Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore

Total Page:16

File Type:pdf, Size:1020Kb

Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore marine drugs Article Brevetoxin and Conotoxin Interactions with Single-Domain Voltage-Gated Sodium Channels from a Diatom and Coccolithophore Ping Yates †, Julie A. Koester † and Alison R. Taylor * Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA; [email protected] (P.Y.); [email protected] (J.A.K.) * Correspondence: [email protected] † Authors contributed equally. Abstract: The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the Citation: Yates, P.; Koester, J.A.; phytoplankton themselves. Taylor, A.R. Brevetoxin and Conotoxin Interactions with Keywords: phytoplankton; membrane excitability; diatom; coccolithophore; algal toxin; brevetoxin; Single-Domain Voltage-Gated µ-conotoxin Sodium Channels from a Diatom and Coccolithophore. Mar. Drugs 2021, 19, 140. https://doi.org/10.3390/ md19030140 1. Introduction Membrane excitability in phytoplankton is facilitated by voltage-gated ion currents Academic Editor: Jean-Marc Sabatier similar to those observed in multicellular organisms [1,2]. Many species encode four- domain (4D), animal-like sodium/calcium channels (Na /Ca ) in addition to the single- Received: 15 January 2021 V V domain (1D) channels recently characterized as the EukCats [3,4]. EukCats are widespread Accepted: 26 February 2021 Published: 2 March 2021 among marine protist groups, including diatoms, coccolithophores and dinoflagellates [3], and contribute to the generation of fast action potentials that play a role in environmental Publisher’s Note: MDPI stays neutral sensing [2,3]. EukCats are homologs of 1D bacterial sodium channels (BacNaVs) [3,5] with regard to jurisdictional claims in that putatively form functional voltage-gated ion channels from homotetramers. Each published maps and institutional affil- 1D monomer of the EukCats contains six transmembrane segments (S1–S6), a voltage- iations. sensing domain (VSD) from S1–S4, with four conserved, positively charged residues on S4, and a selectivity filter (SF) within the pore-loop between S5 and S6. The SF is linked to S5 and S6 by two helices, P1 and P2, respectively (Figure1). Due to the newfound diversity of 1D channels, we are no longer able to predict ion selectivity solely based on the number and identity of negatively charged residues in the primary sequence of amino Copyright: © 2021 by the authors. Bacillus Licensee MDPI, Basel, Switzerland. acids in the seven-residue selectivity filter. For example, the bacterial 1D NaChBac ( + This article is an open access article halodurans) and NaVPp (Plesiocystis pacifica) channels are both Na -selective, but they have distributed under the terms and very different selectivity filters [6,7]. NaChBac contains only a single negatively charged conditions of the Creative Commons glutamic acid (E) in its SF (TLESWAS) [6], whereas NaVPp has three negatively charged Attribution (CC BY) license (https:// residues (TLEDWTD) [7]. Moreover, the prokaryotic calcium channel CaVMr (Meiothermus creativecommons.org/licenses/by/ ruber) has both glutamic and aspartic (D) acids in the SF: TLEGWVD, with the glycine (G) 2+ 4.0/). potentially contributing to Ca -selectivity [7]. Mar. Drugs 2021, 19, 140. https://doi.org/10.3390/md19030140 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2021, 19, x 2 of 15 Mar. Drugs 2021, 19, 140 (Meiothermus ruber) has both glutamic and aspartic (D) acids in the SF: TLEGWVD,2 with of 15 the glycine (G) potentially contributing to Ca2+‐selectivity [7]. Figure 1. Structure of toxins andand theirtheir hypothesizedhypothesized binding binding sites sites on on one one subunit subunit of of a a single-domain single‐do‐ channel.main channel. (A) upper: (A) upper:µ-CTx μ‐CTx PIIIA PIIIA with with six positively six positively charged charged arginine arginine (R) and(R) and lysine lysine (K) (K) residues resi‐ dues highlighted in blue, from Chen et al. 2014; lower: diagram of a 1D NaV/CaV with the voltage highlighted in blue, from Chen et al. 2014; lower: diagram of a 1D Na /Ca with the voltage sensor sensor of transmembrane segments S1–S4 (grey) and the pore‐domainV (pink)V consisting of S5, the of transmembrane segments S1–S4 (grey) and the pore-domain (pink) consisting of S5, the turret turret loop (yellow), the P1 and P2 helices (blue) with the selectivity filter sequences of EhEUKCATB1loop (yellow), the and P1 OsEUKCATA1, and P2 helices (blue)and S6. with The the red selectivity stars represent filter sequences negatively of charged EhEUKCATB1 acidic resi and‐ duesOsEUKCATA1, aspartic (E) and or glutamic S6. The red(D) starsacid binding represent sites negatively near P1 and charged the selectivity acidic residues filter [8] aspartic and the (E) or glutamicspace between (D) acid P2 binding helices sitesof adjacent near P1 subunits and the selectivitythat μ‐CTx filter PIIIA [8 ]may and theoccupy space when between channels P2 helices are of adjacentinactivated subunits [9]. (B that) upper:µ-CTx PbTx PIIIA‐2; lower: may occupy regions when of PbTx channels binding are inactivatedacross S5, the [9]. turret (B) upper: loop, PbTx-2;and S6 lower:are represented regions of by PbTx the diagonal binding shading across S5, based the turreton homologous loop, and S6regions are represented of binding in by sensitive the diagonal NaVs, NaV1.2, and NaV1.4 [10,11]. shading based on homologous regions of binding in sensitive NaVs, NaV1.2, and NaV1.4 [10,11]. Like bacterial NaVs,s, the the C C-terminus‐terminus of the EukCats contains a coiled-coilcoiled‐coil motif that is hypothesized to be intracellular and perform a rangerange ofof functions,functions, includingincluding stabilizingstabilizing the quaternary structure of the channel [12], [12], or modulating activation [13] [13] and inactiva inactiva-‐ tion [[14]14] of thethe ionion current.current. Bacterial sodiumsodium channelschannels are studiedstudied extensivelyextensively asas modelsmodels for mammalian 4D 4D Na NaVV/Ca/CaVs,V dues, due to their to their natural natural variation variation and andrelative relative ease easeof manipu of ma-‐ nipulationlation [15,16]. [15 The,16]. diversity The diversity of EukCats of EukCats provides provides an expanded an expanded library for library similar for structure similar‐ structure-functionfunction studies with studies the advantage with the advantage of functioning of functioning in eukaryotic in eukaryotic backgrounds backgrounds with dis‐ withtinct physiological distinct physiological and metabolic and metabolic requirements. requirements. Phylogenetically, EukCats group by taxa;taxa; thethe characterizedcharacterized EukCatsEukCats fromfrom diatomsdiatoms and haptophyteshaptophytes (including (including coccolithophores) coccolithophores) form form distinct distinct clades, EukCatAclades, EukCatA and EukCatB, and respectivelyEukCatB, respectively [3]. We focused [3]. We onfocused a EukCatA on a EukCatA from the from diatom the diatomOdontella Odontella sinensis sinensisand a EuKCatBand a EuKCatB from the from coccolithophore the coccolithophoreEmiliania Emiliania huxleyi .huxleyi.Odontella Odontella sinensis sinensisencodes encodes three, single-domainthree, single‐domain EukCatAs EukCatAs [3] that [3] are that functionally are functionally non-selective non‐selective CaVs with CaVs ~10-fold with ~10 faster‐fold + kineticsfaster kinetics than the than Na the-selective Na+‐selective bacterial bacterial channel channel NaChBac NaChBac [3,6]. [3,6]. The selectivityThe selectivity filter filter (on the(on porethe pore loop loop between between S5 and S5 S6) and of S6) OsEUKCATA1, of OsEUKCATA1, from O. from sinensis O. ,sinensis, contains contains two aspartic two acidaspartic residues acid residues (TLDAWAD) (TLDAWAD) that result that in aresult channel in a with channel a similar with permeabilitya similar permeability profile as non-selectiveprofile as non‐ NaChBacselective NaChBac mutants (SF:mutants LEDWAS (SF: LEDWAS and LEDWAD) and LEDWAD) [3,17]. Emiliania [3,17]. Emiliania huxleyi encodeshuxleyi encodes both 4D both (two 4D or three)(two or and three) multiple and EukCatBmultiple isoformsEukCatB (three isoforms or four), (three depending or four), + ondepending the genetic on the strain genetic [2]. EukCatBstrain [2]. channels EukCatB are channels Na -selective, are Na+‐selective, but exhibit but dependency exhibit de‐ 2+ onpendency intracellular on intracellular Ca , which Ca2+ is, which potentially is potentially regulated regulated through through the EF-hand the EF domain‐hand do on‐ themain C-terminus. on the C‐terminus. Their kinetics Their kinetics
Recommended publications
  • Mote Marine Laboratory Red Tide Studies
    MOTE MARINE LABORATORY RED TIDE STUDIES FINAL REPORT FL DEP Contract MR 042 July 11, 1994 - June 30, 1995 Submitted To: Dr. Karen Steidinger Florida Marine Research Institute FL DEPARTMENT OF ENVIRONMENTAL PROTECTION 100 Eighth Street South East St. Petersburg, FL 33701-3093 Submitted By: Dr. Richard H. Pierce Director of Research MOTE MARINE LABORATORY 1600 Thompson Parkway Sarasota, FL 34236 Mote Marine Laboratory Technical Report No. 429 June 20, 1995 This document is printed on recycled paper Suggested reference Pierce RH. 1995. Mote Marine Red Tide Studies July 11, 1994 - June 30, 1995. Florida Department of Environmental Pro- tection. Contract no MR 042. Mote Marine Lab- oratory Technical Report no 429. 64 p. Available from: Mote Marine Laboratory Library. TABLE OF CONTENTS I. SUMMARY. 1 II. CULTURE MAINTENANCE AND GROWTH STUDIES . 1 Ill. ECOLOGICAL INTERACTION STUDIES . 2 A. Brevetoxin Ingestion in Black Seabass B. Evaluation of Food Carriers C. First Long Term (14 Day) Clam Exposure With Depuration (2/6/95) D. Second Long Term (14 Day) Clam Exposure (3/21/95) IV. RED TIDE FIELD STUDIES . 24 A. 1994 Red Tide Bloom (9/16/94 - 1/4/95) B. Red Tide Bloom (4/13/94 - 6/16/95) C. Red Tide Pigment D. Bacteriological Studies E. Brevetoxin Analysis in Marine Organisms Exposed to Sublethal Levels of the 1994 Natural Red Tide Bloom V. REFERENCES . 61 Tables Table 1. Monthly Combined Production and Use of Laboratory C. breve Culture. ....... 2 Table 2. Brevetoxin Concentration in Brevetoxin Spiked Shrimp and in Black Seabass Muscle Tissue and Digestive Tract Following Ingestion of the Shrimp ...............
    [Show full text]
  • Assessing the Potential for Range Expansion of the Red Tide Algae Karenia Brevis
    Nova Southeastern University NSUWorks All HCAS Student Capstones, Theses, and Dissertations HCAS Student Theses and Dissertations 8-7-2020 Assessing the Potential for Range Expansion of the Red Tide Algae Karenia brevis Edward W. Young Follow this and additional works at: https://nsuworks.nova.edu/hcas_etd_all Part of the Marine Biology Commons Share Feedback About This Item NSUWorks Citation Edward W. Young. 2020. Assessing the Potential for Range Expansion of the Red Tide Algae Karenia brevis. Capstone. Nova Southeastern University. Retrieved from NSUWorks, . (13) https://nsuworks.nova.edu/hcas_etd_all/13. This Capstone is brought to you by the HCAS Student Theses and Dissertations at NSUWorks. It has been accepted for inclusion in All HCAS Student Capstones, Theses, and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Capstone of Edward W. Young Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Marine Science Nova Southeastern University Halmos College of Arts and Sciences August 2020 Approved: Capstone Committee Major Professor: D. Abigail Renegar, Ph.D. Committee Member: Robert Smith, Ph.D. This capstone is available at NSUWorks: https://nsuworks.nova.edu/hcas_etd_all/13 Nova Southeastern Univeristy Halmos College of Arts and Sciences Assessing the Potential for Range Expansion of the Red Tide Algae Karenia brevis By Edward William Young Submitted to the Faculty of Halmos College of Arts and Sciences in partial fulfillment of the requirements for the degree of Masters of Science with a specialty in: Marine Biology Nova Southeastern University September 8th, 2020 1 Table of Contents 1.
    [Show full text]
  • Algal Toxins and Reverse Osmosis Desalination Operations: Laboratory Bench Testing and field Monitoring of Domoic Acid, Saxitoxin, Brevetoxin and Okadaic Acid
    water research 46 (2012) 6563e6573 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid Erica L. Seubert a,*, Shane Trussell b, John Eagleton c,1, Astrid Schnetzer a,2, Ivona Cetinic a,3, Phil Lauri d,4, Burton H. Jones a,5, David A. Caron a a Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 301, Los Angeles, CA 90089-0371, USA b Trussell Technologies Inc., 6540 Lusk Boulevard, Suite C175, San Diego, CA 92121, USA c Separation Processes Inc., 3156 Lionshead Ave., Suite 2, Carlsbad, CA 92010, USA d West Basin Municipal Water District, 17140 Avalon Blvd., Suite 210, Carson, CA 90746, USA article info abstract Article history: The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally Received 10 June 2012 during the past few decades. The impact of these events on seawater desalination facilities Received in revised form has become an important topic in recent years due to enhanced societal interest and 24 August 2012 reliance on this technology for augmenting world water supplies. A variety of harmful Accepted 23 September 2012 bloom-forming species of microalgae occur in southern California, as well as many other Available online 4 October 2012 locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including Keywords: death, when ingested via contaminated seafood.
    [Show full text]
  • (Rhincodon Typus) from the GULF of CALIFORNIA
    INSTITUTO POLITECNICO NACIONAL CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS BIOACCUMULATION AND BIOMAGNIFICATION OF TRACE ELEMENTS IN TISSUES OF WHALE SHARK (Rhincodon typus) FROM THE GULF OF CALIFORNIA TESIS QUE PARA OBTENER EL GRADO DE DOCTORADO EN CIENCIAS MARINAS PRESENTA FRANCESCA PANCALDI LA PAZ, B.C.S., JULIO DE 2020 En la Ciudad de La Paz, B.C.S., el día 06 del mes de Junio del año 2020 El (la) que suscribe M en C. FRANCESCA PANCALDI Alumno (a) del Programa DOCTORADO EN CIENCIAS MARINAS con número de registro B161000 adscrito al CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS manifiesta que es autor(a) intelectual del presente trabajo de tesis, bajo la dirección de: Dr. FELIPE GALVÁN MAGAÑA Y DR. FEDERICO PAEZ OSUNA y cede los derechos del trabajo titulado: “BIOACCUMULATION AND BIOMAGNIFICATION OF TRACE ELEMENTS IN TISSUES OF WHALE SHARK (Rhincodon typus) FROM THE GULF OF CALIFORNIA” al Instituto Politécnico Nacional, para su difusión con fines académicos y de investigación. Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Éste, puede ser obtenido escribiendo a la siguiente dirección: [email protected] - [email protected] – Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo. M en C. FRANCESCA PANCALDI Nombre y firma del alumno Dedication ...all’Oceano e a tutte le meravigliose creature che vivono in lui, soprattutto gli squali balena... Acknowledgements Al Instituto Politécnico Nacional (IPN) y al Centro Interdisciplinario de Ciencias Marinas (CICIMAR) que me dieron la oportunidad de ser parte de esta grande familia.
    [Show full text]
  • Representative Diatom and Coccolithophore Species Exhibit Divergent Responses Throughout Simulated Upwelling Cycles
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.071480; this version posted May 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Representative diatom and coccolithophore species exhibit divergent responses throughout simulated upwelling cycles Robert H. Lampe1,2, Gustavo Hernandez2, Yuan Yu Lin3, and Adrian Marchetti2, 1Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA 2Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Phytoplankton communities in upwelling regions experience a ton blooms following upwelling (2, 5, 6). When upwelling wide range of light and nutrient conditions as a result of up- delivers cells and nutrients into well-lit surface waters, di- welling cycles. These cycles can begin with a bloom at the sur- atoms quickly respond to available nitrate and increase their face followed by cells sinking to depth when nutrients are de- nitrate uptake rates compared to other phytoplankton groups pleted. Cells can then be transported back to the surface with allowing them to bloom (7). This phenomenon may partially upwelled waters to seed another bloom. In spite of the physico- be explained by frontloading nitrate assimilation genes, i.e. chemical extremes associated with these cycles, diatoms consis- high expression before the upwelling event occurs, in addi- tently outcompete other phytoplankton when upwelling events occur. Here we simulated the conditions of a complete upwelling tion to diatom’s unique metabolic integration of nitrogen and cycle with a common diatom, Chaetoceros decipiens, and coccol- carbon metabolic pathways (6, 8).
    [Show full text]
  • Detection of Coccolithophore Blooms with Biogeochemical-Argo Floats L
    Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats L. Terrats, H. Claustre, M. Cornec, Alain Mangin, G. Neukermans To cite this version: L. Terrats, H. Claustre, M. Cornec, Alain Mangin, G. Neukermans. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats. Geophysical Research Letters, American Geophysical Union, 2020, 47 (23), 10.1029/2020GL090559. hal-03099761 HAL Id: hal-03099761 https://hal.archives-ouvertes.fr/hal-03099761 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License RESEARCH LETTER Detection of Coccolithophore Blooms With 10.1029/2020GL090559 BioGeoChemical‐Argo Floats Key Points: L. Terrats1,2 , H. Claustre1 , M. Cornec1 , A. Mangin2, and G. Neukermans3,4 • We matched profiling float trajectories with ocean‐color 1Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche‐sur‐Mer, France, satellite observations of 2 ‐ 3 coccolithophore blooms ACRI ST, Sophia Antipolis, France, Biology Department, MarSens Research Group, Ghent University, Ghent, Belgium, • Two simple bio‐optical indices 4Flanders Marine Institute (VLIZ), InnovOcean site, Ostend, Belgium permitted successful identification of coccolithophore blooms from floats in the Southern Ocean Coccolithophores (calcifying phytoplankton) form extensive blooms in temperate and subpolar • Abstract A method for identifying ‐ coccolithophore blooms at the global oceans as evidenced from ocean color satellites.
    [Show full text]
  • Effects of Increased Pco2 and Temperature on the North Atlantic Spring Bloom. III. Dimethylsulfoniopropionate
    Vol. 388: 41–49, 2009 MARINE ECOLOGY PROGRESS SERIES Published August 19 doi: 10.3354/meps08135 Mar Ecol Prog Ser Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate Peter A. Lee1,*, Jamie R. Rudisill1, Aimee R. Neeley1, 7, Jennifer M. Maucher2, David A. Hutchins3, 8, Yuanyuan Feng3, 8, Clinton E. Hare3, Karine Leblanc3, 9,10, Julie M. Rose3,11, Steven W. Wilhelm4, Janet M. Rowe4, 5, Giacomo R. DiTullio1, 6 1Hollings Marine Laboratory, College of Charleston, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA 2Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Fort Johnson Road, Charleston, South Carolina 29412, USA 3College of Marine and Earth Studies, University of Delaware, 700 Pilottown Road, Lewes, Delaware 19958, USA 4Department of Microbiology, University of Tennessee, 1414 West Cumberland Ave, Knoxville, Tennessee 37996, USA 5Department of Plant Pathology, The University of Nebraska, 205 Morrison Center, Lincoln, Nebraska 68583, USA 6Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina 29412, USA 7Present address: National Aeronautics and Space Administration, Calibration and Validation Office, 1450 S. Rolling Road, Suite 4.111, Halethorpe, Maryland 21227, USA 8Present address: Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA 9Present address: Aix-Marseille Université, CNRS,
    [Show full text]
  • Marine Mammal Pharmacology
    27 PHARMACEUTICALS AND FORMULARIES CLAIRE A. SIMEONE AND MICHAEL K. STOSKOPF Contents Introduction Introduction .......................................................................... 593 This chapter aims to provide clinicians and scientists working Routes for Administering Drugs to Marine Mammals ......... 594 with marine mammals with a convenient and rapidly acces- Dose Scaling ......................................................................... 595 sible single source on the subject. A compilation of the avail- Drug Interactions and Adverse Effects ................................ 596 able pharmacological information on cetaceans, pinnipeds, Life-Threatening Adverse Reactions .................................... 596 sirenians, sea otters (Enhydra lutris), and polar bears (Ursus Hepatic Effects ...................................................................... 596 maritimus) is provided. Readers must be aware at all times Renal Effects ......................................................................... 597 that drugs discussed in this chapter may have only been Gastrointestinal Effects ......................................................... 597 used on a limited number of individual animals from a nar- Nervous System Effects ........................................................ 597 row range of species, so all information must be interpreted Dermal Effects ...................................................................... 598 with caution. No drugs have been licensed for use in marine Otic Effects ...........................................................................
    [Show full text]
  • Surface Seawater Plankton Sampling for Coccolithophores Undertaken During IODP Expedition 359
    Betzler, C., Eberli, G.P., Alvarez Zarikian, C.A., and the Expedition 359 Scientists Proceedings of the International Ocean Discovery Program Volume 359 publications.iodp.org doi:10.14379/iodp.proc.359.111.2017 Contents 1 Abstract Data report: surface seawater plankton 1 Introduction sampling for coccolithophores undertaken 1 Materials and methods 3 Results 1 during IODP Expedition 359 5 Biogeography 6 Acknowledgments Jeremy R. Young, Santi Pratiwi, Xiang Su, and the Expedition 359 Scientists2 6 References 7 Appendix Keywords: International Ocean Discovery Program, IODP, JOIDES Resolution, Expedition 359, Indian Ocean transect, Maldives, coccolithophores Abstract Darwin, Australia, to the Maldives (Figure F1A). This transit pre- sented a valuable opportunity to sample the equatorial assemblages Data on extant coccolithophore assemblages from plankton to determine broad patterns of coccolithophore distribution and samples collected during International Ocean Discovery Program compare them with those recorded previously, notably by Kleijne et Expedition 359 to the Maldives is presented. Samples include 12 al. (1989). Sampling continued within the Maldives drilling area to collected during passage across the Indian Ocean from Darwin, (1) determine whether assemblages within the Maldives show evi- Australia, to the Maldives and 40 collected in the Maldives. Assem- dence of ecological restriction or modified assemblages related to blages were analyzed by light and scanning electron microscopy, the particular environment of the atoll chain, (2) investigate repro- and detailed assemblage data are presented. Comparison with pre- ducibility of assemblage data by repeat sampling within a limited vious data from the region suggests that there are consistent distinc- area over an extended period, and (3) investigate the potential of the tive aspects to Indian Ocean assemblages.
    [Show full text]
  • Quorum Sensing of Microalgae Associated Marine Ponticoccus Sp
    Chi et al. AMB Expr (2017) 7:59 DOI 10.1186/s13568-017-0357-6 ORIGINAL ARTICLE Open Access Quorum sensing of microalgae associated marine Ponticoccus sp. PD‑2 and its algicidal function regulation Wendan Chi1, Li Zheng1,2*, Changfei He1, Bin Han1, Minggang Zheng1, Wei Gao1, Chengjun Sun1,2, Gefei Zhou3 and Xiangxing Gao4 Abstract Quorum sensing (QS) systems play important roles in regulating many physiological functions of microorganisms, such as biofilm formation, bioluminescence, and antibiotic production. One marine algicidal bacterium, Ponticoc- cus sp. PD-2, was isolated from the microalga Prorocentrum donghaiense, and its N-acyl-homoserine lactone (AHL)- mediated QS system was verified. In this study, we analyzed the AHLs profile of strain PD-2. Two AHLs, 3-oxo-C8-HSL and 3-oxo-C10-HSL, were detected using a biosensor overlay assay and GC–MS methods. Two complete AHL-QS systems (designated zlaI/R and zlbI/R) were identified in the genome of strain PD-2. When expressed in Escherichia coli, both zlaI and zlbI genes could each produce 3-oxo-C8-HSL and 3-oxo-C10-HSL. Algicidal activity was investigated by evaluating the inhibitory rate (IR) of microalgae growth by measuring the fluorescence of viable cells. We found that the metabolites of strain PD-2 had algicidal activity against its host P. donghaiense (IR 84.81%) and two other red tide microalgae, Phaeocystis globosa (IR 78.91%) and Alexandrium tamarense (IR 67.14%). β-cyclodextrin which binds to AHLs and inhibits the QS system reduced the algicidal activity more than 50%. This indicates that inhibiting the QS system may affect the algicidal metabolites production of strain PD-2.
    [Show full text]
  • The Influence of Environmental Variability on the Biogeography of Coccolithophores and Diatoms in the Great Calcite Belt Helen E
    Biogeosciences Discuss., doi:10.5194/bg-2017-110, 2017 Manuscript under review for journal Biogeosciences Discussion started: 13 April 2017 c Author(s) 2017. CC-BY 3.0 License. The Influence of Environmental Variability on the Biogeography of Coccolithophores and Diatoms in the Great Calcite Belt Helen E. K. Smith1,2, Alex J. Poulton1,3, Rebecca Garley4, Jason Hopkins5, Laura C. Lubelczyk5, Dave T. Drapeau5, Sara Rauschenberg5, Ben S. Twining5, Nicholas R. Bates2,4, William M. Balch5 5 1National Oceanography Centre, European Way, Southampton, SO14 3ZH, U.K. 2School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, U.K. 3Present address: The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 7JG, U.K. 10 4Bermuda Institute of Ocean Sciences, 17 Biological Station, Ferry Reach, St. George's GE 01, Bermuda. 5Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, P.O. Box 380, East Boothbay, Maine 04544, USA. Correspondence to: Helen E.K. Smith ([email protected]) Abstract. The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite 15 concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region, provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Water samples for phytoplankton enumeration were collected from the upper 30 m during two cruises, the first to the South Atlantic sector (Jan-Feb 2011; 60o W-15o E and 36-60o S) and the second in the South Indian sector (Feb-Mar 2012; 20 40-120o E and 36-60o S).
    [Show full text]
  • Modeling Coccolithophores in the Global Oceans
    Modeling Coccolithophores in the Global Oceans Watson W. Gregg Global Modeling and Assimilation Office NASA/Goddard Space Flight Center Greenbelt, MD 20771 [email protected] Nancy W. Casey Science Systems and Applications, Inc. Lanham, MD 20706 [email protected] Deep-Sea Research II Special Issue Submitted March, 2006 Revised May, 2006 Abstract Coccolithophores are important ecological and geochemical components of the global oceans. A global three-dimensional model was used to simulate their distributions in a multi- phytoplankton context. The realism of the simulation was supported by comparisons of model surface nutrients and total chlorophyll with in situ and satellite observations. Nitrate, silica, and dissolved iron surface distributions were positively correlated with in situ data across major oceanographic basins. Global annual departures were +18.9% for nitrate (model high), +5.4% for silica, and +45.0% for iron. Total surface chlorophyll was also positively correlated with satellite and in situ data sets across major basins. Global annual departures were -8.0% with SeaWiFS (model low), +1.1% with Aqua, and -17.1% with in situ data. Global annual primary production estimates were within 1% and 9% of estimates derived from SeaWiFS and Aqua, respectively, using a common primary production algorithm. Coccolithophore annual mean relative abundances were 2.6% lower than observations, but were positively correlated across basins. Two of the other three phytoplankton groups, diatoms and cyanobacteria, were also positively correlated with observations. Distributions of coccolithophores were dependent upon interactions and competition with the other phytoplankton groups. In this model coccolithophores had a competitive advantage over diatoms and chlorophytes by virtue of a greater ability to utilize nutrients and light at low values.
    [Show full text]