Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia 1490 Vol. 7, 1490–1496, June 2001 Clinical Cancer Research Report from the FDA Approval Summary: Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia Peter F. Bross,1 Julie Beitz, Gang Chen, subgroup of patients over 60 years of age, the overall re- Xiao Hong Chen, Eric Duffy, Lydia Kieffer, sponse rate was 26%. Response duration was difficult to Sandip Roy, Rajeshwari Sridhara, establish because of the high prevalence of postremission therapies. Tolerability and ease of administration may be Atiqur Rahman, Grant Williams, and improved compared with conventional chemotherapy, ex- Richard Pazdur cept for hepatotoxicity, with 31% of patients exhibiting Division of Oncology Drug Products, Center for Drug Evaluation and abnormal liver enzymes. One patient died of liver failure in Research, Food and Drug Administration, Rockville, Maryland 20852 the Phase 2 trials. Conclusions: Marketing approval of gemtuzumab ozo- gamicin was granted on May 17, 2000 by the United States Abstract Food and Drug Administration under the Accelerated Ap- Purpose: Gemtuzumab ozogamicin (Mylotarg; Wyeth proval regulations. Gemtuzumab ozogamicin is indicated Laboratories, Philadelphia, PA) consists of a semisynthetic for the treatment of patients with CD33 positive AML in derivative of calicheamicin, a cytotoxic antibiotic linked to a first relapse who are 60 years of age or older and who are recombinant monoclonal antibody directed against the not considered candidates for cytotoxic chemotherapy. The CD33 antigen present on leukemic myeloblasts in most pa- 2 approved dose was 9 mg/m i.v. over 4 h and repeated in 14 tients with acute myeloid leukemia (AML). In this study, we days. Completion of the ongoing studies of gemtuzumab review the preclinical and clinical profiles of this immuno- ozogamicin in relapsed AML and initiation of randomized conjugate and the regulatory review that led to marketing clinical trials comparing the effects of gemtuzumab ozo- approval by the United States Food and Drug Administra- gamicin in combination with conventional induction chemo- tion. therapy to conventional chemotherapy alone on survival are Experimental Design: From the literature and manufac- mandated to confirm clinical benefit under the accelerated turer’s data, we review the activity, tolerability, and phar- approval Subpart H regulations. Postmarketing reports of macokinetics of gemtuzumab ozogamicin in preclinical and fatal anaphylaxis, adult respiratory distress syndrome Phase I studies and its activity, efficacy, and side effects in (ARDS), and hepatotoxicity, especially venoocclusive disease three Phase 2 trials of 142 patients with relapsed AML. (VOD) in patients treated with gemtuzumab ozogamicin, Results: In Phase I studies, the major toxicity was my- with and without associated hematopoietic stem cell trans- elosuppression, especially neutropenia and thrombocytope- plantation (HSCT), have required labeling revisions and the nia, resulting from the expression of CD33 on myeloid pro- initiation of a registration surveillance program. Tumor genitor cells. The Phase 2 dose was 9 mg/m2 infused i.v. over lysis and ARDS have been reported in patients with leuko- 4 h, repeated on day 14. A minority of patients experienced cytes above 30,000/ml treated with gemtuzumab ozogami- acute infusion-related symptoms, usually transient and oc- cin; therefore, the reduction of leukocyte counts to below casionally requiring hospitalization. The complete response 30,000/ml is recommended prior to treatment. Patients (CR) rate with full recovery of hematopoiesis was 16%. A should be carefully monitored for acute hypersensitivity, subset of patients [CRs with incomplete platelet recovery hypoxia, and delayed hepatotoxicity following treatment (CRps)] was identified with blast clearance and neutrophil with gemtuzumab ozogamicin. recovery but incomplete platelet recovery. The duration of responses of CRps appeared to be similar to those of the CRs, although the numbers were small. The question of the Introduction 2 equivalence of these response groups was a central issue in AML is a disease characterized by the proliferation of the review of this new drug application (NDA). After con- clonal precursor myeloid cells with arrested differentiation. siderable discussion, the Oncology Drugs Advisory Commit- AML affects approximately 9000 people/year in the United tee recommended allowing inclusion of CRps resulting in an States with a peak incidence in people 60–70 years of age. overall response rate in the Phase 2 studies of 30%. In the Conventional treatment with a combination of cytotoxic chemo- therapeutic agents results in remission rates of up to 85%; however, many of these patients eventually relapse (1). Treat- ment of relapsed AML patients is considerably less successful, Received 11/23/00; revised 3/1/01; accepted 3/2/01. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to 2 The abbreviations used are: AML, acute myeloid leukemia; CR, com- indicate this fact. plete response; CRp, CR with incomplete platelet recovery; OR, overall 1 To whom requests for reprints should be addressed, at Food and Drug responder; AUC, area under the curve; RFS, relapse-free survival; Administration, HFD 150, 1451 Rockville Pike, Rockville, MD 20852. HSCT, hematopoietic stem cell transplantation; VOD, venoocclusive E-mail: [email protected]. disease; NCI, National Cancer Institute. Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2001 American Association for Cancer Research. Clinical Cancer Research 1491 Preclinical Evaluation. Gemtuzumab ozogamicin showed in vitro activity against the CD33-positive (CD33ϩ) HL-60 human promyelocytic leukemia cell line and demonstrated se- lectivity for CD33ϩ target cells relative to cells not expressing the CD33 antigen, thus causing significant reduction in growth in the HL-60 xenograft tumor model. When administered weekly for six doses, gemtuzumab ozogamicin was not lethal to rats up to 7.2 mg/m2 and in monkeys up to 22 mg/m2. Marked changes in the histopathology of the testes, liver, and kidney were noted at these doses, as well as significant myelotoxicity. Free calicheamicin, as well as conjugated calicheamicin, was noted to cause liver toxicity in preclinical testing, and gemtu- zumab ozogamicin was found to be preferentially distributed to the liver. Pharmacokinetic studies were conducted in rats and mon- keys after administration of single and repeated i.v. doses of Fig. 1 Structure of gemtuzumab ozogamicin. HP67.6 represents the humanized monoclonal antibody directed against CD33. Calicheamicin gemtuzumab ozogamicin. The major excretion pathways ap- is linked to the antibody in variable molar ratios; approximately 50% of peared to be biliary, and plasma concentrations of the unconju- the antibody is unconjugated. gated calicheamicin derivatives were generally below the assay limits. Reproductive toxicology suggests the potential for ad- verse human effects on fertility, dysmorphogenesis, and fetal growth. Gemtuzumab ozogamicin was clastogenic in an in vivo especially in the elderly. Remission rates are generally reported mouse micronucleus assay, as expected from the induction of to be 20–40% in patients over 65 years of age, compared with DNA damage by calicheamicin. 40–50% in younger patients (2). Treatment of AML in the Phase I Trials. A single Phase I trial evaluated the dose elderly has been particularly problematic, because the toxicity of range, safety, and pharmacokinetics of gemtuzumab ozogamicin standard induction chemotherapy is poorly tolerated in the older in men and women 16 to 70 years of age with CD33 positive age group (3). AML who had failed to achieve remission or had a relapse after AML myeloblasts are immunophenotypically well charac- remission. A dosing interval of 2 weeks was selected because of terized and accessible to circulating antibodies (4). CD33 is a Mr the relatively long half-life of the drug (over 3 days; see “Phar- 67,000 transmembrane cell surface glycoprotein receptor that is macokinetics” section). Initially, three biweekly doses were specific for myeloid cells. CD33 expression is down-regulated studied, but this led to profound and persistent myelosuppres- with maturation of the myeloid lineage, resulting in low-level sion. Subsequently, two doses were used in the Phase 2 trials, expression on peripheral granulocytes and tissue macrophages and the dose was not adjusted for high blast counts. The dose- (5). The CD33 antigen is expressed on approximately 90% of limiting toxicity was neutropenia, and persistent thrombocyto- AML myeloblasts, including leukemic clonogenic precursors as penia occurred in half of the patients. The most common acute well as normal myeloid precursor cells, but not on CD34ϩ infusion-related clinical adverse event was a postinfusion symp- pluripotent hematopoietic stem cells (6). In vitro studies have tom complex consisting of fever and chills. This symptom documented internalization of CD33 antibodies by the target complex generally occurred within 6 h after infusion and tended cell (7). These properties enable the use of antibodies directed to be less frequent and severe with subsequent doses. The most against CD33 in the treatment of myeloid leukemia (8). common delayed infusion-related events overall in dose periods Several approaches using antibodies to CD33 in the treat- were fever (44% of patients),
Recommended publications
  • Pertuzumab and Trastuzumab: the Rationale Way to Synergy
    Anais da Academia Brasileira de Ciências (2016) 88(1 Suppl.): 565-577 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620150178 www.scielo.br/aabc Pertuzumab and trastuzumab: the rationale way to synergy SANDRINE RICHARD1, FRÉDÉRIC SELLE1, JEAN-PIERRE LOTZ1,2, AHMED KHALIL1, JOSEPH GLIGOROV1,2 and DANIELE G. SOARES1 1Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l’Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France 2Institut Universitaire de Cancérologie Université Pierre et Marie Curie (IUC-UPMC Univ Paris 06), Sorbonne Universités, 4 place Jussieu, 75005 Paris, France Manuscript received on March 13, 2015; accepted for publication on May 5, 2015 ABSTRACT It has now been 15 years since the HER2-targeted monoclonal antibody trastuzumab was introduced in clinical and revolutionized the treatment of HER2-positive breast cancer patients. Despite this achievement, most patients with HER2-positive metastatic breast cancer still show progression of their disease, highlighting the need for new therapies. The continuous interest in novel targeted agents led to the development of pertuzumab, the first in a new class of agents, the HER dimerization inhibitors. Pertuzumab is a novel recombinant humanized antibody directed against extracellular domain II of HER2 protein that is required for the heterodimerization of HER2 with other HER receptors, leading to the activation of downstream signalling pathways. Pertuzumab combined with trastuzumab plus docetaxel was approved for the first-line treatment of patients with HER2-positive metastatic breast cancer and is currently used as a standard of care in this indication.
    [Show full text]
  • Trastuzumab, Biosimilars, Trastuzumab-Hyaluronidase
    Clinical Policy: Trastuzumab, Biosimilars, Trastuzumab-Hyaluronidase Reference Number: CP.PHAR.228 Effective Date: 06.01.16 Last Review Date: 05.20 Coding Implications Line of Business: Commercial, HIM, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Trastuzumab (Herceptin®) is a human epidermal growth factor receptor 2 (HER2)/neu receptor antagonist. Trastuzumab-dkst (Ogivri™), trastuzumab-pkrb (Herzuma®), trastuzumab-dttb (Ontruzant®), trastuzumab-qyyp (Trazimera™), and trastuzumab-anns (Kanjinti™) are Herceptin biosimilars. Trastuzumab-hyaluronidase-oysk (Herceptin Hylecta™) is a combination of trastuzumab and hyaluronidase, an endoglycosidase. FDA Approved Indication(s) Indications* Description Herceptin, Herzuma Herceptin Ogivri, Hylecta Ontruzant, Trazimera, Kanjinti Adjuvant For adjuvant As part of a treatment X X X breast cancer treatment of regimen consisting of HER2- doxorubicin, overexpressing cyclophosphamide, node positive and either paclitaxel or node or docetaxel negative As part of a treatment X X X (ER/PR regimen with negative or docetaxel and with one high carboplatin risk feature) As a single agent X X X breast cancer: following multi- modality anthracycline based therapy Metastatic In combination with paclitaxel for first- X X X breast cancer line treatment of HER2-overexpressing metastatic breast cancer As a single agent for treatment of X X X HER2-overexpressing breast cancer in patients who have received one or more Page 1 of 13
    [Show full text]
  • Antibody–Drug Conjugates
    Published OnlineFirst April 12, 2019; DOI: 10.1158/1078-0432.CCR-19-0272 Review Clinical Cancer Research Antibody–Drug Conjugates: Future Directions in Clinical and Translational Strategies to Improve the Therapeutic Index Steven Coats1, Marna Williams1, Benjamin Kebble1, Rakesh Dixit1, Leo Tseng1, Nai-Shun Yao1, David A. Tice1, and Jean-Charles Soria1,2 Abstract Since the first approval of gemtuzumab ozogamicin nism of activity of the cytotoxic warhead. However, the (Mylotarg; Pfizer; CD33 targeted), two additional antibody– enthusiasm to develop ADCs has not been dampened; drug conjugates (ADC), brentuximab vedotin (Adcetris; Seat- approximately 80 ADCs are in clinical development in tle Genetics, Inc.; CD30 targeted) and inotuzumab ozogami- nearly 600 clinical trials, and 2 to 3 novel ADCs are likely cin (Besponsa; Pfizer; CD22 targeted), have been approved for to be approved within the next few years. While the hematologic cancers and 1 ADC, trastuzumab emtansine promise of a more targeted chemotherapy with less tox- (Kadcyla; Genentech; HER2 targeted), has been approved to icity has not yet been realized with ADCs, improvements treat breast cancer. Despite a clear clinical benefit being dem- in technology combined with a wealth of clinical data are onstrated for all 4 approved ADCs, the toxicity profiles are helping to shape the future development of ADCs. In this comparable with those of standard-of-care chemotherapeu- review, we discuss the clinical and translational strategies tics, with dose-limiting toxicities associated with the mecha- associated with improving the therapeutic index for ADCs. Introduction in antibody, linker, and warhead technologies in significant depth (2, 3, 8, 9). Antibody–drug conjugates (ADC) were initially designed to leverage the exquisite specificity of antibodies to deliver targeted potent chemotherapeutic agents with the intention of improving Overview of ADCs in Clinical Development the therapeutic index (the ratio between the toxic dose and the Four ADCs have been approved over the last 20 years (Fig.
    [Show full text]
  • Whither Radioimmunotherapy: to Be Or Not to Be? Damian J
    Published OnlineFirst April 20, 2017; DOI: 10.1158/0008-5472.CAN-16-2523 Cancer Perspective Research Whither Radioimmunotherapy: To Be or Not To Be? Damian J. Green1,2 and Oliver W. Press1,2,3 Abstract Therapy of cancer with radiolabeled monoclonal antibodies employing multistep "pretargeting" methods, particularly those has produced impressive results in preclinical experiments and in utilizing bispecific antibodies, have greatly enhanced the thera- clinical trials conducted in radiosensitive malignancies, particu- peutic efficacy of radioimmunotherapy and diminished its toxi- larly B-cell lymphomas. Two "first-generation," directly radiola- cities. The dramatically improved therapeutic index of bispecific beled anti-CD20 antibodies, 131iodine-tositumomab and 90yttri- antibody pretargeting appears to be sufficiently compelling to um-ibritumomab tiuxetan, were FDA-approved more than a justify human clinical trials and reinvigorate enthusiasm for decade ago but have been little utilized because of a variety of radioimmunotherapy in the treatment of malignancies, particu- medical, financial, and logistic obstacles. Newer technologies larly lymphomas. Cancer Res; 77(9); 1–6. Ó2017 AACR. "To be, or not to be, that is the question: Whether 'tis nobler in the pembrolizumab (anti-PD-1), which are not directly cytotoxic mind to suffer the slings and arrows of outrageous fortune, or to take for cancer cells but "release the brakes" on the immune system, arms against a sea of troubles, And by opposing end them." Hamlet. allowing cytotoxic T cells to be more effective at recognizing –William Shakespeare. and killing cancer cells. Outstanding results have already been demonstrated with checkpoint inhibiting antibodies even in far Introduction advanced refractory solid tumors including melanoma, lung cancer, Hodgkin lymphoma and are under study for a multi- Impact of monoclonal antibodies on the field of clinical tude of other malignancies (4–6).
    [Show full text]
  • Monoclonal Antibodies
    MONOCLONAL ANTIBODIES ALEMTUZUMAB ® (CAMPATH 1H ) I. MECHANISM OF ACTION Antibody-dependent lysis of leukemic cells following cell surface binding. Alemtuzumab is a recombinant DNA-derived humanized monoclonal antibody that is directed against surface glycoprotein CD52. CD52 is expressed on the surface of normal and malignant B and T lymphocytes, NK cells, monocytes, macrophages, a subpopulation of granulocytes, and tissues of the male reproductive system (CD 52 is not expressed on erythrocytes or hematopoietic stem cells). The alemtuzumab antibody is an IgG1 kappa with human variable framework and constant regions, and complementarity-determining regions from a murine monoclonal antibody (campath 1G). II. PHARMACOKINETICS Cmax and AUC show dose proportionality over increasing dose ranges. The overall average half-life is 12 days. Peak and trough levels of Campath rise during the first weeks of Campath therapy, and approach steady state by week 6. The rise in serum Campath concentration corresponds with the reduction in malignant lymphocytes. III. DOSAGE AND ADMINISTRATION Campath can be administered intravenously or subcutaneously. Intravenous: Alemtuzumab therapy should be initiated at a dose of 3 mg administered as a 2-hour IV infusion daily. When the 3 mg dose is tolerated (i.e., ≤ Grade 2 infusion related side effects), the daily dose should be escalated to 10mg and continued until tolerated (i.e., ≤ Grade 2 infusion related side effects). When the 10 mg dose is tolerated, the maintenance dose of 30 mg may be initiated. The maintenance dose of alemtuzumab is 30 mg/day administered three times a week on alternate days (i.e. Monday, Wednesday, and Friday), for up to 12 weeks.
    [Show full text]
  • Trastuzumab Products
    1 Trastuzumab Products: Trastuzumab (Herceptin®), Trastuzumab-anns (Kanjinti®), Trastuzumab-dkst (Ogivri®), Trastuzumab-dttb (Ontruzant®), Trastuzumab-pkrb (Herzuma®), Trastuzumab-qyyp (Trazimera®) Prior Authorization Drug Coverage Policy Effective Date: 11/9/2020 Revision Date: n/a Review Date: 10/27/2020 Lines of Business: Commercial Policy type: Prior Authorization This Drug Coverage Policy provides parameters for the coverage of trastuzumab products, which includes Trastuzumab (Herceptin®), Trastuzumab-anns (Kanjinti ®), Trastuzumab-dkst (Ogivri ®), Trastuzumab-dttb (Ontruzant®), Trastuzumab-pakrb (Herzuma®), and Trastuzumab-qyyp (Trazimera ®). Consideration of medically necessary indications are based upon U.S. Food and Drug Administration (FDA) indications, recommended uses within the Centers of Medicare & Medicaid Services (CMS) five recognized compendia, including the National Comprehensive Cancer Network (NCCN) Drugs & Biologics Compendium (NCCN Category 1 or 2A recommendations), and peer-reviewed scientific literature eligible for coverage according to the CMS, Medicare Benefit Policy Manual, Chapter 15, section 50.4.5 titled, “Off-Label Use of Anti- Cancer Drugs and Biologics.” This policy evaluates whether the drug therapy is proven to be effective based on published evidence-based medicine. Drug Description 1 The human epidermal growth factor receptor 2 (HER2) proto-oncogene encodes a transmembrane receptor protein of 185 kDa, which is structurally related to the epidermal growth factor receptor. Trastuzumab products have been shown, in both in vitro assays and in animals, to inhibit the proliferation of human tumor cells that overexpress HER2. Trastuzumab products are mediators of antibody-dependent cellular cytotoxicity (ADCC). In vitro , trastuzumab product mediated ADCC has been shown to be preferentially exerted on HER2 overexpressing cancer cells compared with cancer cells that do not overexpress HER2.
    [Show full text]
  • F. Gherlinzoni CD33: Gemtuzumab Ozogamicin
    1ST CUNEO CITY IMMUNOTHERAPY CONFERENCE 17-18 Maggio 2018 PASSIVE IMMUNOTHERAPY ANTIBODY-DRUG CONJUGATES GEMTUZUMAB OZOGAMICIN Do#. Filippo Gherlinzoni Direore Unità Operava Complessa di Ematologia Ospedale “Ca’ Foncello” - Treviso IL RIECCOLO Blood Reviews 28 (2014) 143–153 Contents lists available at ScienceDirect Blood Reviews journal homepage: www.elsevier.com/locate/blre REVIEW The past and future of CD33 as therapeutic target in acute myeloid leukemia a a,b a,b,c, George144 S. Laszlo , Elihu H. Estey , Roland B. Walter ⁎G.S. Laszlo et al. / Blood Reviews 28 (2014) 143–153 a Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA b Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA c Department of Epidemiology, University of Washington, Seattle, WA, USA as cytokine-induced cellular proliferation [14,33]. Engagement with CD33 antibodies has similarly been shown to affect cytokine and article info abstract chemokine secretion by monocytes, although both increases [34] or Keywords: CD33 is a myeloid differentiation antigen with endocytic properties.decreases It is broadly[33] expressedhave on been acute myeloidobserved in vitro. Acute myeloid leukemia leukemia (AML) blasts and, possibly, some leukemic stem cells and has therefore been exploited as target for Antibody therapeutic antibodies for many years. The improved survival seen in many patients when the antibody-drug Antibody-drug conjugate conjugate, gemtuzumab ozogamicin, is added to conventional chemotherapy validates this approach. However, fi 2.3. Endocytic properties of CD33 Bispeci c antibody many attempts with unconjugated or conjugated antibodies have been unsuccessful, highlighting the challenges BiTE of targeting CD33 in AML.
    [Show full text]
  • Antibody–Drug Conjugates: the Last Decade
    pharmaceuticals Review Antibody–Drug Conjugates: The Last Decade Nicolas Joubert 1,* , Alain Beck 2 , Charles Dumontet 3,4 and Caroline Denevault-Sabourin 1 1 GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France; [email protected] 2 Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France; [email protected] 3 Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France; [email protected] 4 Hospices Civils de Lyon, 69000 Lyon, France * Correspondence: [email protected] Received: 17 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of. Keywords: antibody–drug conjugate; ADC; bioconjugation; linker; payload; cancer; resistance; combination therapies 1.
    [Show full text]
  • Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin
    CCR FOCUS Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin Alejandro D. Ricart Abstract Antibody-drug conjugates (ADC) are an attractive approach for the treatment of acute myeloid leukemia and non-Hodgkin lymphomas, which in most cases, are inherently sensitive to cytotoxic agents. CD33 and CD22 are specific markers of myeloid leukemias and B-cell malignancies, respectively. These endocytic receptors are ideal for an ADC strategy because they can effectively carry the cytotoxic payload into the cell. Gemtuzumab ozogamicin (GO, Mylotarg) and inotuzumab ozogamicin consist of a derivative of calichea- micin (a potent DNA-binding cytotoxic antibiotic) linked to a humanized monoclonal IgG4 antibody directed against CD33 or CD22, respectively. Both of these ADCs have a target-mediated pharmacokinetic disposition. GO was the first drug to prove the ADC concept in the clinic, specifically in phase II studies that included substantial proportions of older patients with relapsed acute myeloid leukemia. In contrast, in phase III studies, it has thus far failed to show clinical benefit in first-line treatment in combination with standard chemotherapy. Inotuzumab ozogamicin has shown remarkable clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma, and it has started phase III evaluation. The safety profile of these ADCs includes reversible myelosuppression (especially neutropenia and thrombocyto- penia), elevated hepatic transaminases, and hyperbilirubinemia. There have been postmarketing reports of hepatotoxicity, especially veno-occlusive disease, associated with GO. The incidence is 2%, but patients who undergo hematopoietic stem cell transplantation have an increased risk. As we steadily move toward the goal of personalized medicine, these kinds of agents will provide a unique opportunity to treat selected patient subpopulations based on the expression of their specific tumor targets.
    [Show full text]
  • EGFR and HER-2 Antagonists in Breast Cancer
    ANTICANCER RESEARCH 27: 1285-1294 (2007) Review EGFR and HER-2 Antagonists in Breast Cancer NORMA O’DONOVAN1 and JOHN CROWN1,2 1National Institute for Cellular Biotechnology, Dublin City University, Dublin 9; 2Department of Medical Oncology, St. Vincent’s University Hospital, Dublin 4, Ireland Abstract. Both HER-2 and EGFR are expressed in breast tumorigenesis was obtained using transgenic mice expressing cancer and are implicated in its development and progression. an activated form of the HER-2/neu oncogene in the The discovery of the association between HER-2 gene mammary epithelium, which resulted in rapid induction of amplification and poor prognosis in breast cancer led to the mammary tumours in 100% of female transgenic carriers (4). development of HER-2 targeted therapies. Trastuzumab, a Recent microarray analysis of breast tumours has monoclonal antibody to HER-2, has significantly improved the identified four distinct sub-types of tumours (5, 6). The sub- prognosis for HER-2-positive breast cancer patients. It is now types are classified as (i) luminal (further sub-divided into approved for the treatment of both HER-2-positive metastatic A and B) (ii) HER-2-positive/estrogen receptor (ER) - breast cancer and early stage HER-2-positive breast cancer. negative, (iii) normal-like and (iv) basal-like. The basal-like Recent results from trials of the dual HER-2 and EGFR sub-type lacks expression of ER, progesterone receptor tyrosine kinase inhibitor, lapatinib, also show very promising (PR) and HER-2, but expression of EGFR is more results in HER-2-positive breast cancer. A number of EGFR frequently observed in this sub-type.
    [Show full text]
  • Changing the Destiny of HER2 Expressing Solid Tumors
    International Journal of Molecular Sciences Review Trastuzumab Deruxtecan: Changing the Destiny of HER2 Expressing Solid Tumors Alice Indini 1 , Erika Rijavec 1 and Francesco Grossi 2,* 1 Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] (A.I.); [email protected] (E.R.) 2 Medical Oncology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy * Correspondence: [email protected] or [email protected] Abstract: HER2 targeted therapies have significantly improved prognosis of HER2-positive breast and gastric cancer. HER2 overexpression and mutation is the pathogenic driver in non-small cell lung cancer (NSCLC) and colorectal cancer, however, to date, there are no approved HER2-targeted therapies with these indications. Trastuzumab deruxtecan (T-DXd) is a novel HER2-directed antibody drug conjugate showing significant anti-tumor activity in heavily pre-treated HER2-positive breast and gastric cancer patients. Preliminary data have shown promising objective response rates in patients with HER2-positive NSCLC and colorectal cancer. T-DXd has an acceptable safety profile, however with concerns regarding potentially serious treatment-emergent adverse events. In this review we focus on the pharmacologic characteristics and toxicity profile of T-Dxd, and provide an update on the most recent results of clinical trials of T-DXd in solid tumors. The referenced papers were selected through a PubMed search performed on 16 March 2021 with the following searching terms: T-DXd and breast cancer, or gastric cancer, or non-small cell lung cancer (NSCLC), or colorectal cancer.
    [Show full text]
  • Antibodies to Watch in 2021 Hélène Kaplona and Janice M
    MABS 2021, VOL. 13, NO. 1, e1860476 (34 pages) https://doi.org/10.1080/19420862.2020.1860476 PERSPECTIVE Antibodies to watch in 2021 Hélène Kaplona and Janice M. Reichert b aInstitut De Recherches Internationales Servier, Translational Medicine Department, Suresnes, France; bThe Antibody Society, Inc., Framingham, MA, USA ABSTRACT ARTICLE HISTORY In this 12th annual installment of the Antibodies to Watch article series, we discuss key events in antibody Received 1 December 2020 therapeutics development that occurred in 2020 and forecast events that might occur in 2021. The Accepted 1 December 2020 coronavirus disease 2019 (COVID-19) pandemic posed an array of challenges and opportunities to the KEYWORDS healthcare system in 2020, and it will continue to do so in 2021. Remarkably, by late November 2020, two Antibody therapeutics; anti-SARS-CoV antibody products, bamlanivimab and the casirivimab and imdevimab cocktail, were cancer; COVID-19; Food and authorized for emergency use by the US Food and Drug Administration (FDA) and the repurposed Drug Administration; antibodies levilimab and itolizumab had been registered for emergency use as treatments for COVID-19 European Medicines Agency; in Russia and India, respectively. Despite the pandemic, 10 antibody therapeutics had been granted the immune-mediated disorders; first approval in the US or EU in 2020, as of November, and 2 more (tanezumab and margetuximab) may Sars-CoV-2 be granted approvals in December 2020.* In addition, prolgolimab and olokizumab had been granted first approvals in Russia and cetuximab saratolacan sodium was first approved in Japan. The number of approvals in 2021 may set a record, as marketing applications for 16 investigational antibody therapeutics are already undergoing regulatory review by either the FDA or the European Medicines Agency.
    [Show full text]