Rickettsia 364D

Total Page:16

File Type:pdf, Size:1020Kb

Rickettsia 364D Rickettsia 364D Rickettsia species 364D (Rickettsia philipii), the etiologic agent of Pacific Coast tick fever (PCTF). Transmitted to people by the Pacific Coast tick, Dermacentor occidentalis. As of 2016, fourteen cases (14) cases reported (all in California); 1st case in 2008. Most cases in Northern CA. The Pacific Coast tick’s range includes most of California, southern Oregon, and northern Baja California, Mexico. Symptoms: Fever, headache, eschar(s) [Eschar is dead tissue that falls off (sheds) from healthy skin.] Click here for journal article on Pacific Coast Tick Fever Left: Pacific Coast Tick – Female, Male and Nymph (Photo: Ervic Aquino, CA Dept. Public Health) ©LDA. 2016. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Ehrlichiosis/Anaplasmosis Scientists used to separate ehrlichiosis into two entities caused by the bacterium Ehrlichia: Human Monocytic Ehrlichiosis (HME) and Human Granulocytic Ehrlichiosis (HGE). After further study, they determined that HGE is actually caused by a bacterium, Anaplasma phagacytophilum. HME is caused by a bacterium, Ehrlichia chaffeensis. Symptoms of ehrlichiosis/anaplasmosis include: fever, malaise, headaches, chills, severe muscle aches, vomiting, anemia, lung infection, decreased white blood cells and platelets, elevated liver enzymes, seizures, encephalopathy, meningitis, confusion, ataxia and cranial nerve palsy. Co-infection with Lyme can cause more severe symptoms. Death can result. Treatment is with doxycycline. Ticks that transmit anaplasmosis include Ixodes scapularis (deer tick or black legged tick) and Ixodes pacificus (western black legged tick). Ticks that transmit ehrlichiosis (HME) includeAmblyomma americanum (lone star) and Dermacentor variabilis (American dog). Ixodes scapularis (deer tick or black legged tick) and Ixodes pacificus (western black legged tick) ticks have been shown to carry the ehrlichiosis bacterium, but to date, transmission is still in question. ©LDA. 2014. 2015. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Colorado Tick Fever Colorado Tick Fever Colorado tick fever (CTF) is a disease caused by an RNA virus, Colorado tick fever virus (CTFV). Symptoms, which are often non-specific, begin 3 to 5 days after the bite with an abrupt onset of fever and any of these: headaches, chills, malaise, photophobia, myalgias, nausea, vomiting, diarrhea and abdominal pain. In 5 to 15% of cases a rash occurs. Neurologic complications may also occur. 50% of patients have single recurrence of fever (“saddleback” fever). IFA titers for diagnosis. PCR (Polymerase Chain Reaction) is the test most often used to diagnose the disease. CTF is transmitted by Dermacentor andersoni (Rocky Mt. wood tick) which causes illness from the Western Black Hills to the West Coast in the USA. Some cases of transmission through blood transfusion have been reported. Treatment consists of supportive care. ©LDA. 2014. 2015. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Bourbon Virus Bourbon Virus Five cases of the Bourbon virus, a thogotovirus, have been confirmed since it was first discovered in Bourbon County, Kansas, in 2014, and cases have since been found in Oklahoma and Missouri. Transmission: The premise of Amblyomma americanum (lone star tick) as vector is supported. Symptoms: Fever, headache, tiredness, rash, other body aches, nausea, vomiting, leukopenia, thrombocytopenia. May cause death due to acute illness. No tests. No treatment, except for supportive therapy for symptoms. Electron microscopic images virus particles from virus from CDC. ©LDA. 2015. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Babesiosis Babesiosis is a Malaria-like illness caused by a parasite, either Babesia microti, B. duncani, B. divergens, MO-1. It is sometimes fatal in the elderly or those with no spleen. Babesiosis may be more severe in patients with co-existing Lyme disease. Symptoms include: fever, chills, fatigue, headache, muscle pain, sweats and anemia. Tests for Babesiosis: blood smears, IFA (IgG & IgM), FISH (Flourescent in-situ Hybridization) and PCR may be ordered.* * These tests were developed & performance characteristics determined by independent labs. They have not been cleared or approved by the FDA; however, the FDA has determined such clearance is not necessary. They are designd for clinical purposes and should not be regarded as investigational or for research. Treatment is often atovaquone with azithromycin or clindamycin and oral quinine. Treatments vary, examples provided as information only. Ticks that transmit babesiosis include Ixodes Scapularis (also called blacklegged tick or deer tick) andIxodes Pacificus (western blacklegged tick) both of which also transmit Lyme disease. Multiple infections may be transmitted from the bite of the same tick. Babesiosis has also been transmitted to humans through blood transfusions. In 2018, the FDA approved a test to screen the blood supply for Babesia microti. See: FDA Approves Tests to Screen Blood Supply for Babesia Resources for transplacental transmission of Babesia: 1. Fox, L.M.; Winger, S.; Ahmed, A.; Arnold, A.; Chou, J.; Rhein, L.; Levy, O. Neonatal babesiosis: Case report and review of the literature. Pediatr. Infect. Dis. J. 2006, 25, 169–173. 2. Cornett, J.K.; Malhotra, A.; Hart, D. Vertical transmission of babesiosis from a pregnant, splenectomized mother to her neonate. Infect. Dis. Clin. Pract. 2012, 20, 408–410. 3. Iyer, S.; Goodman, K. Congenital babesiosis from maternal exposure: A case report. J. Emerg. Med. 2009, 56, e39–e41. 4. Khangura, R.K.; Williams, N.; Cooper, S.; Prabulos, A.M. Babesiosis in pregnancy: An imitator of HELLP syndrome. AJP Reports 2019, 9, e147–e152. ©LDA. 2014. 2015. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Rickettsia parkeri Rickettsiosis Rickettsia parkeri Rickettsiosis This disease is found in Eastern & Southern US & Gulf Coast. It is transmitted by Amblyomma maculatum, Gulf Coast tick. Symptoms include headache, fever, variable rash, eschar, which is dead tissue that falls off (sheds) from healthy skin. Diagnosis through PCR testing. Doxycycline is used for treatment. CDC website statement: Confirmation of the diagnosis is based on lab testing, but antibiotic therapy should not be delayed in patient with a suggested clinical presentation ©LDA 2015 This web site provides practical and useful information on the subject matter covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Heartland Virus Heartland Virus map Heartland virus The virus, a Phlebovirus, was discovered in humans in 2009 in the state of Missouri and has been found to date in Oklahoma, Kansas, Arkansas, Indianan, Illinois, Kentucky, Tennessee, North Carolina and Georgia. It is transmitted by Amblyomma americanum, lone star tick. Symptoms: fever, leucopenia (decrease in the number of total white blood cells count), thrombocytopenia (low platelet), tiredness, headaches, muscle aches, diarrhea, loss of appetite. Testing: No routine testing available but protocols are in place to allow people to be tested for evidence of Heartland virus RNA and IgM and IgG antibodies. Doctors should contact your state health department if you have a patient with an acute illness that may be compatible with Heartland virus disease. Treatment: None but palliative care. 40 cases as of 9/18, at least 2 deaths. ©LDA. 2015. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that LDA is not engaged in rendering medical or other professional services. Seek professional services if necessary. Tick-Borne Relapsing Fever (TBRF) Caused by a bacteria (either Borrelia hermsii, turicatae, or parkeri) and transmitted by the soft bodied tick, Ornithodoros (either hermsi, turicata, or parkeri). The disease is characterized by recurring episodes (3 days on 7 off) of high fever, can be up to 106.7° during certain phases. Each fever episode is followed by signs/symptoms which may include headache, muscle and joint aches, nausea, chills, arthralgia, vomiting, abdominal pain, dry cough, eye pain, confusion. The diagnosis is by microscopy and treatment may be with tetracycline, erythromycin, or other antibiotics. The soft bodied ticks which transmit the disease are usually found in the Western US in higher altitudes in old cabins and animal burrows. ©LDA. 2015. This web site provides practical and useful information on the subject matters covered. It is distributed with the understanding that
Recommended publications
  • CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India
    CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India May - July 2009 Vol. 13 : No. 1 SCRUB TYPHUS & OTHER RICKETTSIOSES it lacks lipopolysaccharide and peptidoglycan RICKETTSIAL DISEASES and does not have an outer slime layer. It is These are the diseases caused by rickettsiae endowed with a major surface protein (56kDa) which are small, gram negative bacilli adapted and some minor surface protein (110, 80, 46, to obligate intracellular parasitism, and 43, 39, 35, 25 and 25kDa). There are transmitted by arthropod vectors. These considerable differences in virulence and organisms are primarily parasites of arthropods antigen composition among individual strains such as lice, fleas, ticks and mites, in which of O.tsutsugamushi. O.tsutsugamushi has they are found in the alimentary canal. In many serotypes (Karp, Gillian, Kato and vertebrates, including humans, they infect the Kawazaki). vascular endothelium and reticuloendothelial GLOBAL SCENARIO cells. Commonly known rickettsial disease is Scrub Typhus. Geographic distribution of the disease occurs within an area of about 13 million km2 including- The family Rickettsiaeceae currently comprises Afghanistan and Pakistan to the west; Russia of three genera – Rickettsia, Orientia and to the north; Korea and Japan to the northeast; Ehrlichia which appear to have descended Indonesia, Papua New Guinea, and northern from a common ancestor. Former members Australia to the south; and some smaller of the family, Coxiella burnetii, which causes islands in the western Pacific. It was Q fever and Rochalimaea quintana causing first observed in Japan where it was found to trench fever have been excluded because the be transmitted by mites.
    [Show full text]
  • Annual Report 2019 2019
    Vector-Borne Disease Section Annual Report 2019 2019 ANNUAL REPORT VECTOR-BORNE DISEASE SECTION INFECTIOUS DISEASES BRANCH DIVISION OF COMMUNICABLE DISEASE CONTROL CENTER FOR INFECTIOUS DISEASES CALIFORNIA DEPARTMENT OF PUBLIC HEALTH Gavin Newsom Governor State of California VBDS Annual Report, 2019 Contents Preface .......................................................................................................................................................................................................iii Acknowledgements ............................................................................................................................................................................ iv Suggested Citations ............................................................................................................................................................................ vi Program Overview .............................................................................................................................................................................. vii Chapters 1 Rodent-borne Diseases 1 2 Flea-borne Diseases 4 3 Tick-borne Diseases 7 4 Mosquito-borne Diseases 13 5 U.S. Forest Service Cost-Share Agreement 21 6 Vector Control Technician Certification Program 25 7 Public Information Materials and Publications 27 State of California June 2020 California Department of Public Health ii VBDS Annual Report, 2019 Preface I am pleased to present to you the 2019 Annual Report for the Vector-Borne Disease Section
    [Show full text]
  • WO 2013/042140 A4 28 March 2013 (28.03.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/042140 A4 28 March 2013 (28.03.2013) P O P C T (51) International Patent Classification: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, A61K 31/197 (2006.01) A61K 45/06 (2006.01) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, A61K 31/60 (2006.01) A61P 31/00 (2006.01) TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, A61K 33/22 (2006.01) ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/IN20 12/000634 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 24 September 2012 (24.09.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG). 2792/DEL/201 1 23 September 201 1 (23.09.201 1) IN Declarations under Rule 4.17 : (72) Inventor; and — of inventorship (Rule 4.17(iv)) (71) Applicant : CHAUDHARY, Manu [IN/IN]; 51-52, In dustrial Area Phase- 1, Panchkula 1341 13 (IN).
    [Show full text]
  • Poster Session 2 12:00 - 14:00 Tuesday, 11Th June, 2019 Zia Ballroom Presentation Type Poster
    Poster Session 2 12:00 - 14:00 Tuesday, 11th June, 2019 Zia Ballroom Presentation type Poster 111 Molecular Detection of Rickettsia in American Dog Ticks Collected Along the Platte River in South Central Nebraska Brandon Luedtke1, Julie Shaffer1, Estrella Monrroy1, Corey Willicott1, Travis Bourret2 1University of Nebraska-Kearney, Kearney, USA. 2Creighton University School of Medicine, Omaha, USA Abstract Dermacentor variabilis is the predominant tick species in Nebraska and is presumed to be the primary vector of Rickettsia rickettsii associated with Nebraskans that have contracted Rocky Mountain spotted fever. Interestingly, cases of Rocky Mountain spotted fever in Nebraska have increased on a year over year basis, yet the prevalence of D. variabilis vectoring R. rickettsii has not been established for Nebraska. Here we sought to set a baseline for the prevalence of D. variabilis vectoring R. rickettsii and other spotted fever group (SFG) rickettsiae. Over a 3 year period, D. variabilis were collected along the Platte River in south central Nebraska. Individual tick DNA was analyzed using endpoint PCR to identify ticks carrying SFG rickettsiae. A total of 927 D. variabilis were analyzed by PCR and 38 (4.1%) ticks tested positive for SFG rickettsiae. Presumptive positives were sequenced to identify the Rickettsia species, of which 29 (76%) were R. montanensis, 5 (13%) were R. amblyommatis, 4 (11%) were R. bellii, and R. rickettsii was not detected. These data indicate that R. rickettsii is likely at a low prevalence in south central Nebraska and spillover of R. amblyommatis into D. variabilis is occurring likely due to the invasive lone star tick (Amblyoma americanum).
    [Show full text]
  • What Do We Know About Q Fever in Mexico?
    ARTÍCULO ORIGINAL What do we know about Q fever in Mexico? Javier Araujo-Meléndez,* José Sifuentes-Osornio,* J. Miriam Bobadilla-del-Valle,* Antonio Aguilar-Cruz,** Orestes Torres-Ángeles,** José L. Ramírez-González,*** Alfredo Ponce-de-León,* Guillermo M. Ruiz-Palacios,* M. Lourdes Guerrero-Almeida* * Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. ** Jurisdicción Sanitaria No. 4, Huichapan, Hidalgo. *** Hospital General, Huichapan, Hidalgo. ABSTRACT ¿Qué sabemos acerca de la fiebre Q en México? In Mexico, Q fever is considered a rare disease among hu- RESUMEN mans and animals. From March to May of 2008, three pa- tients were referred, from the state of Hidalgo to a En México la fiebre Q se considera una enfermedad rara en- tertiary-care center in Mexico City, with an acute febrile ill- tre los humanos y los animales. Sin embargo, entre marzo y ness that was diagnosed as Q fever. We decided to undertake a mayo 2008 tres pacientes del estado de Hidalgo fueron refe- cross sectional pilot study to identify cases of acute disease in ridos a un hospital de tercer nivel en la Ciudad de México this particular region and to determine the seroprevalence of por una enfermedad febril aguda y fueron diagnosticados Coxiella burnetii among healthy individuals with known risk con fiebre Q. Se decidió llevar a cabo un estudio piloto para factors for infection with this bacteria. Q fever was defined identificar casos de enfermedad aguda en esa región y deter- according to the Centers for Disease Control and Prevention minar la prevalencia serológica de Coxiella burnetii en indi- criteria.
    [Show full text]
  • Overview of Fever of Unknown Origin in Adult and Paediatric Patients L
    Overview of fever of unknown origin in adult and paediatric patients L. Attard1, M. Tadolini1, D.U. De Rose2, M. Cattalini2 1Infectious Diseases Unit, Department ABSTRACT been proposed, including removing the of Medical and Surgical Sciences, Alma Fever of unknown origin (FUO) can requirement for in-hospital evaluation Mater Studiorum University of Bologna; be caused by a wide group of dis- due to an increased sophistication of 2Paediatric Clinic, University of Brescia eases, and can include both benign outpatient evaluation. Expansion of the and ASST Spedali Civili di Brescia, Italy. and serious conditions. Since the first definition has also been suggested to Luciano Attard, MD definition of FUO in the early 1960s, include sub-categories of FUO. In par- Marina Tadolini, MD Domenico Umberto De Rose, MD several updates to the definition, di- ticular, in 1991 Durak and Street re-de- Marco Cattalini, MD agnostic and therapeutic approaches fined FUO into four categories: classic Please address correspondence to: have been proposed. This review out- FUO; nosocomial FUO; neutropenic Marina Tadolini, MD, lines a case report of an elderly Ital- FUO; and human immunodeficiency Via Massarenti 11, ian male patient with high fever and virus (HIV)-associated FUO, and pro- 40138 Bologna, Italy. migrating arthralgia who underwent posed three outpatient visits and re- E-mail: [email protected] many procedures and treatments before lated investigations as an alternative to Received on November 27, 2017, accepted a final diagnosis of Adult-onset Still’s “1 week of hospitalisation” (5). on December, 7, 2017. disease was achieved. This case report In 1997, Arnow and Flaherty updated Clin Exp Rheumatol 2018; 36 (Suppl.
    [Show full text]
  • Endocarditis Due to Bartonella Quintana, the Etiological Agent of Trench Fever
    PRACTICE | CASES CPD VULNERABLE POPULATIONS Endocarditis due to Bartonella quintana, the etiological agent of trench fever Carl Boodman MD, Terence Wuerz MD MSc (Epi), Philippe Lagacé-Wiens MD n Cite as: CMAJ 2020 December 7;192:E1723-6. doi: 10.1503/cmaj.201170 CMAJ Podcasts: author interview at www.cmaj.ca/lookup/doi/10.1503/cmaj.201170/tab-related-content 48-year-old man presented to the emergency depart- ment with a 2-day history of pleuritic chest pain and KEY POINTS shortness of breath. His medical history included HIV • Bartonella quintana, the causal agent of trench fever, is infection,A diagnosed 14 years earlier in the context of intraven- transmitted by body lice (Pediculus humanus var. corporis). ous drug use. Three months previously, he had an undetectable • Although B. quintana is notorious for causing disease in the First viral load and a CD4 count of 94 cells/mm3 (normal range: 500– World War, outbreaks of trench fever have recently occurred in 1400 cells/mm3) or 0.09 (normal range 0.50–1.40) × 109/L. The urban populations experiencing homelessness. patient adhered to his prescribed antiretroviral regimen (darunavir, • B. quintana causes culture-negative endocarditis and may be ritonavir and abacavir-lamivudine) and prophylaxis against oppor- fatal without antimicrobial and surgical treatment, despite mild tunistic infections (valacyclovir, trimethoprim-sulfamethoxazole symptomatology during chronic bacteremia. Consultation with infectious disease specialists is encouraged. and fluconazole). In addition, the patient had a congenital soli- Because B. quintana evades identification in routine blood tary kidney with normal baseline renal function, alcohol expos- • cultures, diagnosis of B.
    [Show full text]
  • 2017 VBDS Annual Report
    Vector-Borne Disease Section Annual Report 2017 Infectious Diseases Branch Division of Communicable Disease Control Center for Infectious Diseases California Department of Public Health 2017 ANNUAL REPORT VECTOR-BORNE DISEASE SECTION INFECTIOUS DISEASES BRANCH DIVISION OF COMMUNICABLE DISEASE CONTROL CENTER FOR INFECTIOUS DISEASES CALIFORNIA DEPARTMENT OF PUBLIC HEALTH Edmund G. Brown Jr. Governor State of California Michael Wilkening, Secretary Karen Smith, MD, MPH, Director Health and Human Services Agency Department of Public Health VBDS Annual Report, 2017 Contents Preface.......................................................................................................................................................................................................iii Acknowledgements ............................................................................................................................................................................ iv Suggested Citations ............................................................................................................................................................................ vi Program Overview.............................................................................................................................................................................. vii Chapters 1 Rodent-borne Diseases 1 2 Flea-borne Diseases 4 3 Tick-borne Diseases 7 4 Mosquito-borne Diseases 13 5 U.S. Forest Service Cost-Share Agreement 21 6 Vector Control Technician Certifcation
    [Show full text]
  • TYPHUS FEVERS Typhus 2
    57 Feb., 1949 j EDITORIAL nostic titre is 1 in 1(30 but a rise in titre from 1 in 20 or 1 in 1 is significant (Rivers, loc. cit.). Indian Medical Gazette Even a titre of 1 in 100 may be accepted (War Office, loc. cit.). (8) Para-amino-benzoic acid given in the first week of the disease has a favourable influence on the course of the disease. DDT will kill all lice' on a FEBRUARY (9) dusting powder patient. The dusting is repeated after a week. (10) A subject recovered from classical typhus is immune to the murine and vice versa. TYPHUS FEVERS typhus 2. Murine causal is While the classical fever is now a typhus.?Its agent typhus R. mooseri which is borne the matter of almost ancient in medicine, by rat-flea, history same which other forms of this of fevers have been Xenopsylla cheopis (the spccics group The are endemic within the last 20 or so. fhe carries plague). synonyms recognized years urban of latest information about the latter was obtained typhus, typhus, shop typhus Malaya, flea and rat typhus : there arc at least during the World War II only. It was of typhus 6 names. military importance and remained a hush-hush affair so far as the general, non-service, medical The causal agent is capable of causing an after a few human profession was concerned. Details have been epidemic passages through lice from released only recently and have appeared in and is serologically indistinguishable serum of books (War Office, 1946; Rivers, 1948; Stitt, R.
    [Show full text]
  • Comparative Microbiome Profiles of Sympatric Tick Species from the Far
    insects Article Comparative Microbiome Profiles of Sympatric Tick Species from the Far-Western United States Betsabel Chicana 1, Lisa I. Couper 2, Jessica Y. Kwan 3 , Enxhi Tahiraj 4 and Andrea Swei 4,* 1 Quantitative and Systems Biology Program, University of California, Merced, CA 95343, USA; [email protected] 2 Department of Biology, Stanford University, Palo Alto, CA 94305, USA; [email protected] 3 School of Veterinary Medicine, University of California, Davis, CA 95616, USA; [email protected] 4 Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(415)-338-1753 Received: 2 September 2019; Accepted: 11 October 2019; Published: 18 October 2019 Abstract: Insight into the composition and function of the tick microbiome has expanded considerably in recent years. Thus far, tick microbiome studies have focused on species and life stages that are responsible for transmitting disease. In this study we conducted extensive field sampling of six tick species in the far-western United States to comparatively examine the microbial composition of sympatric tick species: Ixodes pacificus, Ixodes angustus, Dermacentor variabilis, Dermacentor occidentalis, Dermacentor albipictus, and Haemaphysalis leporispalustris. These species represent both common vectors of disease and species that rarely encounter humans, exhibiting a range of host preferences and natural history. We found significant differences in microbial species diversity and composition by tick species and life stage. The microbiome of most species examined were dominated by a few primary endosymbionts. Across all species, the relative abundance of these endosymbionts increased with life stage while species richness and diversity decreased with development.
    [Show full text]
  • Recurrent Fever in Children
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIR Universita degli studi di Milano International Journal of Molecular Sciences Review Recurrent Fever in Children Sofia Torreggiani 1, Giovanni Filocamo 1 and Susanna Esposito 2,* 1 Pediatric Medium Intensive Care Unit, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; sofi[email protected] (S.T.); giovanni.fi[email protected] (G.F.) 2 Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy * Correspondence: [email protected]; Tel.: +39-02-5503-2498; Fax: +39-02-5032-0206 Academic Editor: Vera Sau-Fong Chan Received: 3 February 2016; Accepted: 21 March 2016; Published: 25 March 2016 Abstract: Children presenting with recurrent fever may represent a diagnostic challenge. After excluding the most common etiologies, which include the consecutive occurrence of independent uncomplicated infections, a wide range of possible causes are considered. This article summarizes infectious and noninfectious causes of recurrent fever in pediatric patients. We highlight that, when investigating recurrent fever, it is important to consider age at onset, family history, duration of febrile episodes, length of interval between episodes, associated symptoms and response to treatment. Additionally, information regarding travel history and exposure to animals is helpful, especially with regard to infections. With the exclusion of repeated independent uncomplicated infections, many infective causes of recurrent fever are relatively rare in Western countries; therefore, clinicians should be attuned to suggestive case history data.
    [Show full text]
  • Circulatory and Lymphatic System Infections 1105
    Chapter 25 | Circulatory and Lymphatic System Infections 1105 Chapter 25 Circulatory and Lymphatic System Infections Figure 25.1 Yellow fever is a viral hemorrhagic disease that can cause liver damage, resulting in jaundice (left) as well as serious and sometimes fatal complications. The virus that causes yellow fever is transmitted through the bite of a biological vector, the Aedes aegypti mosquito (right). (credit left: modification of work by Centers for Disease Control and Prevention; credit right: modification of work by James Gathany, Centers for Disease Control and Prevention) Chapter Outline 25.1 Anatomy of the Circulatory and Lymphatic Systems 25.2 Bacterial Infections of the Circulatory and Lymphatic Systems 25.3 Viral Infections of the Circulatory and Lymphatic Systems 25.4 Parasitic Infections of the Circulatory and Lymphatic Systems Introduction Yellow fever was once common in the southeastern US, with annual outbreaks of more than 25,000 infections in New Orleans in the mid-1800s.[1] In the early 20th century, efforts to eradicate the virus that causes yellow fever were successful thanks to vaccination programs and effective control (mainly through the insecticide dichlorodiphenyltrichloroethane [DDT]) of Aedes aegypti, the mosquito that serves as a vector. Today, the virus has been largely eradicated in North America. Elsewhere, efforts to contain yellow fever have been less successful. Despite mass vaccination campaigns in some regions, the risk for yellow fever epidemics is rising in dense urban cities in Africa and South America.[2] In an increasingly globalized society, yellow fever could easily make a comeback in North America, where A. aegypti is still present.
    [Show full text]