1 Ypthimomorpha itonia. Female. Left – upperside; right – underside. Pungwe, Zimbabwe. 16 April 1995. Images M.C. Williams ex J. Greyling Collection. ?Ypthimomorpha itonia. Male (?wet season form). Left – upperside; right – underside. Dzangha-Ndoki, Congo Republic. J. O’Dell. Images M.C.
    [Show full text]
  • Intensive Mowing Effect of One Patch on the Metapopulations of Two Phengaris Species*
    ENVIRONMENTAL SCIENCES INTENSIVE MOWING EFFECT OF ONE PATCH ON THE METAPOPULATIONS OF TWO PHENGARIS SPECIES* T. Bubová, M. Kulma, D. Koleška, V. Vrabec Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic In the second half of the 20th century, change of land use in the name of intensive agriculture was one of the most important factors caused significant loss of butterfly diversity in Europe. Phengaris nausithous and Phengaris teleius belong among the flagship species associated with wet meadows and are directly threatened by the intensive agriculture practises or management abandonment. Due to their very specific lifecycle, they are closely linked to their habitats and appropriate mowing manage- ment on their patches is thus crucial for their survival. Our research took place in Dolní Labe, Děčín, Czech Republic, on 16 patches and has been performed using Mark-Release-Recapture since 2009. This paper will illustrate how intensive mow- ing management, applied on only one of the patches, which forms only 9.4% of total locality size, can influence the entire local Phengaris metapopulation. The selected patch was intentionally mowed in the middle of flight season annually for four years. Even though, no significant effect was identified after the first year of study, after the second and third seasons, there was evidence of population decline of both studied species. Mark-Release-Recapture, land use management, Lepidoptera, conservation doi: 10.2478/sab-2018-0027 Received for publication on September 13, 2017 Accepted for publication on December 17, 2017 INTRODUCTION primarily due to patch destructions or other irrevers- ible changes performed on these meadows (S a l a et Cultural landscape and agricultural lands are histori- al., 2000; S u t c l i f f e et al., 2015).
    [Show full text]
  • Download Download
    OPEN ACCESS The Journal of Threatened Taxa is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use of artcles in any medium, reproducton, and distributon by providing adequate credit to the authors and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication A preliminary checklist of butterflies from the northern Eastern Ghats with notes on new and significant species records including three new reports for peninsular India Rajkamal Goswami, Ovee Thorat, Vikram Aditya & Seena Narayanan Karimbumkara 26 November 2018 | Vol. 10 | No. 13 | Pages: 12769–12791 10.11609/jot.3730.10.13.12769-12791 For Focus, Scope, Aims, Policies and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints contact <[email protected]> Publisher & Host Partners Member Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2018 | 10(13): 12769–12791 A preliminary
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]
  • At Home on Foreign Meadows: the Reintroduction of Two Maculineae Butterfly Species
    At Home onForeign Meadows: theReintroduction oftwo Maculinea ButterflySpecies CENTRALE LANDBOUWCATALOGUS 0000 0872 4219 Promotores: Prof. Dr. H.H.T.Prin s Hoogleraar in het Natuurbeheer ind eTrope ne n Ecologieva n Vertebraten Wageningen Universiteit Prof.Dr . P.M.Brakefiel d Hoogleraar Evolutiebiologie Universiteit Leiden Promotie commissie: Prof. Dr. L.E.M.Ve t Wageningen Universiteit Prof. Dr. J.M.va nGroenendae l Katholieke Universiteit Nijmegen Dr.J.A . Thomas NERC Centre of Ecology and Hydrology, England Dr. M.M. Kwak Rijksuniversiteit Groningen y; VX.JO27XV ,3o -> yAfHom e onForeign Meadows: theReintroduction oftwo Maculinea ButterflySpecies Irmgard Wynhoff Proefschrift ter verkrijging van degraa dva n doctor opgeza g van de rector magnificusva nWageninge n Universiteit Prof. Dr. Ir. L. Speelman, in hetopenbaa r te verdedigen opvrijda g 5oktobe r 2001 des namiddagst evie r uur ind eAul a Abstract Wynhoff, I.,2001 . At Home on Foreign Meadows:th e Reintroduction oftw o MaculineaButterfl y species. Doctoral Thesis. ISBN90-5808-461-2 . Wageningen Agricultural University, The Netherlands. Maculinea butterflies live asobligat e parasites of specific Myrmica hostant s in meadow and heathland habitat maintained by low intensity landuse.Change s in agriculture causedth edeclin e and extinction of many populations. InTh e Netherlands, Maculinea nausithousan d M.te/e/t/s disappeare d inth e 1970s.I n 1990,the ywer e reintroduced following the recommendations ofth e IUCN.Thi s study focuses onth eevaluatio n ofthi s reintroduction intoth e nature reserve Moerputten inth e province of Northern Brabant. Population establishment and dispersalwer e monitoredan daccompanie d by researcho nth e impact ofth e reintroduction onspecies-specifi c genetic composition and behaviour.Maculinea teleiusimmediatel y established itself onon e meadow, where the population still occurs today.
    [Show full text]
  • Check List of Noctuid Moths (Lepidoptera: Noctuidae And
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately.
    [Show full text]
  • Refining the Diagnostic Characters and Distribution of Hermeuptychia Intricata (Nymphalidae: Satyrinae: Satyrini)
    44 TROP. LEPID. RES., 24(1): 44-51, 2014 WARREN ET AL.: Diagnosis of Hermeuptychia intricata REFINING THE DIAGNOSTIC CHARACTERS AND DISTRIBUTION OF HERMEUPTYCHIA INTRICATA (NYMPHALIDAE: SATYRINAE: SATYRINI) Andrew D. Warren1, Denise Tan1, Keith R. Willmott1 and Nick V. Grishin2 1McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Rd., UF Cultural Plaza, PO Box 112710, Gainesville, FL, USA 32611-2710; [email protected] 2Howard Hughes Medical Institute, Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA 75390-9050 Abstract - The absence of androconia on the dorsal surface of the wings is established as an external diagnostic character of male Hermeuptychia intricata Grishin, 2014, that distinguishes this newly described species from males of the sympatric H. sosybius (Fabricius, 1793). Additional United States records of H. intricata are reviewed, extending its distribution to include North Carolina, Georgia, Mississippi, and central Texas. Observations on the phenology and behavior of H. intricata and H. sosybius in northern Florida are given. Key words: cryptic species, identification, southeastern United States, sympatry. Resumen - Se establece la ausencia de androconia en la superficie dorsal de las alas como un carácter diagnóstico externo del macho de Hermeuptychia intricata Grishin, 2014, para distinguir esta especie de reciente descripción de los machos simpátricos de H. sosybius (Fabricius, 1793). Se revisan registros adicionales de H. intricata de los Estados Unidos, cuales amplían su distribución para incluir North Carolina, Georgia, Mississippi y Texas central. Se dan observaciones sobre la fenología y el comportamiento de H. intricata y H.
    [Show full text]
  • E-Moth May 2020
    E-moth Moths Count Update May 2020 We hope that this newsletter finds you well in these extraordinary and challenging times. For those fortunate enough to have a garden, moth recording is providing a very welcome wildlife tonic while much of the countryside remains out of reach. Even without a garden, moths will come to an outside light or to a lighted window so there is still some opportunity to enjoy and record sightings. Indeed, moth recording seems to be booming in Britain during the coronavirus lockdown, with increases in orders for traps and other equipment from suppliers. A very mild winter and the recent long warm spell of weather across much of the UK have led to some early emergences of moth species this spring. This forms part of a significant long-term trend of generally earlier emergence among moths. For example, a provisional assessment of single-brooded species in the Atlas of Britain & Ireland’s Larger Moths showed an average advance of 5 days since the 1970s. But while moth recorders might welcome the Emperor Moths (Julian Dowding) early appearance of a favourite species in their garden trap, the implications of these changes for the moths themselves are only just starting to become clear. A recent study of 130 species of moths and butterflies in Britain showed that only species with more than one generation each year benefitted from emerging earlier. In such species, the earlier emergence of the first generation led to greater abundance in the second brood. For single-brooded species, however, there was no clear relationship between earlier emergence and abundance trends.
    [Show full text]
  • Increased Cave Use by Butterflies and Moths
    International Journal of Speleology 50 (1) 15-24 Tampa, FL (USA) January 2021 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Increased cave use by butterflies and moths: a response to climate warming? Otto Moog 1, Erhard Christian 2*, and Rudolf Eis3 1Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Gregor Mendel 33 Str., 1180 Vienna, Austria 2 Institute of Zoology, University of Natural Resources and Life Sciences, Gregor Mendel 33 Str., 1180 Vienna, Austria 3Waldegg 9a, 2754 Waldegg, Austria Abstract: Between 2015 and 2019, the list of Lepidoptera from “cave” habitats (i.e., proper caves, rock shelters and artificial subterranean structures) in Austria grew from 17 to 62 species, although the effort of data collection remained nearly constant from the late 1970s onwards. The newly recorded moths and butterflies were resting in caves during daytime in the the warm season, three species were also overwintering there. We observed Catocala elocata at 28 cave inspections, followed by Mormo maura (18), Catocala nupta (7), Peribatodes rhomboidaria, and Euplagia quadripunctaria (6). More than half of the species have been repeatedly observed in caves in Austria or abroad, so their relationship with such sites is apparently not completely random. Since the increase of records in Austria coincided with a considerable rise in the annual number of hot days (maximum temperatures ≥30°C) from 2015 onwards, we interpret the growing inclination of certain Lepidoptera towards daytime sheltering in caves as a behavioral reaction to climate warming. Keywords: Lepidoptera, cave use, diurnal retreat, refuge-site preference, climate change Received 22 October 2020; Revised 26 December 2020; Accepted 29 December 2020 Citation: Moog O., Christian E.
    [Show full text]