Modernizing the U.S. Electrical Grid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Teaching the "Duck"
Teaching the “Duck” to Fly Second Edition Author Jim Lazar How to Cite This Paper Lazar, J. (2016). Teaching the “Duck” to Fly, Second Edition. Montpelier, VT: The Regulatory Assistance Project. Available at: http://www.raponline.org/document/download/id/7956 Electronic copies of this paper and other RAP publications can be found on our website at www.raponline.org. To be added to our distribution list, please send relevant contact information to [email protected]. February 2016 Cover image by Tim Newcomb Teaching the “Duck” to Fly • Second Edition Teaching the “Duck” to Fly Second Edition Table of Contents Acronyms ...................................................................2 List of Figures ................................................................2 List of Tables ................................................................2 Foreword to the Second Edition ..................................................3 Introduction: Teaching the “Duck” to Fly ...........................................6 Strategy 1: Target Energy Efficiency to the Hours When Load Ramps Up Sharply ...........10 Strategy 2: Acquire and Deploy Peak-Oriented Renewable Resources ....................13 Strategy 3: Manage Water and Wastewater Pumping Loads ............................16 Strategy 4: Control Electric Water Heaters to Reduce Peak Demand and Increase Load at Strategic Hours ..............................................19 Strategy 5: Convert Commercial Air Conditioning to Ice Storage or Chilled-Water Storage ....24 Strategy 6: Rate Design: -
National Bulletin Bulletin 7 | 2021 President's Article
Electric Energy Society of Australia National Bulletin Bulletin 7 | 2021 President's Article Author: Jeff Allen, National President of the Electric Energy Society of Australia Date: July 2021 This month my article is all about EESA and some of our activities in the last 12 months. Firstly – our Executive Offcer – Penelope Lyons – returned to her role on Monday 5th July after approximately 8 months of maternity leave. Welcome back Penelope! Thanks to Heidi, Candice, and Vanessa (all from 2em) who provided great support to EESA during this period. Secondly – a summary of the key results for the 2020/21 fnancial year. As National President, each year I prepare an annual report which is published on our website (in August or September) and is presented at our Annual General meeting in November. This report also goes to Engineers Australia. In summary, 2020/21 was another year of change for the electric energy industry, for EESA, and for our members. Key activities included a National Council election in late Oct/early Nov 2020 for some positions for the new “2021” EESA National Council that commenced its term in late November 2020. The “2020” and “2021” National Councils met 14 times in 20/21 – all via Zoom. At each of the monthly meetings, the National Council reviewed our fnances and progress with key elements of our business plan as well as reviewing the success of our monthly events and progress with membership growth. A big thank you to all the members of the National Council for their contributions. The EESA remains healthy fnancially with approximately $600,000 in assets as of 30th June 2021. -
Chapter 3, CCST Long-Term Viability of Underground
DOCKETED Docket 17-IEPR-04 Number: Project Title: Natural Gas Outlook TN #: 222371-4 Document Chapter 3, CCST Long-Term Viability of Underground Natural Gas Storage in Title: California Description: Chapter 3, How will implementation of California's climate policies change the need for underground gas storage in the future? California Council on Science & Technology, an Independent Review of Scientific and Technical Information on the Long-Term Viability of Underground Natural Gas Storage in California. Filer: Lana Wong Organization: California Energy Commission Submitter Commission Staff Role: Submission 1/26/2018 10:34:02 AM Date: Docketed 1/26/2018 Date: Chapter 3 Chapter Three How will implementation of California’s climate policies change the need for underground gas storage in the future? Jeffery B. Greenblatt Lawrence Berkeley National Laboratory December 1, 2017 ABSTRACT California leads the nation in developing policies to address climate change, with a combination of economy-wide greenhouse gas (GHG) reduction goals policies (AB 32, SB 32, etc.) and complementary means policies that target specific sectors or activities, such as those that encourage energy efficiency, renewable electricity, electricity storage, etc. California also has a cap and trade program to provide an economically efficient framework for reaching emission targets. Chapter 3 is charged with examining how implementation of these policies will affect the need for underground gas storage (UGS), focusing on the years 2030 and 2050 as key policy milestones. The need for UGS derives from many different kinds of demands for natural gas, which can primarily be organized into two categories: building and industrial heat, and electricity generation. -
Commercialization and Deployment at NREL: Advancing Renewable
Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. -
Solar Energy and Duck Curve
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 Solar Energy and Duck Curve Heena Aijaz Shah1, Ameen Uddin Ahmad2 1M.Tech Scholar (Power System), Department of Electrical and Electronics Engineering, Al Falah University, Faridabad, Haryana, 121004, India 2Assistant Professor, Department of Electrical and Electronics Engineering, Al Falah University, Faridabad, Haryana, 121004, India Abstract: Solar photovoltaic (PV) technology is being deployed to reduce dependence on fossil fuels for electricity use and associated emissions of greenhouse gases and certain pollutants. High solar adoption creates a challenge for utilities to balance supply and demand on the grid. This is due to the increased need for electricity generators to quickly ramp up energy production when the sun sets and the contribution from PV falls. Another challenge with high solar adoption is the potential for PV to produce more energy than can be used at one time, called over-generation. In 2013, the California Independent System Operator published the “duck chart”, which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in over-generation and curtailed renewable energy, increasing its costs and reducing its environmental benefits. Keywords: Solar, Renewable Energy, Duck Chart, Demand Curve, Over-generation, Ramp up, CAISO 1. Introduction 1.1 Introduction to PV and Duck Curve Nowadays the installations of renewable energies have been increasing all over the world. -
Microgeneration Strategy: Progress Report
MICROGENERATION STRATEGY Progress Report JUNE 2008 Foreword by Malcolm Wicks It is just over two years since The Microgeneration Strategy was launched. Since then climate change and renewables have jumped to the top of the global and political agendas. Consequently, it is more important than ever that reliable microgeneration offers individual householders the chance to play their part in tackling climate change. In March 2006, there was limited knowledge in the UK about the everyday use of microgeneration technologies, such as solar thermal heating, ground source heat pumps, micro wind or solar photovolatics. Much has changed since then. Thousands of people have considered installing these technologies or have examined grants under the Low Carbon Buildings Programme. Many have installed microgeneration and, in doing so, will have helped to reduce their demand for energy, thereby cutting both their CO2 emissions and their utility bills. The Government’s aim in the Strategy was to identify obstacles to creating a sustainable microgeneration market. I am pleased that the majority of the actions have been completed and this report sets out the excellent progress we have made. As a consequence of our work over the last two years, we have benefited from a deeper understanding of how the microgeneration market works and how it can make an important contribution to a 60% reduction in CO2 emissions by 2050. Building an evidence base, for example, from research into consumer behaviour, from tackling planning restrictions and from tracking capital costs, means that we are now in a better position to take forward work on building a sustainable market for microgeneration in the UK. -
Renewable Generation Data for European Energy System Analysis
Renewable Generation Data for European Energy System Analysis Alexander Kies1, Bruno U. Schyska2, Mariia Bilousova1;3, Omar El Sayed1;3, Jakub Jurasz4;5;6, Horst Stoecker1;3;7 1Frankfurt Institute for Advanced Studies, Goethe-University Frankfurt, Ruth-Moufang-Str. 1, 60438 Frankfurt, Germany 2German Aerospace Center (DLR), Institute of Networked Energy Systems, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany 3Goethe-University, Frankfurt, Germany 4Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland 5Faculty of Management, AGH University, 30-059 Cracow, Poland 6School of Business, Society and Engineering, M¨alardalens H¨ogskola,72113 V¨aster˚as, Sweden 7GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Abstract In the process of decarbonization, the global energy mix is shifting from fossil fuels to renewables. To study decarbonization pathways, large-scale energy system models are utilized. These models require accurate data on renewable generation to develop their full potential. Using different data can lead to conflicting results and policy advice. In this work, we compare several datasets that are commonly used to study the transition towards highly renewable European power system. We find significant differences between these datasets and cost-difference of about 10% result in the different energy mix. We conclude that much more attention must be paid to the large uncertainties of the input data. Keywords: Energy System Analysis, Renewable Generation Data, Energy arXiv:2101.08741v1 [physics.soc-ph] 21 Jan 2021 Meteorology, MERRA-2, ERA5, renewables.ninja, EMHires Preprint submitted to Journal Name January 22, 2021 1. Introduction Sustainable energy sources are a major solution for the imminent thread of climate change [1, 2]. -
Clean Vehicles As an Enabler for a Clean Electricity Grid
Environmental Research Letters LETTER • OPEN ACCESS Related content - The neglected social dimensions to a Clean vehicles as an enabler for a clean electricity vehicle-to-grid (V2G) transition: a critical and systematic review Benjamin K Sovacool, Lance Noel, Jonn grid Axsen et al. - A temporal assessment of vehicle use To cite this article: Jonathan Coignard et al 2018 Environ. Res. Lett. 13 054031 patterns and their impact on the provision of vehicle-to-grid services Chioke B Harris and Michael E Webber - Consequential life cycle air emissions externalities for plug-in electric vehicles in View the article online for updates and enhancements. the PJM interconnection Allison Weis, Paulina Jaramillo and Jeremy Michalek This content was downloaded from IP address 131.243.172.148 on 25/07/2018 at 22:55 Environ. Res. Lett. 13 (2018) 054031 https://doi.org/10.1088/1748-9326/aabe97 LETTER Clean vehicles as an enabler for a clean electricity grid OPEN ACCESS Jonathan Coignard1, Samveg Saxena1,4, Jeffery Greenblatt1,2,4 and Dai Wang1,3 RECEIVED 1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States of America 17 November 2017 2 Emerging Futures, LLC, Berkeley, CA 94710, United States of America REVISED 3 Now at Tesla, 3500 Deer Creek Rd., Palo Alto, CA 94304, United States of America 6 April 2018 4 Author to whom any correspondence should be addressed. ACCEPTED FOR PUBLICATION 17 April 2018 E-mail: [email protected] and [email protected] PUBLISHED 16 May 2018 Keywords: electric vehicles, energy storage, renewable energy, climate policy, California Supplementary material for this article is available online Original content from this work may be used under the terms of the Abstract Creative Commons Attribution 3.0 licence. -
Incorporating Renewables Into the Electric Grid: Expanding Opportunities for Smart Markets and Energy Storage
INCORPORATING RENEWABLES INTO THE ELECTRIC GRID: EXPANDING OPPORTUNITIES FOR SMART MARKETS AND ENERGY STORAGE June 2016 Contents Executive Summary ....................................................................................................................................... 2 Introduction .................................................................................................................................................. 5 I. Technical and Economic Considerations in Renewable Integration .......................................................... 7 Characteristics of a Grid with High Levels of Variable Energy Resources ................................................. 7 Technical Feasibility and Cost of Integration .......................................................................................... 12 II. Evidence on the Cost of Integrating Variable Renewable Generation ................................................... 15 Current and Historical Ancillary Service Costs ........................................................................................ 15 Model Estimates of the Cost of Renewable Integration ......................................................................... 17 Evidence from Ancillary Service Markets................................................................................................ 18 Effect of variable generation on expected day-ahead regulation mileage......................................... 19 Effect of variable generation on actual regulation mileage .............................................................. -
Energy Efficiency Market Transformation Summit Report
ENERGY EFFICIENCY MARKET TRANSFORMATION SUMMIT REPORT INITIATIVES, DESIGNS, AND KEY THEMES Prepared for ComEd Prepared by Navigant Consulting, Inc. • Beth Davis • Jan Harris • Dan Violette Designed by Kristin Salvador FEBRUARY 2019 TABLE OF CONTENTS 1. Executive 4. Issue Area 1: How does market 7. Conclusion Summary transformation work in today’s energy page 46 page 5 efficiency portfolio? Page 17 8. Supporting 2. Introduction Portfolio Theme 1: Synergies exist between resource Material page 12 acquisition and market transformation programs page 49 Portfolio Theme 2: A holistic view of energy efficiency • Regulatory activities across resource acquisition and market 3. Summary Spotlight: transformation programs is important of Summit Estimating Portfolio Theme 3: Regulatory treatment of market energy savings Activities transformation programs will need to differ from resource from resource page 15 acquisition programs acquisition and market 5. Issue Area 2: What are the must-have transformation components of a market transformation programs initiative? • Expert Page 24 Summaries Portfolio Theme 1: In-depth knowledge of targeted • Presentations energy efficiency markets is critical from the Portfolio Theme 2: The intervention strategy, including Summit leverage points, must be clearly defined • Output from Portfolio Theme 3: A regulatory framework supporting the Summit the intervention strategy is needed Sessions • Market 6. Issue Area 3: What market transformation Transformation initiatives could be pursued in the Resource List Midwest -
Can E-Fuels Close the Renewables Power Gap?
Can e-fuels close the renewables power gap? A review. VGB PowerTech 8 l 2020 Can e-fuels close the renewables power gap? A review. Can e-fuels close the renewables power gap? A review. Thorsten Krol and Christian Lenz Kurzfassung A major challenge in the decarbonization ef- emissions will be limited with a decreasing forts of governments across the world is to volume year per year. The prices will be Können E-Kraftstoffe die Erzeugungslücke maintain the high availability of electric generated on the market within the lower bei den erneuerbaren Energien power during times of renewables unavaila- and upper limits given by the politics to schließen? Ein Rückblick. bility. One option currently under discussion achieve environmental protection goals. is to use renewable excess power to generate Eine große Herausforderung bei den Dekarbo- As renewable generated power is not al- and store e-fuels. In this paper, the availabil- ways available, storage technologies must nisierungsbemühungen der Regierungen welt- ity of excess renewables power at the example weit besteht darin, die hohe Verfügbarkeit von be implemented into the grid environment elektrischer Energie in Zeiten der Nichtverfüg- of Germany is discussed considering re-dis- for the power sector but also as an element barkeit erneuerbarer Energien aufrechtzuer- patches and Tip Capping. The power demand of sector coupling to decarbonize industry halten. Eine Option, die derzeit diskutiert wird, to produce e-fuels, the production processes and transportation sectors. Residual load ist die Nutzung von überschüssiger Energie aus of e-hydrogen, e-methane, e-methanol or e- but also seasonal storage and power avail- erneuerbaren Energien zur Erzeugung und ammonia as well as a cost estimation includ- ability during dark doldrums must be en- Speicherung von E-Kraftstoffen. -
Planning for the Future: Strategies to Meet State Energy Goals October
Planning for the Future: Strategies to Meet State Energy Goals October 28 - 29, 2020 Day 2 National Governors Association Center for Best Practices Opportunities for Governors to Leverage Electricity Markets to Meet State Energy Goals Speakers: Carl Linvill, Director, Principal, Regulatory Assistance Project Susan Tierney, Senior Advisor, Analysis Group Moderated by: Emma Cimino, Senior Policy Analyst, National Governors Association Opportunities for Electricity Markets to Meet States’ Clean Energy Goals Sue Tierney Analysis Group October 29, 2020 BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS States’ clean energy goals The states are leading the nation toward a clean energy transition: ▪ 80% of the U.S. population is in a state with a clean energy requirement ▪ 75% of the states + DC have a clean energy requirement https://www.nga.org/center/publications/governors-leading-energy-transitions/ NGA Clean Energy Workshop | October 29 2020 4 States’ clean energy goals Electric utilities with net-zero power-sector commitments And even in many states without a clean-energy policy, the https://www.nga.org/center/publications/gover nors-leading-energy-transitions/ electric utility has made a commitment to net zero emissions Tierney map of utility commitments NGAPresentation Clean Energy Name Workshop | Client Name | October | Month 29 Day,2020 Year | ATTORNEY WORK PRODUCT – PRIVILEGED AND CONFIDENTIAL 5 States’ clean energy goals – and regions https://gmlc.doe.gov/sites/default/files/resources/1.3.33_Midwest%20Interconnection%20Seams%20Study_Presentation.pdf