F. Gherlinzoni CD33: Gemtuzumab Ozogamicin

Total Page:16

File Type:pdf, Size:1020Kb

F. Gherlinzoni CD33: Gemtuzumab Ozogamicin 1ST CUNEO CITY IMMUNOTHERAPY CONFERENCE 17-18 Maggio 2018 PASSIVE IMMUNOTHERAPY ANTIBODY-DRUG CONJUGATES GEMTUZUMAB OZOGAMICIN Do#. Filippo Gherlinzoni Direore Unità Operava Complessa di Ematologia Ospedale “Ca’ Foncello” - Treviso IL RIECCOLO Blood Reviews 28 (2014) 143–153 Contents lists available at ScienceDirect Blood Reviews journal homepage: www.elsevier.com/locate/blre REVIEW The past and future of CD33 as therapeutic target in acute myeloid leukemia a a,b a,b,c, George144 S. Laszlo , Elihu H. Estey , Roland B. Walter ⁎G.S. Laszlo et al. / Blood Reviews 28 (2014) 143–153 a Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA b Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA c Department of Epidemiology, University of Washington, Seattle, WA, USA as cytokine-induced cellular proliferation [14,33]. Engagement with CD33 antibodies has similarly been shown to affect cytokine and article info abstract chemokine secretion by monocytes, although both increases [34] or Keywords: CD33 is a myeloid differentiation antigen with endocytic properties.decreases It is broadly[33] expressedhave on been acute myeloidobserved in vitro. Acute myeloid leukemia leukemia (AML) blasts and, possibly, some leukemic stem cells and has therefore been exploited as target for Antibody therapeutic antibodies for many years. The improved survival seen in many patients when the antibody-drug Antibody-drug conjugate conjugate, gemtuzumab ozogamicin, is added to conventional chemotherapy validates this approach. However, fi 2.3. Endocytic properties of CD33 Bispeci c antibody many attempts with unconjugated or conjugated antibodies have been unsuccessful, highlighting the challenges BiTE of targeting CD33 in AML. With the development of improved immunoconjugates and CD33-directed strategies CD33 fi Chimeric antigen receptor that harness immune effector cells, therapeutics with enhanced ef cacy may soon become available. Toxic effects A therapeuticallyfi important characteristic of CD33 is its internaliza- Gemtuzumab ozogamicin on normal hematopoietic cells may increase in parallel with this increased ef cacy and demand new supportive Immunotherapy care measures, including possibly rescue with donor cells, to minimizetion when morbidity bound and mortality by bivalent from drug- antibodies; this process is slower than that Radioimmunoconjugate induced cytopenias and to optimize treatment outcomes with these agents in patients with AML. observed© 2014 Elsevier with other Ltd. All rights cell surface reserved. antigens such as the transferrin recep- tor [35–43]. Mechanistic studies indicate that endocytosis is largely lim- ited and determined by the intracellular domain of CD33 and may be regulated by tyrosine phosphorylation and perhaps ubiquitylation of 1. Introduction 2. Physiologic characteristics of CD33 the cytoplasmic tail, although some internalization of CD33/antibody Since the invention of hybridoma technology 4 decades ago, mono- CD33 is a member of the sialiccomplexes acid-binding occursimmuno in aglobulin-like phosphorylation-independent manner [41–43]. clonal antibodies have revolutionized the care of patients with cancer. lectins (Siglecs), a discrete subset of the immunoglobulin (Ig) super- An increasing number of unconjugated, toxin-loaded, and radiolabeled family molecules (Fig. 1) [4,5]Related. This 67kD to single this pass endocytic transmembrane property, engagement of CD33 with bivalent antibodies have shown anti-tumor efficacy and have been approved glycoprotein is characterized byantibodies an amino-terminal leads V-set to a Ig-like decrease domain (“modulation”) of CD33 cell surface levels for indications in an expanding list of malignancies, including acute that mediates sialic acid binding and a C2-set Ig-like domain in its extra- myeloid leukemia (AML) [1,2]. AML has been a paradigm for the thera- cellular portion [6–8]. Alternative[35,40,44] splicing. Although of CD33 RNA new leads CD33 to a sites are continuously expressed [40], peutic use of monoclonal antibodies, in no small part because malignant shorter isoform that is expressedthis on feature the cell surface. could This reduce isoform the lacks efficacy of CD33-directed therapeutics cells are readily accessible and express well-defined cell surface anti- the V-set Ig-like domain as well as the disulfide bond linking the gens. Most efforts to date have focused on exploiting CD33 as a target V- and C2-set Ig-like domains.because While the of biological the reduction relevance of of available this target binding sites. in this disease, and the CD33-directed immunoconjugate, gemtuzumab splicing process is unknown, it may be important for the development ozogamicin (GO), was the first anti-cancer antibody-drug conjugate to and use of CD33-directed drugs. Specifically, a dominant epitope, recog- obtain marketing approval in the U.S. [3] Still, targeting CD33 has nized by the majority of initial3. CD33 CD33 antibodies, in AML is located and other on the malignanciesV-set proven challenging, as perhaps best reflected by the eventual market Ig-like domain. Thus, some CD33 antibody-based therapeutics will only withdrawal of GO because of concerns over excess toxicity and lack of recognize the full-length but not the shorter splice isoform of CD33 fi efficacy. In this article, we will summarize the biologic characteristics [9,10]. Depending on how antigen positivity is de ned, CD33 is found on at of CD33, emphasizing the properties that make it appealing as a thera- The cytoplasmic tail of CD33least contains a subset 2 conserved of blasts tyrosine-based in nearly all AML patients [45,46], consistent with peutic target, appraise attempts made thus far with CD33-directed ther- inhibitory signaling motifs, which, upon phosphorylation by Src family its characteristic as a myeloid differentiation antigen. Although surface apies, andFig. discuss 1. Structure current and of CD33. future Scheme therapeutic depicting directions the domain in this fi structureeld. kinases, of CD33 provide as well docking as indi- sites for the recruitment and activation of Src Laszlo G.S. et al Blood Reviews 2014, 143-153 homology-2 (SH2) domain-containing tyrosine phosphatases such as vidual amino acids that have been implicated in phosphorylation or ubiquitylation events. levels show considerable inter-patient variability (N2-log fold) [15,45, SHP-1 and SHP-2. While the signaling events downstream of CD33 4 Abbreviations: C2, C2-set Ig-like domain; P, phospho-; SFKs, Src-familyremain kinases; poorly understood,Ub, ubiq- these46] phosphatases, CD33 expression may not only is dephos- relatively limited with an average of ~10 ⁎ Corresponding author at: Clinical Research Division, Fred Hutchinson Cancer Research uitin; V, V-set Ig-like domain. phorylate CD33 as part of a negative feedback loop but also dephos- Center; 1100 Fairview Ave N, D2-190; Seattle, WA 98109-1024, USA. Tel.: +1 206 667 molecules/AML blast [15,47] and is typically even lower in immature 3599; fax: +1 206 667 5255. phorylate and negatively regulate nearby receptors+ [11- –13]. Through+ + - E-mail address: [email protected] (R.B. Walter). its SH2 domain, suppressor(e.g. of cytokine CD34 signaling/CD38 3/CD123 (SOCS3) canor CD34 /CD38 ) cell subsets [46,48]. compete with SHP-1 or SHP-2 for binding to phosphorylated CD33 and CD33 expression correlates with disease characteristics: for example, http://dx.doi.org/10.1016/j.blre.2014.04.001recruit the ECS (Elongin B/C-Cul2/Cul5-SOCS-box protein) E3 ubiquitin expression is homogeneous and typically bright in acute promyelocytic 0268-960X/©ligase 2014 Elsevier complex, Ltd. All rights which reserved. ultimately leads to ubiquitylation and results in leukemias (APL) [49,50]. High levels of CD33 are also associated with accelerated proteasomal degradation of CD33 (Fig. 1) [14]. NPM1 as well as high allelic FLT3/ITD mutations, while expression is generally low with core-binding factor translocations [45,46,51]. Likely 2.1. CD33 as myeloid differentiation antigen at least partially related to such associations, it has been a recurrent observation in pediatric trials that, on average, patients whose AML In healthy individuals, CD33 is primarily a myeloid differentiation blasts display high CD33 levels experience inferior disease-free and antigen with initial expression at the very early stages of myeloid cell overall survival when treated with conventional chemotherapy that development: it is found on normal multipotent myeloid precursors, does not include CD33-targeted agents [52,53]; similar data from unipotent colony-forming cells, and maturing granulocytes and mono- adult patients is currently not available. In AML patients, CD33 can cytes. On CD34+/CD33+ bone marrow cells, CD33 expression has also be detected as soluble protein in the circulation and may provide been estimated to average around 8 × 103 molecules/cell, although some prognostic information [54,55]; however, its role as predictive levels vary widely (1–20 × 103 molecules/cell) [15]. Expression is biomarker has not been studied in detail. It is also unclear as to what down-regulated to lower levels on neutrophils (~2–2.5 × 103 mole- degree, if any, soluble CD33 might interfere with the therapeutic effica- cules/cell) and macrophages but retained on circulating monocytes cy of CD33 antibodies, although some in vitro evidence suggests that and dendritic cells [15–20]. CD33 can also be displayed on subsets of soluble CD33 may not impact the activity of CD33-targeted immuno-
Recommended publications
  • Antibody–Drug Conjugates
    Published OnlineFirst April 12, 2019; DOI: 10.1158/1078-0432.CCR-19-0272 Review Clinical Cancer Research Antibody–Drug Conjugates: Future Directions in Clinical and Translational Strategies to Improve the Therapeutic Index Steven Coats1, Marna Williams1, Benjamin Kebble1, Rakesh Dixit1, Leo Tseng1, Nai-Shun Yao1, David A. Tice1, and Jean-Charles Soria1,2 Abstract Since the first approval of gemtuzumab ozogamicin nism of activity of the cytotoxic warhead. However, the (Mylotarg; Pfizer; CD33 targeted), two additional antibody– enthusiasm to develop ADCs has not been dampened; drug conjugates (ADC), brentuximab vedotin (Adcetris; Seat- approximately 80 ADCs are in clinical development in tle Genetics, Inc.; CD30 targeted) and inotuzumab ozogami- nearly 600 clinical trials, and 2 to 3 novel ADCs are likely cin (Besponsa; Pfizer; CD22 targeted), have been approved for to be approved within the next few years. While the hematologic cancers and 1 ADC, trastuzumab emtansine promise of a more targeted chemotherapy with less tox- (Kadcyla; Genentech; HER2 targeted), has been approved to icity has not yet been realized with ADCs, improvements treat breast cancer. Despite a clear clinical benefit being dem- in technology combined with a wealth of clinical data are onstrated for all 4 approved ADCs, the toxicity profiles are helping to shape the future development of ADCs. In this comparable with those of standard-of-care chemotherapeu- review, we discuss the clinical and translational strategies tics, with dose-limiting toxicities associated with the mecha- associated with improving the therapeutic index for ADCs. Introduction in antibody, linker, and warhead technologies in significant depth (2, 3, 8, 9). Antibody–drug conjugates (ADC) were initially designed to leverage the exquisite specificity of antibodies to deliver targeted potent chemotherapeutic agents with the intention of improving Overview of ADCs in Clinical Development the therapeutic index (the ratio between the toxic dose and the Four ADCs have been approved over the last 20 years (Fig.
    [Show full text]
  • Whither Radioimmunotherapy: to Be Or Not to Be? Damian J
    Published OnlineFirst April 20, 2017; DOI: 10.1158/0008-5472.CAN-16-2523 Cancer Perspective Research Whither Radioimmunotherapy: To Be or Not To Be? Damian J. Green1,2 and Oliver W. Press1,2,3 Abstract Therapy of cancer with radiolabeled monoclonal antibodies employing multistep "pretargeting" methods, particularly those has produced impressive results in preclinical experiments and in utilizing bispecific antibodies, have greatly enhanced the thera- clinical trials conducted in radiosensitive malignancies, particu- peutic efficacy of radioimmunotherapy and diminished its toxi- larly B-cell lymphomas. Two "first-generation," directly radiola- cities. The dramatically improved therapeutic index of bispecific beled anti-CD20 antibodies, 131iodine-tositumomab and 90yttri- antibody pretargeting appears to be sufficiently compelling to um-ibritumomab tiuxetan, were FDA-approved more than a justify human clinical trials and reinvigorate enthusiasm for decade ago but have been little utilized because of a variety of radioimmunotherapy in the treatment of malignancies, particu- medical, financial, and logistic obstacles. Newer technologies larly lymphomas. Cancer Res; 77(9); 1–6. Ó2017 AACR. "To be, or not to be, that is the question: Whether 'tis nobler in the pembrolizumab (anti-PD-1), which are not directly cytotoxic mind to suffer the slings and arrows of outrageous fortune, or to take for cancer cells but "release the brakes" on the immune system, arms against a sea of troubles, And by opposing end them." Hamlet. allowing cytotoxic T cells to be more effective at recognizing –William Shakespeare. and killing cancer cells. Outstanding results have already been demonstrated with checkpoint inhibiting antibodies even in far Introduction advanced refractory solid tumors including melanoma, lung cancer, Hodgkin lymphoma and are under study for a multi- Impact of monoclonal antibodies on the field of clinical tude of other malignancies (4–6).
    [Show full text]
  • Monoclonal Antibodies
    MONOCLONAL ANTIBODIES ALEMTUZUMAB ® (CAMPATH 1H ) I. MECHANISM OF ACTION Antibody-dependent lysis of leukemic cells following cell surface binding. Alemtuzumab is a recombinant DNA-derived humanized monoclonal antibody that is directed against surface glycoprotein CD52. CD52 is expressed on the surface of normal and malignant B and T lymphocytes, NK cells, monocytes, macrophages, a subpopulation of granulocytes, and tissues of the male reproductive system (CD 52 is not expressed on erythrocytes or hematopoietic stem cells). The alemtuzumab antibody is an IgG1 kappa with human variable framework and constant regions, and complementarity-determining regions from a murine monoclonal antibody (campath 1G). II. PHARMACOKINETICS Cmax and AUC show dose proportionality over increasing dose ranges. The overall average half-life is 12 days. Peak and trough levels of Campath rise during the first weeks of Campath therapy, and approach steady state by week 6. The rise in serum Campath concentration corresponds with the reduction in malignant lymphocytes. III. DOSAGE AND ADMINISTRATION Campath can be administered intravenously or subcutaneously. Intravenous: Alemtuzumab therapy should be initiated at a dose of 3 mg administered as a 2-hour IV infusion daily. When the 3 mg dose is tolerated (i.e., ≤ Grade 2 infusion related side effects), the daily dose should be escalated to 10mg and continued until tolerated (i.e., ≤ Grade 2 infusion related side effects). When the 10 mg dose is tolerated, the maintenance dose of 30 mg may be initiated. The maintenance dose of alemtuzumab is 30 mg/day administered three times a week on alternate days (i.e. Monday, Wednesday, and Friday), for up to 12 weeks.
    [Show full text]
  • Antibody–Drug Conjugates: the Last Decade
    pharmaceuticals Review Antibody–Drug Conjugates: The Last Decade Nicolas Joubert 1,* , Alain Beck 2 , Charles Dumontet 3,4 and Caroline Denevault-Sabourin 1 1 GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France; [email protected] 2 Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France; [email protected] 3 Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France; [email protected] 4 Hospices Civils de Lyon, 69000 Lyon, France * Correspondence: [email protected] Received: 17 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of. Keywords: antibody–drug conjugate; ADC; bioconjugation; linker; payload; cancer; resistance; combination therapies 1.
    [Show full text]
  • Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin
    CCR FOCUS Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin Alejandro D. Ricart Abstract Antibody-drug conjugates (ADC) are an attractive approach for the treatment of acute myeloid leukemia and non-Hodgkin lymphomas, which in most cases, are inherently sensitive to cytotoxic agents. CD33 and CD22 are specific markers of myeloid leukemias and B-cell malignancies, respectively. These endocytic receptors are ideal for an ADC strategy because they can effectively carry the cytotoxic payload into the cell. Gemtuzumab ozogamicin (GO, Mylotarg) and inotuzumab ozogamicin consist of a derivative of calichea- micin (a potent DNA-binding cytotoxic antibiotic) linked to a humanized monoclonal IgG4 antibody directed against CD33 or CD22, respectively. Both of these ADCs have a target-mediated pharmacokinetic disposition. GO was the first drug to prove the ADC concept in the clinic, specifically in phase II studies that included substantial proportions of older patients with relapsed acute myeloid leukemia. In contrast, in phase III studies, it has thus far failed to show clinical benefit in first-line treatment in combination with standard chemotherapy. Inotuzumab ozogamicin has shown remarkable clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma, and it has started phase III evaluation. The safety profile of these ADCs includes reversible myelosuppression (especially neutropenia and thrombocyto- penia), elevated hepatic transaminases, and hyperbilirubinemia. There have been postmarketing reports of hepatotoxicity, especially veno-occlusive disease, associated with GO. The incidence is 2%, but patients who undergo hematopoietic stem cell transplantation have an increased risk. As we steadily move toward the goal of personalized medicine, these kinds of agents will provide a unique opportunity to treat selected patient subpopulations based on the expression of their specific tumor targets.
    [Show full text]
  • Systemic Therapy Update
    Systemic Therapy Update Volume 24 Issue 2 February 2021 For Health Professionals Who Care for Cancer Patients Inside This Issue: Editor’s Choice Revised Protocols, PPPOs and Patient Handouts COVID-19 Vaccine Guidance | New Programs: Ribociclib BR: BRAJACT, BRAJACTG, BRAJACTT, BRAJACTTG, BRAJACTW, BRAJCAP, and Fulvestrant for Advanced Breast Cancer BRAJLHRHAI, BRAJLHRHT, BRAJTTW, BRAVCAP, BRAVCLOD, BRAVEVEX, (UBRAVRBFLV) | Bevacizumab, Cisplatin and Paclitaxel for BRAVGEMT, BRAVLCAP, BRAVLHRHA, BRAVLHRHT, UBRAVPALAI, BRAVPTRAT, Gynecologic Malignancies (GOCISPBEV) | Gemtuzumab UBRAVRIBAI, BRAVTAX, BRAVTCAP, BRAVTW, BRLACTWAC, BRLATACG, BRLATWAC | GI: GIAAVCT, GIAJCAP, GIAJCAPOX, GIAJFFOX, GIAJRALOX, Ozogamicin with Chemotherapy for AML (ULKGEMOZ) | GIAVCAP, GIAVCAPB, GIAVCRT, GIAVTZCAP, GICAPIRI, GICAPOX, GICART, Bortezomib, Lenalidomide and Dexamethasone for GICIRB, GICOXB, GICPART, GIEFFOXRT, GIENACTRT, GIFFIRB, GIFFOXB, Untreated Multiple Myeloma (UMYBLDF) | Paclitaxel for UGIFFOXPAN, GIFIRINOX, GIFOLFOX, GIGAJCOX, GIGAJCPRT, GIGAJFFOX, Metastatic Angiosarcoma (SAAVTW) | Cemiplimab for GIGAVCC, GIGAVCCT, GIGAVCFT, GIGAVCOX, GIGAVCOXT, GIGAVFFOX, Cutaneous Squamous Cell Carcinoma (USMAVCEM) GIGAVFFOXT, GIGAVRAMT, GIGECC, GIGFLODOC, UGINETEV, GIPAJFIROX, GIPAJGCAP, GIPAVCAP, GIPNEVER, GIRAJCOX, GIRAJFFOX, GIRCAP, GIRCRT, Drug Update GIRINFRT | GO: GOCABR, GOCABRBEV, GOCISP, GOCXAJCAT, GOCXCAT, IV Famotidine to Replace IV Ranitidine GOCXCATB, GOCXCRT, GOENDCAT, GOOVBEVLD, GOOVBEVP, GOOVCATB, Medication Safety Corner GOOVCATM, GOOVCATR,
    [Show full text]
  • The Role of Monoclonal Antibodies in the Management of Leukemia
    Pharmaceuticals 2010, 3, 3258-3274; doi:10.3390/ph3103258 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review The Role of Monoclonal Antibodies in the Management of Leukemia Ali Al-Ameri 1, Mohamad Cherry 2, Aref Al-Kali 1 and Alessandra Ferrajoli 1,* 1 Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA 2 Department of Internal Medicine, Hematology Oncology section, Oklahoma University Health Sciences Center, 700 N.E. 13th Street, Oklahoma City, OK 74103, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-713-792-2063. Received: 20 September 2010 / Accepted: 18 October 2010 / Published: 18 October 2010 Abstract: This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies. Keywords: monoclonal Abs; leukemia; CLL; AML; ALL 1. Introduction In 1900, speaking of monoclonal antibodies (MAbs), Paul Ehrlich proposed that “immunizations such as these which are of great theoretic interest may come to be available for clinical application attacking epithelium new formations, particularly carcinoma by means of specific anti-epithelial sera”[1]. Erlich’s dream came true with the first report of the manufacturing of MAb in 1975 by Kohler and Milstein [2,3].
    [Show full text]
  • Antibody Drug Conjugates for Cancer Treatment
    JAMA ONCOLOGY PATIENT PAGE Antibody Drug Conjugates for Cancer Treatment Antibody drug conjugates (ADCs) are drugs designed to target specific cancer cells and release a toxic drug into the cancer cell. The Parts of an ADC and Their Importance Antibody drug conjugates work like a “smart bomb” directed against What Is an Antibody Drug Conjugate? An antibody drug conjugate (ADC) consists of chemotherapy drug cancer cells. These drugs are composed of 3 parts: an antibody drug molecules bound to an antibody by special proteins called linkers. that is specific for the type of cancer being targeted, a cytotoxic chemotherapy drug, and a linker protein to hold the 2 parts Antibody that can bind to a cancer cell together. The drug is administered, usually through a vein, and the antibody part of the drug targets the specific cancer cell protein Linker that it was made to find. When the antibody finds the protein on the proteins outside of the cancer cell, the cell pulls the drug inside. Once inside Chemotherapy the cell, the linker releases the toxic cancer drug directly inside the molecules ADC cancer cell. By targeting the cancer cells in this way, exposure of How does an ADC work? healthy cells to the toxic cancer drug is decreased. 1 ADCs bind to receptors that NORMAL Possible Adverse Effects are found on cancer cells but CELL The adverse effects of each drug are different based on the pro- not usually on normal cells. tein it is made to target and the cytotoxic drug it contains. The CANCER cytotoxic drugs that are used to make ADCs are usually too toxic CELL to be given by themselves.
    [Show full text]
  • Dual Kinase Targeting in Leukemia
    cancers Review Dual Kinase Targeting in Leukemia Luca Mologni 1, Giovanni Marzaro 2 , Sara Redaelli 1 and Alfonso Zambon 3,* 1 Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; [email protected] (L.M.); [email protected] (S.R.) 2 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy; [email protected] 3 Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy * Correspondence: [email protected]; Tel.: +39-059-2058-640 Simple Summary: A new option to treat cancer is based on the use of so-called multi-targeting drugs. This strategy can replace the standard treatment based on the co-administration of several drugs. An increased and uncontrolled activity of kinases (enzymes devoted to the regulation of several cell pathways) is often seen in hematological malignancies. The development of multi-kinase inhibitors is having a great impact on the treatment of this kind of cancer. Here, we review the most recent findings on this novel class of drugs. Abstract: Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials.
    [Show full text]
  • Antibody–Drug Conjugates for Cancer Therapy
    molecules Review Antibody–Drug Conjugates for Cancer Therapy Umbreen Hafeez 1,2,3, Sagun Parakh 1,2,3 , Hui K. Gan 1,2,3,4 and Andrew M. Scott 1,3,4,5,* 1 Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia; [email protected] (U.H.); [email protected] (S.P.); [email protected] (H.K.G.) 2 Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia 3 School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia 4 Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia 5 Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia * Correspondence: [email protected]; Tel.: +61-39496-5000 Academic Editor: João Paulo C. Tomé Received: 14 August 2020; Accepted: 13 October 2020; Published: 16 October 2020 Abstract: Antibody–drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance.
    [Show full text]
  • View of This Manuscript
    Liu Biomarker Research (2019) 7:25 https://doi.org/10.1186/s40364-019-0178-7 EDITORIAL Open Access Cancer biomarkers for targeted therapy Delong Liu1,2 Abstract Tumor-associated antigens (TAA) or cancer biomarkers are major targets for cancer therapies. Antibody- based agents targeting the cancer biomarkers include monoclonal antibodies (MoAbs), radiolabeled MoAbs, bispecific T cell engagers, and antibody-drug conjugates. Antibodies targeting CD19, CD20, CD22, CD30, CD33, CD38, CD79B and SLAMF7 are in clinical applications for hematological malignancies. CD123, CLL-1, B cell maturation antigen, and CD138 are targets for cancer immunotherapeutic agents, including the chimeric antigen receptor - engineered T cells. Immune checkpoint inhibitors (ICIs) against PD-1, PD-L1, and CTLA-4 have led to the revolution of cancer immunotherapy. More ICIs targeting IDO, LAG3, TIM-3, TIGIT, SIGLECs, VISTA and CD47 are being explored. Small molecule inhibitors (SMIs) against tyrosine kinase oncoproteins such as BCR-ABL, JAK2, Bruton tyrosine kinase, FLT3, EGFR, ALK, HER2, VEGFR, FGFR, MEK, and MET have fundamentally changed the landscape of cancer therapy. SMIs against BCL-2, IDHs, BRAF, PI3 kinase, mTOR, PARP, and CDKs have become the mainstay in the treatment of a variety of cancer types. To reduce and avoid off-tumor toxicities, cancer-specific TAAs such as CD33 are being manufactured through systems biology approach. Search for novel biomarkers and new designs as well as delivery methods of targeted agents are fueling the next wave of advances in cancer therapy. Keywords: Biomarker, Tumor-associated antigen, BiTE, Antibody-drug conjugate, CAR-T Tumor-associated antigens (TAA) or cancer biomarkers including coltuximab ravtansine (SAR3419), denintuzu- are major targets for cancer therapies.
    [Show full text]
  • Mylotarg® (Gemtuzumab Ozogamicin)
    DRAFT Name of Blue Advantage Policy: Mylotarg® (gemtuzumab ozogamicin) Policy #: 679 Effective Date: June 1, 2018 Category: Pharmacology Latest Review Date: March 2018 Background: Blue Advantage medical policy does not conflict with Local Coverage Determinations (LCDs), Local Medical Review Policies (LMRPs) or National Coverage Determinations (NCDs) or with coverage provisions in Medicare manuals, instructions or operational policy letters. In order to be covered by Blue Advantage the service shall be reasonable and necessary under Title XVIII of the Social Security Act, Section 1862(a)(1)(A). The service is considered reasonable and necessary if it is determined that the service is: 1. Safe and effective; 2. Not experimental or investigational*; 3. Appropriate, including duration and frequency that is considered appropriate for the service, in terms of whether it is: • Furnished in accordance with accepted standards of medical practice for the diagnosis or treatment of the patient’s condition or to improve the function of a malformed body member; • Furnished in a setting appropriate to the patient’s medical needs and condition; • Ordered and furnished by qualified personnel; • One that meets, but does not exceed, the patient’s medical need; and • At least as beneficial as an existing and available medically appropriate alternative. *Routine costs of qualifying clinical trial services with dates of service on or after September 19, 2000 which meet the requirements of the Clinical Trials NCD are considered reasonable and necessary by Medicare. Providers should bill Original Medicare for covered services that are related to clinical trials that meet Medicare requirements (Refer to Medicare National Coverage Determinations Manual, Chapter 1, Section 310 and Medicare Claims Processing Manual Chapter 32, Sections 69.0-69.11).
    [Show full text]