Protein Targeting

Total Page:16

File Type:pdf, Size:1020Kb

Protein Targeting 16 Protein Targeting To understand the molecular The cells of eukaryotic organisms are architecturally intricate (Figure 1). Goal mechanisms that are They have a nucleus in which the genetic material is stored and transcribed responsible for the sorting of into RNA. They also have specialized organelles, such as mitochondria proteins in eukaryotic cells. and, in the case of photosynthetic organisms, chloroplasts, which generate chemical energy. Other organelles include lysosomes, which are sites of Objectives degradation for macromolecules (a kind of eukaryotic trash can), and After this chapter, you should be able to peroxisomes, which house oxidative reactions that break down (catabolize) fatty acids and other small molecules. • explain how the architecture of eukaryotic cells demands mechanisms The cytoplasm of eukaryotic cells also contains an endoplasmic reticulum to target specific proteins to appropriate (ER), an extensive maze of interconnected spaces (lumena) surrounded by destinations. a membrane that serves as the site for the synthesis of proteins destined for • describe how the decision to import into the ER. The ER is, in turn, connected to the Golgi apparatus, enter either the cytoplasm or the a stack of flattened disks of membrane that receives proteins from the ER endoplasmic reticulum is made on the ribosome. and directs them to other organelles, to the cytoplasmic membrane that surrounds the cell, or to be secreted to the outside of the cell. The ER, the • explain how the nuclear pore can block Golgi, and all of the other individual organelles are surrounded by a single the nuclear entry of some proteins but not others. membrane bilayer, with the exception of the nucleus, mitochondria, and chloroplasts. The nucleus is surrounded by a double membrane bilayer • explain how proteins enter the endoplasmic reticulum. called the nuclear envelope that is contiguous with the endoplasmic reticulum. Mitochondria and chloroplasts are also surrounded by inner • explain the role of vesicles and coat and outer membrane bilayers. proteins in the secretory pathway. • describe how v-SNAREs and t-SNAREs Thus, the ultrastructure of the eukaryotic cell is complex, posing challenging enable vesicles to identify and fuse with questions about protein targeting. Each of the subcellular compartments target membranes. of the cell contains unique proteins. How do these proteins get to their Chapter 16 Protein Targeting 2 Figure 1 Proteins are targeted to different cellular compartments by a variety of mechanisms The mechanism by which a protein is trafficked to a particular cellular compartment depends on the identity of transport across chloroplast the compartment. Proteins destined for membranes the nucleus are translated in the cytoplasm and later translocated, in a folded state, nuclear mitochondrion through nuclear pores. Proteins destined pore nucleus for chloroplasts and mitochondria are synthesized on ribosomes in the cytoplasm transport through and later translocated into the target proteins nuclear pores compartment in an unfolded state. Proteins that are to be secreted and proteins that are destined for the ER, Golgi, lysosome, or cytoplasmic membrane are all translocated ER ribosomes into the ER as they are synthesized. From vesicle the ER, these proteins travel in membrane- bound vesicles to various cellular compartments. transport by Golgi vesicles secreted protein proper destination, be it the cytoplasmic membrane, the lysosome, the mitochondrion, or the chloroplast? How do proteins become embedded in membranes or cross membranes to reach a compartment on the other side or for export out of the cell? Here we examine the ways in which the cell addresses these protein sorting and transport challenges. The first decision is whether to enter the endoplasmic reticulum The journey of a protein to its proper destination is governed by a series of decisions (Figure 2). The initial decision is whether to enter the endoplasmic reticulum. ER entry is determined by the presence or absence of a short stretch of amino acids at the N-terminus of a nascent polypeptide chain as it emerges from the ribosome. These amino acids are known as thesignal sequence, and we will return to them presently. If a signal sequence is absent, the newly synthesized protein is released into the cytoplasm. Such proteins might remain in the cytoplasm (for example, many of the myriad enzymes of the cell). However, particular amino-acid sequences (think of them as addresses) target certain proteins to the nucleus, the mitochondria, or other organelles. Targeting the nucleus Passage into (and out of) the nucleus occurs through specialized channels known as nuclear pores (Figure 3). These protein-lined structures span both the inner and outer membranes of the nuclear envelope. Nuclear Chapter 16 Protein Targeting 3 The mRNA leaves the nucleus, and its translation begins in the cytoplasm. Is there an ER signal sequence? No Yes SRP binds to the nascent ER The translated protein is released signal sequence, halting into the cytoplasm. translation until the ribosome docks to the ER membrane. Is there a nuclear localization signal? Is there a transmembrane domain? No Yes No Yes The translated protein is The translated protein is released embedded into the ER Is there a mitochondrial The protein is tracked to the into the ER lumen. membrane via its targeting sequence? nucleus. transmembrane domain(s). No Yes Is there a second targeting Is there a second targeting sequence? sequence? The protein remains in the The protein is tracked to the cytoplasm. mitochondria. No Yes Yes No The protein is tracked to the The protein is tracked to the cytoplasmic membrane and cytoplasmic membrane. secreted. The protein is retained in the The protein is retained in the lumen of the targeted membrane of the targeted compartment (e.g., ER, Golgi, compartment (e.g., ER, Golgi, lysosome, etc.). lysosome, etc.). Figure 2 Proteins are targeted to particular cellular locations depending on their targeting sequences Shown is a decision tree that describes how particular sequence(s) affect protein-targeting decisions. pores are large enough (100 nm) that ions and small molecules can freely diffuse through them, but proteins cannot move through the pore without assistance. This assistance takes the form of specialized proteins that act as nuclear import receptors. Figure 3 Proteins enter the cytoplasmic lament nucleus through nuclear pores central pore cytoplasmic ring hydrogel outer nuclear membrane nuclear envelope inner nuclear membrane nuclear basket nuclear ring Chapter 16 Protein Targeting 4 The nuclear pore is lined with long, flexible, filamentous proteins that interact with each other via backbone-backbone hydrogen bonding and hydrophobic interactions to form a gel-like material known as a hydrogel. Importantly, the hydrogel acts as a sieve, preventing large molecules from passing through the channel. The import receptors recognize and bind to proteins that bear a particular amino-acid sequence known as a nuclear localization sequence. The nuclear import receptor, while bound to a protein with a nuclear localization sequence, interacts with the hydrogel, reshaping it so as to allow the protein complex to traverse the channel of the nuclear pore and enter the nucleus. Signal sequences target proteins to the ER Now let’s consider the case of proteins that do have a signal sequence at their N-termini (Figure 4). The signal sequence is generally a short stretch of hydrophobic amino acids that targets proteins to the ER. The ER serves as the entry point of proteins destined for other organelles. Proteins that are targeted to the lysosome, the Golgi, and the cytoplasmic membrane all enter the ER first. Once inside the ER, proteins do not re-enter the cytoplasm. How does this targeting take place? Proteins that lack a signal sequence are synthesized on ribosomes that are free and untethered in the cytoplasm. However, proteins that contain a signal sequence are synthesized on ribosomes that are associated with the outer surface of the ER. Indeed, the ER can be covered with many such dot-like ribosomes, which impart a rough appearance to its surface in electron micrographs (hence, it is referred to as rough ER). The way this happens is as follows. Since the signal sequence is at the N-terminus, when the mRNA for a protein that is destined for the ER starts to be translated, the signal sequence is the first part of the protein to emerge from the ribosome. The signal sequence in the nascent protein is recognized by the signal recognition particle, which, as we will see, attaches the ribosome to the ER membrane, resulting in a membrane-attached ribosome. The ribosomal subunits, both large and small, are recycled after each round of translation, and depending on which mRNA they happen to translate, they will either become free or membrane- attached. Thus, the two categories of ribosomes are functionally equivalent and draw from a common pool of ribosomal subunits in the cytoplasm. The signal recognition particle does two things (Figure 4). First, binding of the signal recognition particle to the signal sequence of the nascent protein temporarily slows translation. Second, the resulting complex, consisting of the mRNA, ribosome, nascent protein chain, and signal recognition particle, docks to a receptor on the surface of the ER known as the signal recognition particle receptor. Once associated with the ER membrane, the complex is directed to the protein translocation channel or translocon,
Recommended publications
  • Common Features of All Cells Bacterial
    www.denniskunkel.com Tour of the Cell part 1 Today’s Topics • Finish Nucleic Acids Cells • Properties of all cells – Prokaryotes and Eukaryotes • Functions of Major Cellular Organelles – Information – Synthesis&Transport – Energy Conversion – Recycling – Structure and Movement Bacterial cell Animal Cell 9/12/12 (Prokaryote) (Eukaryote) 2 www.denniskunkel.com Common features of all cells • Plasma Membrane – defines inside from outside • Cytosol – Semifluid “inside” of the cell • DNA “chromosomes” - Genetic material – hereditary instructions • Ribosomes – “factories” to synthesize proteins 4 Plasma membrane Bacterial (Prokaryotic) Cell Ribosomes! Plasma membrane! Bacterial Cell wall! chromosome ! Phospholipid bilayer Proteins 0.5 !m! Flagella! No internal membranes 5 6 1 Figure 6.2b 1 cm Eukaryotic Cell Frog egg 1 mm Human egg 100 µm Most plant and animal cells 10 m µ Nucleus Most bacteria Light microscopy Mitochondrion 1 µm Super- 100 nm Smallest bacteria Viruses resolution microscopy Ribosomes 10 nm Electron microscopy Proteins Lipids 1 nm Small molecules Contains internal organelles 7 0.1 nm Atoms endoplasmicENDOPLASMIC RETICULUM reticulum (ER) ENDOPLASMIC RETICULUM (ER) NUCLEUS NUCLEUS Rough ER Smooth ER nucleus Rough ER Smooth ER Nucleus Plasma membrane Plasma membrane Centrosome Centrosome cytoskeletonCYTOSKELETON CYTOSKELETON Microfilaments You should Microfilaments Intermediate filaments know everything Intermediate filaments Microtubules in Fig 6.9 ribosomesRibosomes Microtubules Ribosomes cytosol GolgiGolgi apparatus apparatus Golgi apparatus Peroxisome Peroxisome In animal cells but not plant cells: In animal cells but not plant cells: Lysosome Lysosomes Lysosome Lysosomes Figure 6.9 Centrioles Figure 6.9 Centrioles Mitochondrion lysosome Flagella (in some plant 9sperm) Mitochondrion Flagella (in some plant10 sperm) mitochondrion Nuclear envelope Nucleus Nucleus 1 !m Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Pores Pore complex Rough ER Surface of nuclear envelope.
    [Show full text]
  • Evidence for an Alternate Pathway for Lysosomal Enzyme Targeting (Oligosaccharides/Lysosomes/Phosphorylation) CHRISTOPHER A
    Proc. NatL Acad. Sci. USA Vol. 80, pp. 775-779, February 1983 Cell Biology Identification and characterization of cells deficient in the mannose 6-phosphate receptor: Evidence for an alternate pathway for lysosomal enzyme targeting (oligosaccharides/lysosomes/phosphorylation) CHRISTOPHER A. GABEL, DANIEL E. GOLDBERG, AND STUART KORNFELD Departments of Internal Medicine and Biological Chemistry, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Contributed by Stuart Kornfeld, November 3, 1982 ABSTRACT Newly synthesized lysosomal enzymes acquire dence that this cell line is deficient in Man-6-P receptor activity. phosphomannosyl units, which allow bindingofthe enzymes to the We also identify several additional cell lines that lack receptor mannose 6-phosphate receptor and subsequent translocation to activity yet possess high levels ofintracellular hydrolase activity. lysosomes. In some cell types, this sequence ofevents is necessary These data indicate that some cells possess pathways indepen- for the delivery ofthese enzymes to lysosomes. Using a slime mold dent of the Man-6-P receptor for the intracellular transport of lysosomal hydrolase as a probe, we have identified three murine acid hydrolases to lysosomes. cell lines that lack the receptor and one line that contains very low (3%) receptor activity. Each ofthese lines synthesizes the mannose MATERIALS AND METHODS 6-phosphate recognition marker on its lysosomal enzymes, but, Cells. BW5147 mouse lymphoma, P388D1 mouse macro- unlike cell lines with high levels of receptor, the cells accumulate MOPC 315 oligosaccharides containing phosphomonoesters. The receptor- phage, J774.2 mouse macrophage, mouse L cells, deficient lines possess high levels of intracellular acid hydrolase mouse myeloma, Chinese hamster ovary (CHO), and (human) activity, which is contained in dense granules characteristic of ly- HeLa cells were grown in suspension culture in a minimal es- sosomes.
    [Show full text]
  • Control of Protein Function
    3 Control of Protein Function In the cell, precise regulation of protein function is essential to avoid chaos. This chapter describes the most important molecular mechanisms by which protein function is regulated in cells. These range from control of a protein’s location and lifetime within the cell to the binding of regulatory molecules and covalent modifications such as phosphorylation that rapidly switch protein activity on or off. Also covered here are the nucleotide-driven switches in conformation that underlie the action of motor proteins and that regulate many signal transduction pathways. 3-0 Overview: Mechanisms of Regulation 3-1 Protein Interaction Domains 3-2 Regulation by Location 3-3 Control by pH and Redox Environment 3-4 Effector Ligands: Competitive Binding and Cooperativity 3-5 Effector Ligands: Conformational Change and Allostery 3-6 Protein Switches Based on Nucleotide Hydrolysis 3-7 GTPase Switches: Small Signaling G Proteins 3-8 GTPase Switches: Signal Relay by Heterotrimeric GTPases 3-9 GTPase Switches: Protein Synthesis 3-10 Motor Protein Switches 3-11 Regulation by Degradation 3-12 Control of Protein Function by Phosphorylation 3-13 Regulation of Signaling Protein Kinases: Activation Mechanism 3-14 Regulation of Signaling Protein Kinases: Cdk Activation 3-15 Two-Component Signaling Systems in Bacteria 3-16 Control by Proteolysis: Activation of Precursors 3-17 Protein Splicing: Autoproteolysis by Inteins 3-18 Glycosylation 3-19 Protein Targeting by Lipid Modifications 3-20 Methylation, N-acetylation, Sumoylation and Nitrosylation 3-0 Overview: Mechanisms of Regulation Protein function in living cells is precisely regulated A typical bacterial cell contains a total of about 250,000 protein molecules (comprising different amounts of each of several thousand different gene products), which are packed into a volume so small that it has been estimated that, on average, they are separated from one another by a distance that would contain only a few molecules of water.
    [Show full text]
  • A Mitochondria–Lysosome Transport Pathway
    RESEARCH HIGHLIGHTS Controlling enteric nerve Interestingly, inhibition of integrin signalling The authors used point mutations to establish cell migration or ROCK activity rescued directed migration of that residue Met 44 of actin was essential for the MEFs and normalized the migration of ENCCs F-actin-severing function of Mical. Manipulation A functional gastrointestinal system is in organ cultures. Although the precise function of Mical levels is known to generate abnormal dependent on the enteric nervous system, of Phactr4 remains to be discovered, these data bristle cell processes in Drosophila. In the present which is formed during embryogenesis through demonstrate its role in regulating lamellipodial study, mutation of the Met 44 actin residue colonization of the gut by enteric neural crest actin dynamics through cofilin activity suppressed Mical overexpression phenotypes cells (ENCCs). Now, Niswander and colleagues controlled by integrin and PP1 signalling. CKR and phenocopied Mical loss-of-function effects identify the protein phosphatase 1 (PP1)- and in Drosophila. Together, these findings establish actin-binding protein Phactr4 as a regulator actin as a direct substrate of Mical and reveal of directional and collective ENCC migration a specific oxidation-dependent mechanism (Genes Dev. 26, 69–81; 2012). Actin gets the oxidation to regulate actin filament dynamics and cell Analysis of mouse embryos expressing treatment from Mical processes in vivo. AIZ a Phactr4 mutation known to abolish PP1 binding revealed reduced enteric neuronal Mical, an enzyme mediating redox reactions, numbers and defective organization at is known to promote actin remodelling embryonic day 18.5, and reduced ENCC in response to semaphorin signalling by A mitochondria–lysosome numbers in the gut at earlier stages (E12.5).
    [Show full text]
  • Phosphatases and Differentiation of the Golgi Apparatus
    J. Cell Sci. 4, 455-497 (1969) 455 Printed in Great Britain PHOSPHATASES AND DIFFERENTIATION OF THE GOLGI APPARATUS MARIANNE DAUWALDER, W. G. WHALEY AND JOYCE E. KEPHART The Cell Research Institute, Tlie University of Texas at Austin, Texas, U.S.A. SUMMARY Cytochemical techniques for the electron microscopic localization of inosine diphosphatase, thiamine pyrophosphatase, and acid phosphatase have been applied to the developing root tip of Zea mays. Following formaldehyde fixation the Golgi apparatus of most of the cells showed reaction specificity for IDPase and TPPase. Following glutaraldehyde fixation marked localiza- tion of IDPase reactivity in the Golgi apparatus was limited to the root cap, the epidermis, and the phloem. A parallelism was apparent between the sequential morphological development of the apparatus for the secretion of a polysaccharide product, the fairly direct incorporation of tritiated glucose into the apparatus to become a component of this product and the develop- ment of the enzyme reactivity. Acid phosphatase, generally accepted as a lysosomal marker, was found in association with the Golgi apparatus in only a few cell types near the apex of the root. The localization was usually in a single cisterna at the face of the apparatus toward which the production of secretory vesicles builds up and associated regions of what may be smooth endoplasmic reticulum. Since the cell types involved were limited regions of the cap and epidermis and some initial cells, no functional correlates of the reactivity were apparent. Despite the presence of this lysosomal marker, no structures clearly identifiable as ' lysosomes' were found and the lack of reaction specificity in the vacuoles did not allow them to be so defined.
    [Show full text]
  • Written Response #5
    Written Response #5 • Draw and fill in the chart below about three different types of cells: Written Response #6-18 • In this true/false activity: • You and your partner will discuss the question, each of you will record your response and share your answer with the class. Be prepared to justify your answer. • You are allow to search answers. • You will be limited to 20 seconds per question. Written Response #6-18 6. The water-hating hydrophobic tails of the phospholipid bilayer face the outside of the cell membrane. 7. The cytoplasm essentially acts as a “skeleton” inside the cell. 8. Plant cells have special structures that are not found in animal cells, including a cell wall, a large central vacuole, and plastids. 9. Centrioles help organize chromosomes before cell division. 10. Ribosomes can be found attached to the endoplasmic reticulum. Written Response #6-18 11. ATP is made in the mitochondria. 12. Many of the biochemical reactions of the cell occur in the cytoplasm. 13. Animal cells have chloroplasts, organelles that capture light energy from the sun and use it to make food. 14. Small hydrophobic molecules can easily pass through the plasma membrane. 15. In cell-level organization, cells are not specialized for different functions. Written Response #6-18 16. Mitochondria contains its own DNA. 17. The plasma membrane is a single phospholipid layer that supports and protects a cell and controls what enters and leaves it. 18. The cytoskeleton is made from thread-like filaments and tubules. 3.2 HW 1. Describe the composition of the plasma membrane.
    [Show full text]
  • The Signal Recognition Particle
    P1: GDL May 22, 2001 22:53 Annual Reviews AR131-22 Annu. Rev. Biochem. 2001. 70:755–75 Copyright c 2001 by Annual Reviews. All rights reserved THE SIGNAL RECOGNITION PARTICLE Robert J. Keenan1, Douglas M. Freymann2, Robert M. Stroud3, and Peter Walter3,4 1Maxygen, 515 Galveston Drive, Redwood City, California 94063; e-mail: [email protected] 2Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611; e-mail: [email protected] 3Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143; e-mail: [email protected] 4The Howard Hughes Medical Institute, University of California, San Francisco, California 94143; e-mail: [email protected] Key Words Alu domain, SRP, SRP54, Ffh, SRP receptor, FtsY, signal sequence, GTPase, SRP9/14, SRP RNA ■ Abstract The signal recognition particle (SRP) and its membrane-associated re- ceptor (SR) catalyze targeting of nascent secretory and membrane proteins to the protein translocation apparatus of the cell. Components of the SRP pathway and salient fea- tures of the molecular mechanism of SRP-dependent protein targeting are conserved in all three kingdoms of life. Recent advances in the structure determination of a number of key components in the eukaryotic and prokaryotic SRP pathway provide new insight into the molecular basis of SRP function, and they set the stage for future work toward an integrated picture that takes into account the dynamic and contextual properties of this remarkable cellular machine. CONTENTS INTRODUCTION ................................................ 756 by UNIVERSITY OF CHICAGO LIBRARIES on 11/05/07. For personal use only. COTRANSLATIONAL PROTEIN TARGETING ..........................756 Annu.
    [Show full text]
  • 1519038862M28translationand
    Paper No. : 15 Molecular Cell Biology Module : 28 Translation and Post-translation Modifications in Eukaryotes Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Prof. Kuldeep K. Sharma Department of Zoology, University of Jammu Content Writer : Dr. Renu Solanki, Deen Dayal Upadhyaya College Dr. Sudhida Gautam, Hansraj College, University of Delhi Mr. Kiran K. Salam, Hindu College, University of Delhi Content Reviewer : Prof. Rup Lal Department of Zoology, University of Delhi 1 Molecular Genetics ZOOLOGY Translation and Post-translation Modifications in Eukaryotes Description of Module Subject Name ZOOLOGY Paper Name Molecular Cell Biology; Zool 015 Module Name/Title Cell regulatory mechanisms Module Id M28: Translation and Post-translation Modifications in Eukaryotes Keywords Genome, Proteome diversity, post-translational modifications, glycosylation, phosphorylation, methylation Contents 1. Learning Objectives 2. Introduction 3. Purpose of post translational modifications 4. Post translational modifications 4.1. Phosphorylation, the addition of a phosphate group 4.2. Methylation, the addition of a methyl group 4.3. Glycosylation, the addition of sugar groups 4.4. Disulfide bonds, the formation of covalent bonds between 2 cysteine amino acids 4.5. Proteolysis/ Proteolytic Cleavage 4.6. Subunit binding to form a multisubunit protein 4.7. S-nitrosylation 4.8. Lipidation 4.9. Acetylation 4.10. Ubiquitylation 4.11. SUMOlytion 4.12. Vitamin C-Dependent Modifications 4.13. Vitamin K-Dependent Modifications 4.14. Selenoproteins 4.15. Myristoylation 5. Chaperones: Role in PTM and mechanism 6. Role of PTMs in diseases 7. Detecting and Quantifying Post-Translational Modifications 8.
    [Show full text]
  • A Clearer Picture of the ER Translocon Complex Max Gemmer and Friedrich Förster*
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs231340. doi:10.1242/jcs.231340 REVIEW A clearer picture of the ER translocon complex Max Gemmer and Friedrich Förster* ABSTRACT et al., 1986). SP-equivalent N-terminal transmembrane helices that The endoplasmic reticulum (ER) translocon complex is the main gate are not cleaved off can also target proteins to the ER through the into the secretory pathway, facilitating the translocation of nascent same mechanism. In this SRP-dependent co-translational ER- peptides into the ER lumen or their integration into the lipid membrane. targeting mode, ribosomes associate with the ER membrane via ER Protein biogenesis in the ER involves additional processes, many of translocon complexes. These membrane protein complexes them occurring co-translationally while the nascent protein resides at translocate nascent soluble proteins into the ER, integrate nascent the translocon complex, including recruitment of ER-targeted membrane proteins into the ER membrane, mediate protein folding ribosome–nascent-chain complexes, glycosylation, signal peptide and membrane protein topogenesis, and modify them chemically. In cleavage, membrane protein topogenesis and folding. To perform addition to co-translational protein import and translocation, distinct such varied functions on a broad range of substrates, the ER ER translocon complexes enable post-translational translocation and translocon complex has different accessory components that membrane integration. This post-translational pathway is widespread associate with it either stably or transiently. Here, we review recent in yeast (Panzner et al., 1995), whereas higher eukaryotes primarily structural and functional insights into this dynamically constituted use it for relatively short peptides (Schlenstedt and Zimmermann, central hub in the ER and its components.
    [Show full text]
  • Protein Targeting Or Protein Sorting
    Protein targeting or Protein sorting Refer Page 1068 to 1074 Principles of Biochemistry by Lehninger & Page 663 Baltimore Mol Cell Biology • Protein targeting or Protein sorting is the process of delivery of newly synthesized proteins to their proper cellular destinations • Proteins are sorted to the endoplasmic reticulum (ER), mitochondria, chloroplasts, lysosomes, peroxisomes, and the nucleus by different mechanisms • The process can occur either during protein synthesis or soon after synthesis of proteins by translation at the ribosome. • Most of the integral membrane proteins, secretory proteins and lysosomal proteins are sorted to ER lumen from where these proteins are modified for further sorting • For membrane proteins, targeting leads to insertion of the protein into the lipid bilayer • For secretory/water-soluble proteins, targeting leads to translocation of the entire protein across the membrane into the aqueous interior of the organelle. • Protein destined for cytosol simply remain where they are synthesized • Mitochondrial and chloroplast proteins are first completely synthesized and released from ribosomes. These are then bound by cytosolic chaperone proteins and delivered to receptor on target organelle. • Nuclear proteins such as DNA and RNA polymerases, histones, topoisomerases and proteins that regulate gene expression contain Nuclear localization signal (NLS) which is not removed after the protein is translocated. Unlike ER localization signal sequence which is at N terminal, NLS ca be located almost anywhere along the
    [Show full text]
  • Studies on the Mechanisms of Autophagy: Formation of the Autophagic Vacuole W
    Studies on the Mechanisms of Autophagy: Formation of the Autophagic Vacuole W. A. Dunn, Jr. Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610 Abstract. Autophagic vacuoles form within 15 min of tophagic vacuoles. All these results suggested that au- perfusing a liver with amino acid-depleted medium. tophagic vacuoles were not formed from plasma mem- These vacuoles are bound by a "smooth" double mem- brane, Golgi apparatus, or endosome constituents. An- brane and do not contain acid phosphatase activity. In tisera prepared against integral membrane proteins (14, Downloaded from http://rupress.org/jcb/article-pdf/110/6/1923/1059547/1923.pdf by guest on 26 September 2021 an attempt to identify the membrane source of these 25, and 40 kD) of the RER was found to label the in- vacuoles, I have used morphological techniques com- ner and outer limiting membranes of almost all na- bined with immunological probes to localize specific scent autophagic vacuoles. In addition, ribophorin II membrane antigens to the limiting membranes of was identified at the limiting membranes of many na- newly formed or nascent autophagic vacuoles. Anti- scent autophagic vacuoles. Finally, secretory proteins, bodies to three integral membrane proteins of the rat serum albumin and alpha2o-globulin, were localized plasma membrane (CE9, HA4, and epidermal growth to the lumen of the RER and to the intramembrane factor receptor) and one of the Golgi apparatus space between the inner and outer membranes of some (sialyltransferase) did not label these vacuoles. Inter- of these vacuoles. The results were consistent with the nalized epidermal growth factor and its membrane formation of autophagic vacuoles from ribosome-free receptor were not found in nascent autophagic vacu- regions of the RER.
    [Show full text]
  • L Is for Lytic Granules: Lysosomes That Kill
    Biochimica et Biophysica Acta 1401Ž. 1998 146±156 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Review provided by Elsevier - Publisher Connector L is for lytic granules: lysosomes that kill Lesley J. Page 1, Alison J. Darmon 2, Ruth Uellner, Gillian M. Griffiths ) MRC Lab for Molecular Cell Biology, UniÕersity College London, Gower St, London WC1E 6BT, UK Received 23 June 1997; revised 30 October 1997; accepted 31 October 1997 Contents 1. Introduction ................................................... 147 2. CTL function and biochemistry ....................................... 147 2.1. The function of CTL .......................................... 147 2.2. Mechanisms of killing.......................................... 147 2.3. Cytolytic proteins ............................................ 148 2.4. Target cell death ............................................. 149 2.5. Serial killing ............................................... 150 3. The lytic granule as a lysosome ....................................... 150 3.1. Lysosomal contents ........................................... 150 3.2. Lytic granules are acidic compartments ............................... 150 3.3. The lytic granule as an endocytic compartment ........................... 151 4. Lytic granules as secretory organelles ................................... 152 4.1. Sorting of lysosomal proteins ..................................... 152 4.2. Sorting of granzymes and perforin .................................. 152 5. Secretory lysosomes
    [Show full text]