Sichuan, 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chinese Mountain Cat 1 Chinese Mountain Cat
Chinese mountain cat 1 Chinese mountain cat Chinese Mountain Cat[1] Conservation status [2] Vulnerable (IUCN 3.1) Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Felis Species: F. bieti Binomial name Felis bieti Milne-Edwards, 1892 Distribution of the Chinese Mountain Cat (in green) The Chinese Mountain Cat (Felis bieti), also known as the Chinese Desert Cat, is a small wild cat of western China. It is the least known member of the genus Felis, the common cats. A 2007 DNA study found that it is a subspecies of Felis silvestris; should the scientific community accept this result, this cat would be reclassified as Felis silvestris bieti.[3] Some authorities regard the chutuchta and vellerosa subspecies of the Wildcat as Chinese Mountain Cat subspecies.[1] Chinese mountain cat 2 Description Except for the colour of its fur, this cat resembles a European Wildcat in its physical appearance. It is 27–33 in (69–84 cm) long, plus a 11.5–16 in (29–41 cm) tail. The adult weight can range from 6.5 to 9 kilograms (14 to 20 lb). They have a relatively broad skull, and long hair growing between the pads of their feet.[4] The fur is sand-coloured with dark guard hairs; the underside is whitish, legs and tail bear black rings. In addition there are faint dark horizontal stripes on the face and legs, which may be hardly visible. The ears and tail have black tips, and there are also a few dark bands on the tail.[4] Distribution and ecology The Chinese Mountain Cat is endemic to China and has a limited distribution over the northeastern parts of the Tibetan Plateau in Qinghai and northern Sichuan.[5] It inhabits sparsely-wooded forests and shrublands,[4] and is occasionally found in true deserts. -
Legislative Council Panel on Development Hong Kong Special Administrative Region's Post-Quake Reconstruction Support Work in S
CB(1)112/08-09(01) Legislative Council Panel on Development Hong Kong Special Administrative Region’s Post-quake Reconstruction Support Work in Sichuan 1. In July 2008, the Legislative Council (LegCo) approved the funding of $2 billion as Hong Kong Special Administrative Region’s financial commitment to the reconstruction support work in Sichuan at the initial stage and the establishment of the Trust Fund in Support of Reconstruction in the Sichuan Earthquake Stricken Areas as a vehicle to receive the HKSAR Government’s funding and public donation. As a follow-up, the HKSAR Government signed a cooperation arrangement with the Sichuan Provincial Government on 11 October 2008 setting out the project management and funding arrangements on HKSAR’s support work in the Sichuan quake-stricken areas. A LegCo Brief (ref: CMAB081011) was issued on the same day updating Members on the latest progress. 2. As noted in the LegCo Brief, we will report to the relevant panel of the LegCo the latest progress in due course. Accordingly, we will brief the Development Panel of the LegCo on 28 October 2008. Members are invited to refer to the LegCo Brief issued on 11 October 2008 (copy attached). Development Bureau Constitutional and Mainland Affairs Bureau October 2008 1 LEGISLATIVE COUNCIL BRIEF Hong Kong Special Administrative Region's Post-quake Reconstruction Support Work in Sichuan Introduction At the meeting of the Finance Committee of the Legislative Council (LegCo) on 18 July 2008, Members approved the creation of a new commitment of $2 billion as Hong Kong Special Administrative Region (HKSAR)'s financial commitment to the reconstruction support work in Sichuan at the initial stage and the establishment of the Trust Fund in Support of Reconstruction in the Sichuan Earthquake Stricken Areas (The Fund) as a vehicle to receive the HKSAR Government’s funding and public donation. -
PICA Project Report (Action A2.2 & 2.3)
PICA Project Report (Action A2.2 & 2.3) Investigation of Pallas’s cat activity patterns and temporal interactions with sympatric species Authors: Katarzyna Ruta, Gustaf Samelius, David Barclay, Emma Nygren PICA - “Conservation of the Pallas’s cat through capacity building, research, and global planning” 1. Introduction: 1.1 Activity patterns of wild felids: Activity patterns form a part of species’ adaptation to their environment (Beltran & Delibes, 1994) and are therefore a fundamental aspect of animal behaviour (Nielsen, 1983; Weller & Bennett, 2001). Felids are generally considered to be crepuscular and nocturnal in their activity (Kitchener, 1991), although they are well adapted to function in a wide range of light conditions (Sunquist & Sunquist, 2002). Numerous abiotic pressures and biotic interactions are known to shape the temporal behaviour of (cat-like) carnivores (Marinho et al., 2018), including changes in temperature (Beltran & Delibes, 1994; Podolski et al., 2013), light (Huck et al., 2017; Heurich et al., 2014) and season (Podolski et al., 2013; Manfredi et al., 2011), sex and reproductive status of the animal (Kolbe & Squires, 2007; Schmidt, 1999; Schmidt et al., 2009), predation risk (Caro, 2005; Farías et al., 2012) and human disturbance (Wolf & Ale, 2009; Ale & Brown, 2009). Owing to the dietary constraints of carnivores whose preys have their own well-defined circadian rhythms (Halle, 2000; Zielinski, 2000), the availability and vulnerability of prey is, however, considered as one of the main influences on predator temporal activity (Zielinski, 1988; Lodé, 1995). According to Optimal Foraging Theory, predators are expected to synchronize their daily activity with the activity of their most profitable prey, increasing the probability of encounters while reducing energy expenditure (MacArthur & Pianka, 1966; Monterroso et al., 2013; Emmons, 1987). -
Origin of the Egyptian Domestic Cat
UPTEC X 12 012 Examensarbete 30 hp Juni 2012 Origin of the Egyptian Domestic Cat Carolin Johansson Molecular Biotechnology Programme Uppsala University School of Engineering UPTEC X 12 012 Date of issue 2012-06 Author Carolin Johansson Title (English) Origin of the Egyptian Domestic Cat Title (Swedish) Abstract This study presents mitochondrial genome sequences from 22 Egyptian house cats with the aim of resolving the uncertain origin of the contemporary world-wide population of Domestic cats. Together with data from earlier studies it has been possible to confirm some of the previously suggested haplotype identifications and phylogeny of the Domestic cat lineage. Moreover, by applying a molecular clock, it is proposed that the Domestic cat lineage has experienced several expansions representing domestication and/or breeding in pre-historical and historical times, seemingly in concordance with theories of a domestication origin in the Neolithic Middle East and in Pharaonic Egypt. In addition, the present study also demonstrates the possibility of retrieving long polynucleotide sequences from hair shafts and a time-efficient way to amplify a complete feline mitochondrial genome. Keywords Feline domestication, cat in ancient Egypt, mitochondrial genome, Felis silvestris libyca Supervisors Anders Götherström Uppsala University Scientific reviewer Jan Storå Stockholm University Project name Sponsors Language Security English Classification ISSN 1401-2138 Supplementary bibliographical information Pages 123 Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687 Origin of the Egyptian Domestic Cat Carolin Johansson Populärvetenskaplig sammanfattning Det är inte sedan tidigare känt exakt hur, när och var tamkatten domesticerades. -
Ancient Genomes Reveal Tropical Bovid Species in the Tibetan Plateau Contributed to the Prevalence of Hunting Game Until the Late Neolithic
Ancient genomes reveal tropical bovid species in the Tibetan Plateau contributed to the prevalence of hunting game until the late Neolithic Ningbo Chena,b,1, Lele Renc,1, Linyao Dud,1, Jiawen Houb,1, Victoria E. Mulline, Duo Wud, Xueye Zhaof, Chunmei Lia,g, Jiahui Huanga,h, Xuebin Qia,g, Marco Rosario Capodiferroi, Alessandro Achillii, Chuzhao Leib, Fahu Chenj, Bing Sua,g,2, Guanghui Dongd,j,2, and Xiaoming Zhanga,g,2 aState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 650223 Kunming, China; bKey Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, China; cSchool of History and Culture, Lanzhou University, 730000 Lanzhou, China; dCollege of Earth and Environmental Sciences, Lanzhou University, 730000 Lanzhou, China; eDepartment of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom; fGansu Provincial Institute of Cultural Relics and Archaeology, 730000 Lanzhou, China; gCenter for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China; hKunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China; iDipartimento di Biologia e Biotecnologie “L. Spallanzani,” Università di Pavia, 27100 Pavia, Italy; and jCAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101 Beijing, China Edited by Zhonghe Zhou, Chinese Academy of Sciences, Beijing, China, and approved September 11, 2020 (received for review June 7, 2020) Local wild bovids have been determined to be important prey on and 3,000 m a.s.l. -
Beijing - Hand-Rearing a Chinese Goral at RZSS Edinburgh Zoo Ceri Robertson
RATEL Vol. 38, No.1., March 2011 pp. 7-14 Beijing - Hand-rearing a Chinese Goral at RZSS Edinburgh Zoo Ceri Robertson Chinese gorals are one of 26 species of the subfamily Caprinae or goat antelope species. They can be found scattered around North India, Burma, South east Siberia and south Thailand. Chinese gorals have very well designed bodies, which allow them to inhabit steep rocky mountainous cliffs, with a range of both evergreen and deciduous forests. As well as the different habitat they can also be found living in various different climates, ranging from dry to moist snowy climates. Physical description vary a little bit between the males and females in that males are a little heavier weighing in at around 28-42kg and females would be around 22-35kg in bodyweight. The height is also a difference between the sexes in that the males are also a little taller than females. Males are around 69-78cm tall and are around 106-117cm in body length. Females as already mentioned, are a little smaller and are around 50 -75cm protocol on new born calves. The calf was tall, however they are both around about the same body removed from the existing outdoor enclosure length with the females being about 106 -118cm in body where her father was still present and placed in a length. heated indoor enclosure. Both sexes are brownish, grey to red in colour, with the The indoor enclosure was a pen in Edinburgh distinctive white patch around the throat area. Also on Zoo’s Pudu House. -
Tissue Specific Regulatory Network Annotation for Non-Coding Elements
Quantitative Biology 2020, 8(1): 43–50 https://doi.org/10.1007/s40484-020-0195-4 RESEARCH ARTICLE ZokorDB: tissue specificregulatorynetwork annotation for non-coding elements of plateau zokor Jingxue Xin1,6,7,†, Junjun Hao2,†, Lang Chen1, Tao Zhang3, Lei Li1,5,7, Luonan Chen3,5, Wenmin Zhao4, Xuemei Lu2,5, Peng Shi2,5,*, Yong Wang1,5,7,* 1 CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2 State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 3 Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 4 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 5 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China 6 Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA 7 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected], [email protected] Received September 4, 2019; Revised December 16, 2019; Accepted December 23, 2019 Background: Plateau zokor inhabits in sealed burrows from 2,000 to 4,200 meters at Qinghai-Tibet Plateau. This extreme living environment makes it a great model to study animal adaptation to hypoxia, low temperature, and high carbon dioxide concentration. Methods: We provide an integrated resource, ZokorDB, for tissue specific regulatory network annotation for zokor. -
A Pilot Study on Home Range and Habitat Use of Chinese Goral (Naemorhedus Griseus): Exploring GPS Tracking Data in Cliff Landscape by Three Estimation Methods
A Pilot Study on Home Range and Habitat Use of Chinese Goral (Naemorhedus Griseus): Exploring GPS Tracking Data in Cliff Landscape by Three Estimation Methods Yang Teng Beijing Forestry University Shupei TANG Sichuan Academy of Environmental Policy Research and Planning Dalai Menghe Northeast Forestry University Liji Wu Inner Mongolia Saihanwula National Nature Reserve Administration Zhiqing HAN Inner Mongolia Saihanwula National Nature Reserve Administration Yingying HAN Beijing Forestry University Weidong BAO ( [email protected] ) Beijing Forestry University Research Article Keywords: Chinese goral, home range, minimum convex polygon, kernel density estimation, α-local convex hull Posted Date: July 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-597882/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Home range size estimation is a crucial basis for developing effective conservation strategies and provides important insights into animal behavior and ecology. This study aimed at analyzing the home range variations, the inuence of altitude in habitat selection, and comparing three methods in home range estimation of Chinese gorals (Naemorhedus griseus) living at a cliff landscape. The results indicated that there were signicant differences between the annual home range sizes of individual animals but there was no difference in their seasonal home range sizes based on GPS tracking data of ve female Chinese gorals from February 2015 to September 2018. The monthly home ranges decreased dramatically in May, June and July due to birth-giving. Notable seasonal variations were found in the micro-habitats of the Chinese gorals, as reected by the altitude they inhabit, with higher altitude habitats used in spring and lower altitude habitats used in winter. -
Urban Expansion and Urban Environmental Evaluation in Chengdu, China
URBAN EXPANSION AND URBAN ENVIRONMENTAL EVALUATION IN CHENGDU, CHINA By Shiqi Tao A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Geography – Master of Science 2019 ABSTRACT URBAN EXPANSION AND URBAN ENVIRONMENTAL EVALUATION IN CHENGDU, CHINA By Shiqi Tao Environmental consequences resulting from urbanization jeopardize the life quality and social welfare of urban residents. To date, studies have focused on the urban environment by using integrated assessment methods and providing one evaluation result for the whole geographic area within an administrative boundary. These studies lack consideration of spatial heterogeneity, failing to fully understand the urban environmental statuses and dynamics at the pixel scale. Therefore, this research aims to fill this gap by systematically evaluating the urban environment at every single spatial unit of urban land against the background of urban expansion in Chengdu, a megacity in western China. Guided by a proposed three-dimensional (self, neighborhood and accessibility) theoretical framework, this study uses remote sensing and GIS data and adapts the catastrophe theory to evaluate Chengdu’s urban environment in a spatially explicit manner. Results from change detection of the urban area in Chengdu show a high-speed expansion from the urban center towards all directions, especially southwest during 2000-2015. Environmental assessment analysis reveals an improved urban center but degraded outskirts regarding environmental conditions. The regression analysis suggests a negative effect of rapid urban expansion on the environment, while this effect can be alleviated through better planning strategies. Therefore, it is suggested that policy makers should balance the speed of urban expansion and urban environmental planning to provide a better living environment for urban residents in Chengdu. -
GIS Assessment of the Status of Protected Areas in East Asia
CIS Assessment of the Status of Protected Areas in East Asia Compiled and edited by J. MacKinnon, Xie Yan, 1. Lysenko, S. Chape, I. May and C. Brown March 2005 IUCN V 9> m The World Conservation Union UNEP WCMC Digitized by the Internet Archive in 20/10 with funding from UNEP-WCMC, Cambridge http://www.archive.org/details/gisassessmentofs05mack GIS Assessment of the Status of Protected Areas in East Asia Compiled and edited by J. MacKinnon, Xie Yan, I. Lysenko, S. Chape, I. May and C. Brown March 2005 UNEP-WCMC IUCN - The World Conservation Union The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of UNEP, UNEP-WCMC, and IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. UNEP-WCMC or its collaborators have obtained base data from documented sources believed to be reliable and made all reasonable efforts to ensure the accuracy of the data. UNEP-WCMC does not warrant the accuracy or reliability of the base data and excludes all conditions, warranties, undertakings and terms express or implied whether by statute, common law, trade usage, course of dealings or otherwise (including the fitness of the data for its intended use) to the fullest extent permitted by law. The views expressed in this publication do not necessarily reflect those of UNEP, UNEP-WCMC, and IUCN. Produced by: UNEP World Conservation Monitoring Centre and IUCN, Gland, Switzerland and Cambridge, UK Cffti IUCN UNEP WCMC The World Conservation Union Copyright: © 2005 UNEP World Conservation Monitoring Centre Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. -
Chinese Literature in the Second Half of a Modern Century: a Critical Survey
CHINESE LITERATURE IN THE SECOND HALF OF A MODERN CENTURY A CRITICAL SURVEY Edited by PANG-YUAN CHI and DAVID DER-WEI WANG INDIANA UNIVERSITY PRESS • BLOOMINGTON AND INDIANAPOLIS William Tay’s “Colonialism, the Cold War Era, and Marginal Space: The Existential Condition of Five Decades of Hong Kong Literature,” Li Tuo’s “Resistance to Modernity: Reflections on Mainland Chinese Literary Criticism in the 1980s,” and Michelle Yeh’s “Death of the Poet: Poetry and Society in Contemporary China and Taiwan” first ap- peared in the special issue “Contemporary Chinese Literature: Crossing the Bound- aries” (edited by Yvonne Chang) of Literature East and West (1995). Jeffrey Kinkley’s “A Bibliographic Survey of Publications on Chinese Literature in Translation from 1949 to 1999” first appeared in Choice (April 1994; copyright by the American Library Associ- ation). All of the essays have been revised for this volume. This book is a publication of Indiana University Press 601 North Morton Street Bloomington, IN 47404-3797 USA http://www.indiana.edu/~iupress Telephone orders 800-842-6796 Fax orders 812-855-7931 Orders by e-mail [email protected] © 2000 by David D. W. Wang All rights reserved No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. The Association of American University Presses’ Resolution on Permissions constitutes the only exception to this prohibition. The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences— Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984. -
The African Wild Cat, Felis Silvestris (Forster, 1780) and Synonym Felis Silvestris Cafra (Desmarest, 1822): an Overview
Chapter 1: General introduction CHAPTER 1 General introduction 1. The African wild cat, Felis silvestris (Forster, 1780) and synonym Felis silvestris cafra (Desmarest, 1822): an overview The African wild cat (Felis silvestris) has a wide distributional range (Fig. 1.1). However there is a paucity of information on all aspects of its biology. Since the wild cat is the ancestor of the domestic cat and they can interbreed and produce fertile offspring, hybridisation with the domestic form may be the biggest threat to the survival of wild cats today (Nowell & Jackson, 1996). 1.1 Phylogenetic relations and taxonomic classification Felid classification has a long and complex history fluctuating between extremes of “splitting” and “lumping” of the species (see historical review by Werdelin in Nowell & Jackson, 1996). Even on the subspecies level there has been considerable debate between the traditional taxonomic approach and the more contemporary approach using knowledge from population biology and genetics (Nowell & Jackson, 1996). The recent revolution in sequencing of genomes and new technologies to probe DNA has lead to the development of valuable new tools and methods for investigating phylogenetic relationships. Consequently, the first clearly resolved Feliday family tree has only recently been constructed (Johnson, Eizirik, Pecon-Slattery, Murphy, Antunes, Teeling & O’Brien, 2006, O’Brien & Johnson, 2007). The 37 felid species were grouped into eight lineages by molecular analysis, consistent with observations that lineages shared morphological, biological, physiological characteristics found only in their group. The recent findings suggest that all modern cats are descended from one of several Pseudaelurus species that lived in Asia around 11 million years ago (O’Brien & Johnson, 2007).