The Chloroplast Protein Import System: from Algae to Trees☆
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigations on the Influence of Cellular Sugar and Endoplasmic Reticulum Dynamics on Plastid Pleomorphy in Arabidopsis Thaliana
Investigations on the Influence of Cellular Sugar and Endoplasmic Reticulum Dynamics on Plastid Pleomorphy in Arabidopsis thaliana by Kiah A. Barton A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Kiah A. Barton, April, 2020 ABSTRACT INVESTIGATIONS ON THE INFLUENCE OF CELLULAR SUGAR AND ENDOPLASMIC RETICULUM DYNAMICS ON PLASTID PLEOMORPHY IN ARABIDOPSIS THALIANA Kiah A. Barton Advisor: University of Guelph, 2020 Dr. Jaideep Mathur Plastids exhibit continuous changes in shape over time, seen either as alterations in the form of the entire plastid or as the extension of thin stroma-filled tubules (stromules). Live-imaging of fluorescently-highlighted organelles was used to assess the role of cellular sugar status and endoplasmic reticulum (ER) rearrangement in this behaviour. Plastids in the pavement cells of Arabidopsis are shown to be chloroplasts and a brief summary of their physical relationship with other cellular structures, their development, and their stromule response to exogenous sucrose is presented. Of the several sugars and sugar alcohols tested, plastid elongation in response to exogenously applied sugars is specific to glucose, sucrose and maltose, indicating that the response is not osmotic in nature. Sugar analogs, used to assess the contribution of sugar signalling to a process, and the sucrose signalling component trehalose-6-phosphate have no effect on stromule formation. Stromule frequency increases in response to multiple nutrient stresses in a sugar- dependent manner. Mutants with increased sugar accumulation show corresponding increases in stromule frequencies, though plastid swelling as a result of excessive starch accumulation negatively affects stromule formation. -
The Signal Recognition Particle
P1: GDL May 22, 2001 22:53 Annual Reviews AR131-22 Annu. Rev. Biochem. 2001. 70:755–75 Copyright c 2001 by Annual Reviews. All rights reserved THE SIGNAL RECOGNITION PARTICLE Robert J. Keenan1, Douglas M. Freymann2, Robert M. Stroud3, and Peter Walter3,4 1Maxygen, 515 Galveston Drive, Redwood City, California 94063; e-mail: [email protected] 2Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611; e-mail: [email protected] 3Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143; e-mail: [email protected] 4The Howard Hughes Medical Institute, University of California, San Francisco, California 94143; e-mail: [email protected] Key Words Alu domain, SRP, SRP54, Ffh, SRP receptor, FtsY, signal sequence, GTPase, SRP9/14, SRP RNA ■ Abstract The signal recognition particle (SRP) and its membrane-associated re- ceptor (SR) catalyze targeting of nascent secretory and membrane proteins to the protein translocation apparatus of the cell. Components of the SRP pathway and salient fea- tures of the molecular mechanism of SRP-dependent protein targeting are conserved in all three kingdoms of life. Recent advances in the structure determination of a number of key components in the eukaryotic and prokaryotic SRP pathway provide new insight into the molecular basis of SRP function, and they set the stage for future work toward an integrated picture that takes into account the dynamic and contextual properties of this remarkable cellular machine. CONTENTS INTRODUCTION ................................................ 756 by UNIVERSITY OF CHICAGO LIBRARIES on 11/05/07. For personal use only. COTRANSLATIONAL PROTEIN TARGETING ..........................756 Annu. -
Response of Plant Growth and Development to Different Light Conditions in Three Model Plant Systems Hanhong Bae Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2001 Response of plant growth and development to different light conditions in three model plant systems Hanhong Bae Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons Recommended Citation Bae, Hanhong, "Response of plant growth and development to different light conditions in three model plant systems " (2001). Retrospective Theses and Dissertations. 911. https://lib.dr.iastate.edu/rtd/911 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids During Plant Development
Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain, Thomas Pfannschmidt To cite this version: Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, et al.. Regu- latory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.. Frontiers in Plant Science, Frontiers, 2017, 8, pp.23. 10.3389/fpls.2017.00023. hal-01513709 HAL Id: hal-01513709 https://hal.archives-ouvertes.fr/hal-01513709 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-08-00023 January 17, 2017 Time: 16:47 # 1 MINI REVIEW published: 19 January 2017 doi: 10.3389/fpls.2017.00023 Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain and Thomas Pfannschmidt* Laboratoire de Physiologie Cellulaire et Végétale, Institut de Biosciences et Biotechnologies de Grenoble, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France Plastids display a high morphological and functional diversity. -
A Clearer Picture of the ER Translocon Complex Max Gemmer and Friedrich Förster*
© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs231340. doi:10.1242/jcs.231340 REVIEW A clearer picture of the ER translocon complex Max Gemmer and Friedrich Förster* ABSTRACT et al., 1986). SP-equivalent N-terminal transmembrane helices that The endoplasmic reticulum (ER) translocon complex is the main gate are not cleaved off can also target proteins to the ER through the into the secretory pathway, facilitating the translocation of nascent same mechanism. In this SRP-dependent co-translational ER- peptides into the ER lumen or their integration into the lipid membrane. targeting mode, ribosomes associate with the ER membrane via ER Protein biogenesis in the ER involves additional processes, many of translocon complexes. These membrane protein complexes them occurring co-translationally while the nascent protein resides at translocate nascent soluble proteins into the ER, integrate nascent the translocon complex, including recruitment of ER-targeted membrane proteins into the ER membrane, mediate protein folding ribosome–nascent-chain complexes, glycosylation, signal peptide and membrane protein topogenesis, and modify them chemically. In cleavage, membrane protein topogenesis and folding. To perform addition to co-translational protein import and translocation, distinct such varied functions on a broad range of substrates, the ER ER translocon complexes enable post-translational translocation and translocon complex has different accessory components that membrane integration. This post-translational pathway is widespread associate with it either stably or transiently. Here, we review recent in yeast (Panzner et al., 1995), whereas higher eukaryotes primarily structural and functional insights into this dynamically constituted use it for relatively short peptides (Schlenstedt and Zimmermann, central hub in the ER and its components. -
Characterization of the Interaction Between Arabidopsis Toc159 and Toc33 Gtpase Domains
Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2009 Characterization of the Interaction between Arabidopsis Toc159 and Toc33 GTPase Domains Wesley A. Farquharson Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Biology Commons Recommended Citation Farquharson, Wesley A., "Characterization of the Interaction between Arabidopsis Toc159 and Toc33 GTPase Domains" (2009). Theses and Dissertations (Comprehensive). 964. https://scholars.wlu.ca/etd/964 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-64354-9 Our file Notre reference ISBN: 978-0-494-64354-9 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduce, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. -
Molecular Evolutionary Analysis of Plastid Genomes in Nonphotosynthetic Angiosperms and Cancer Cell Lines
The Pennsylvania State University The Graduate School Department or Biology MOLECULAR EVOLUTIONARY ANALYSIS OF PLASTID GENOMES IN NONPHOTOSYNTHETIC ANGIOSPERMS AND CANCER CELL LINES A Dissertation in Biology by Yan Zhang 2012 Yan Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Dec 2012 The Dissertation of Yan Zhang was reviewed and approved* by the following: Schaeffer, Stephen W. Professor of Biology Chair of Committee Ma, Hong Professor of Biology Altman, Naomi Professor of Statistics dePamphilis, Claude W Professor of Biology Dissertation Adviser Douglas Cavener Professor of Biology Head of Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT This thesis explores the application of evolutionary theory and methods in understanding the plastid genome of nonphotosynthetic parasitic plants and role of mutations in tumor proliferations. We explore plastid genome evolution in parasitic angiosperms lineages that have given up the primary function of plastid genome – photosynthesis. Genome structure, gene contents, and evolutionary dynamics were analyzed and compared in both independent and related parasitic plant lineages. Our studies revealed striking similarities in changes of gene content and evolutionary dynamics with the loss of photosynthetic ability in independent nonphotosynthetic plant lineages. Evolutionary analysis suggests accelerated evolution in the plastid genome of the nonphotosynthetic plants. This thesis also explores the application of phylogenetic and evolutionary analysis in cancer biology. Although cancer has often been likened to Darwinian process, very little application of molecular evolutionary analysis has been seen in cancer biology research. In our study, phylogenetic approaches were used to explore the relationship of several hundred established cancer cell lines based on multiple sequence alignments constructed with variant codons and residues across 494 and 523 genes. -
Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378711; this version posted November 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage A. Manuel Liaci1, Barbara Steigenberger2,3, Sem Tamara2,3, Paulo Cesar Telles de Souza4, Mariska Gröllers-Mulderij1, Patrick Ogrissek1,5, Siewert J. Marrink4, Richard A. Scheltema2,3, Friedrich Förster1* Abstract The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo- microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. This unique architecture generates specificity for thousands of SPs based on the length of their hydrophobic segments. Keywords Signal Peptidase Complex, Signal Peptide, Protein Maturation, Membrane Thinning, cryo-EM, Crosslinking Mass Spectrometry, Molecular Dynamics Simulations, Protein Secretion, ER Translocon 1Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. -
The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein- Folding Capacity of the Endoplasmic Reticulum
UCSF UC San Francisco Previously Published Works Title The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein- Folding Capacity of the Endoplasmic Reticulum. Permalink https://escholarship.org/uc/item/80r6147q Journal Cold Spring Harbor perspectives in biology, 11(9) ISSN 1943-0264 Authors Karagöz, G Elif Acosta-Alvear, Diego Walter, Peter Publication Date 2019-09-03 DOI 10.1101/cshperspect.a033886 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Downloaded from http://cshperspectives.cshlp.org/ at UNIV OF CALIF-SF on January 30, 2019 - Published by Cold Spring Harbor Laboratory Press The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein- Folding Capacity of the Endoplasmic Reticulum G. Elif Karagöz,1 Diego Acosta-Alvear,2 and Peter Walter1 1Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143 2Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106 Correspondence: [email protected] Most of the secreted and plasma membrane proteins are synthesized on membrane-bound ribosomes on the endoplasmic reticulum (ER). They require engagement of ER-resident chap- erones and foldases that assist in their folding and maturation. Since protein homeostasis in the ER is crucial for cellular function, the protein-folding status in the organelle’s lumen is continually surveyed by a network of signaling pathways, collectively called the unfolded protein response (UPR). Protein-folding imbalances, or “ER stress,” are detected by highly conserved sensors that adjust the ER’s protein-folding capacity according to the physiological needs of the cell. -
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles
cells Article Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles Clotilde Garrido y, Oliver D. Caspari y , Yves Choquet , Francis-André Wollman and Ingrid Lafontaine * UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France; [email protected] (C.G.); [email protected] (O.D.C.); [email protected] (Y.C.); [email protected] (F.-A.W.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes. Keywords: Chlamydomonas; targeting peptides; antimicrobial peptides; primary endosymbiosis; import into organelles; chloroplast; mitochondrion 1. -
A Signal-Anchor Sequence Stimulates Signal Recognition Particle Binding to Ribosomes from Inside the Exit Tunnel
A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel Uta Berndta,b,1, Stefan Oellerera,b,c,1, Ying Zhanga,b,c, Arthur E. Johnsond, and Sabine Rosperta,b,2 aInstitute of Biochemistry and Molecular Biology and bCenter for Biological Signalling Studies, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; cFakulta¨t fu¨ r Biologie, University of Freiburg, Scha¨nzlestrasse 1, D-79104 Freiburg, Germany; and dDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, 116 Reynolds Medical Building, College Station, TX 77843 Edited by Arthur Horwich, Yale University School of Medicine, New Haven, CT, and approved December 15, 2008 (received for review August 29, 2008) Sorting of eukaryotic membrane and secretory proteins depends direct interaction between SRP and the nascent chain. Previous on recognition of ribosome-bound nascent chain signal sequences studies have addressed the question of whether or not specific by the signal recognition particle (SRP). The current model suggests amino acid sequences of segments inside the tunnel can further that the SRP cycle is initiated when a signal sequence emerges from the affinity of SRP for RNCs (9, 10). Because signal sequences the ribosomal tunnel and binds to SRP. Then elongation is slowed would be prime candidates for such effects, this possibility was until the SRP-bound ribosome–nascent chain complex (RNC) is tested in the eukaryotic system by using RNCs carrying prep- targeted to the SRP receptor in the endoplasmic reticulum (ER) rolactin, a secreted protein with a cleavable signal sequence. membrane. The RNC is then transferred to the translocon, SRP is However, when nascent preprolactin was too short to exit the released, and translation resumes. -
Protein Translocation: the Sec61/Secyeg Translocon
Dispatch R317 4. Read, B.A., Kegel, J., Klute, M.J., Kuo, A., 11. Quince, C., Lanzen, A., Davenport, R.J., and 17. Mangot, J.F., Domaizon, I., Taib, N., Marouni, N., Lefebvre, S.C., Maumus, F., Mayer, C., Turnbaugh, P.J. (2011). Removing noise from Duffaud, E., Bronner, G., and Debroas, D. (2013). Miller, J., Monier, A., Salamov, A., et al. (2013). pyrosequenced amplicons. BMC Short-term dynamics of diversity patterns: Pan genome of the phytoplankton Emiliania Bioinformatics 12, 38. evidence of continual reassembly within underpins its global distribution. Nature 499, 12. Koeppel, A.F., and Wu, M. (2013). Surprisingly lacustrine small eukaryotes. Environ. Microbiol. 209–213. extensive mixed phylogenetic and ecological 15, 1745–1758. 5. Sogin, M.L., Morrison, H.G., Huber, J.A., Mark signals among bacterial Operational 18. Nolte, V., Pandey, R.V., Jost, S., Medinger, R., Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., Taxonomic Units. Nucleic Acids Res. 41, Ottenwalder, B., Boenigk, J., and and Herndl, G.J. (2006). Microbial diversity 5175–5188. Schlotterer, C. (2010). Contrasting seasonal in the deep sea and the underexplored ‘‘rare 13. Stoeck, T., Bass, D., Nebel, M., Christen, R., niche separation between rare and abundant biosphere’’. Proc. Natl. Acad. Sci. USA 103, Jones, M.D., Breiner, H.W., and Richards, T.A. taxa conceals the extent of protist diversity. 12115–12120. (2010). Multiple marker parallel tag Mol. Ecol. 19, 2908–2915. 6. Pedros-Alio, C. (2012). The rare bacterial environmental DNA sequencing reveals a 19. Chow, C.E., Sachdeva, R., Cram, J.A., biosphere. Annu.