Decision Memo for Chimeric Antigen Receptor (CAR) T-Cell Therapy for Cancers (CAG-00451N)

Total Page:16

File Type:pdf, Size:1020Kb

Decision Memo for Chimeric Antigen Receptor (CAR) T-Cell Therapy for Cancers (CAG-00451N) Decision Memo for Chimeric Antigen Receptor (CAR) T-cell Therapy for Cancers (CAG-00451N) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website. Decision Summary A. The Centers for Medicare & Medicaid Services (CMS) covers autologous treatment for cancer with T-cells expressing at least one chimeric antigen receptor (CAR) when administered at healthcare facilities enrolled in the FDA risk evaluation and mitigation strategies (REMS) and used for a medically accepted indication as defined at Social Security Act section 1861(t)(2) i.e., is used for either an FDA-approved indication (according to the FDA-approved label for that product), or for other uses when the product has been FDA-approved and the use is supported in one or more CMS-approved compendia. B. The use of non-FDA-approved autologous T-cells expressing at least one CAR is non-covered. Autologous treatment for cancer with T-cells expressing at least one CAR is non-covered when the requirements in Section A are not met. C. This policy continues coverage for routine costs in clinical trials that use CAR T-cell therapy as an investigational agent that meet the requirements listed in NCD 310.1. See Appendix B for the language representative of Medicare's national coverage determination (NCD) for implementation purposes only. Decision Memo TO: Administrative File: CAG-00451N FROM: Tamara Syrek Jensen, JD Director, Coverage and Analysis Group Joseph Chin, MD, MS Deputy Director, Coverage and Analysis Group Lori M. Ashby, MA Director, Division of Policy and Evidence Review Rosemarie Hakim, PhD Acting Director, Evidence Development Division Lori A. Paserchia, MD Lead Medical Officer Katherine B. Szarama, PhD Lead Analyst SUBJECT: National Coverage Determination for Chimeric Antigen Receptor (CAR) T-cell Therapy for Cancers DATE: August 7, 2019 I. Decision A. The Centers for Medicare & Medicaid Services (CMS) covers autologous treatment for cancer with T-cells Created on 08/07/2019. Page 1 of 69 expressing at least one chimeric antigen receptor (CAR) when administered at healthcare facilities enrolled in the FDA risk evaluation and mitigation strategies (REMS) and used for a medically accepted indication as defined at Social Security Act section 1861(t)(2) i.e., is used for either an FDA-approved indication (according to the FDA-approved label for that product), or for other uses when the product has been FDA-approved and the use is supported in one or more CMS-approved compendia. B. The use of non-FDA-approved autologous T-cells expressing at least one CAR is non-covered. Autologous treatment for cancer with T-cells expressing at least one CAR is non-covered when the requirements in Section A are not met. C. This policy continues coverage for routine costs in clinical trials that use CAR T-cell therapy as an investigational agent that meet the requirements listed in NCD 310.1. See Appendix B for the language representative of Medicare's national coverage determination (NCD) for implementation purposes only. II. Background Throughout this document we use numerous acronyms, some of which are not defined as they are presented in direct quotations. Please find below a list of these acronyms and corresponding full terminology: AATB - American Association of Tissue Banks ACT - Adoptive Cell Therapy AEs - adverse events AIDS - Acquired immune deficiency syndrome ALL - Acute Lymphoblastic Leukemia AHRQ - Agency for Healthcare Research and Quality ARC - American Red Cross ASBMT - American Society for Blood and Marrow Transplantation ASCT - Autologous stem cell transplantation ASFA - American Society for Apheresis AYA - adolescent and young adult BCMA - B-cell maturation antigen BLA - Biologics Licensing Application BOMC - Mini-Cog, Blessed Orientation-Memory-Concentration CAP - College of American Pathologists CAR - Chimeric Antigen Receptor CAR-T - Chimeric Antigen Receptor T-cells CARG - Cancer and Aging Research Group score CD-19 - Cluster of Differentiation 19 CED - Coverage with Evidence Development CHOP - Children's Hospital of Philadelphia CIBMTR - Center for International Blood and Marrow Transplant Research CMS - Centers for Medicare & Medicaid Services CNS - central nervous system CRASH - Chemotherapy Risk Assessment Scale for High-Age Patients CR - complete response CRi - complete response with incomplete hematologic/blood count recovery CRS - cytokine release syndrome DLBCL - diffuse large B-cell lymphoma DLT - dose-limiting toxicity DOR - duration of response Created on 08/07/2019. Page 2 of 69 ECOG-PS - Eastern Cooperative Oncology Group Performance Status ETASU - Elements To Assure Safe Use FACT - Foundation for the Accreditation of Cellular Therapy FDA - Food and Drug Administration FL - Follicular Lymphoma G8 - Geriatric-8 GA - geriatric assessment GDS - Geriatric Depression Scale HCT - allogeneic hematopoietic cell transplantation HIV - human immunodeficiency virus IADL - Instrumental activities of daily living ICER - Institute for Clinical and Economic Review ICU - Intensive Care Unit ISCT - International Society for Cellular Therapy MA - Medicare Advantage MAC - Medicare Administrative Contractor MEDCAC - Medicare Evidence Development and Coverage Advisory Committee NCA - National Coverage Analysis NCCN - National Comprehensive Cancer Network NCD - National Coverage Determination NCI - National Cancer Institute NHL - Non-Hodgkin's Lymphoma NMDP - National Marrow Donor Program NOS - not otherwise specified ORR - overall response/remission rate OS - overall survival PFS - progression-free survival Ph - Philadelphia PMR - postmarketing requirements PR - partial response PRO - Patient-Reported Outcome REMS - Risk Evaluation and Mitigation Strategies R/R - relapsed/refractory SBRA - Summary Basis for Regulatory Action SEER - Surveillance, Epidemiology, and End Results Program TA - technology assessment US - United States VES-13 - Vulnerable Elders Survey-13 Background on Cancer What is cancer? Cancer is a collection of related diseases of dividing cells that can start almost anywhere in or on the body, evade the immune system, and invade nearby tissues. Categories of cancer are typically organized by the location in the body and specific type of cell. These categories may include carcinoma, sarcoma, leukemia, lymphoma, multiple myeloma, melanoma, and brain and spinal cord tumors. There are also changes to these cells that are not considered cancer. These changes include hyperplasiawhen a cell divides faster than normaland dysplasiaa buildup of extra cells with abnormal shape and disorganization. Lymphomas are cancers of lymphocytes (B cells or T cells) and consist of two main types. Hodgkin lymphoma arises usually from B cells and Non-Hodgkin lymphoma (NHL) can form from B cells or T cells. According to the American Cancer Society (2018), Hodgkin lymphoma is most common in early adulthood, with an average age of 39 at Created on 08/07/2019. Page 3 of 69 diagnosis, while NHL accounts for about four percent of all cancers in the U.S. with an estimate that about 74,680 adult and children (41,730 males and 32,950 females) will be diagnosed with NHL and about 19,910 people will die from NHL (11,510 males and 8,400 females) during 2018. The most common sub-type of NHL is diffuse large B cell lymphoma (DLBCL) representing 30-40% of all cases worldwide and has a number of different cell subtypes of origin to divide cases into germinal centre B cell like subtypes and activated B cell like subtypes (Li et al., 2018). Additionally, follicular lymphoma, which arises from B cells, affects people over 50 years old, and comprises nearly 20-30% of NHL. While NHL can occur at any age, the risk increases with age; more than half of patients are 65 or older at the time of diagnosis (American Cancer Society, 2018). In its 2018 guideline, The National Comprehensive Cancer Network (NCCN) noted that the incidence of NHL increased significantly between 1970 and 1995 but has moderated since the mid-1990s. While the increase was attributed partly to the human immunodeficiency virus (HIV) epidemic and the development of AIDS-related NHL, much of the increase in incidence has been observed in patients in their sixth and seventh decades. As a result, patients with NHL may also have significant comorbidities. Leukemias are cancers that arise from blood-lineages of the bone marrow. The type of leukemia depends of the type of cell and cell growth. Acute lymphoblastic leukemia (ALL) is also a cancer of B-cell origin that is associated with immature B-cells in the bone marrow, blood, and other organs. The NCCN (2018a) notes that "the age-adjusted incidence rate of ALL in the U.S. is 1.58 per 100,000 individuals per year" (National Cancer Institute (NCI), 2016a), with approximately 5,970 new cases and 1,440 deaths estimated in 2017 (Swerdlow et al., 2008). The median age at diagnosis for ALL is 15 years (NCI, 2016b) with 57.2% of patients diagnosed at younger than 20 years of age (NCI, 2016c). In contrast, 26.8% of cases are diagnosed at 45 years or older and only approximately 11% of patients are diagnosed at 65 years or older (NCI, 2016c). ALL represents 75% to 80% of acute leukemias among children, making it the most common form of childhood leukemia; by contrast, ALL represents approximately 20% of all leukemias among adults (Jabbour et al., 2005; Esparza et al.,2005). Chronic lymphoblastic leukemia (CLL) is a more slowly progressing type. Multiple myeloma begins in a different type of cell, the plasma cell. According to the Surveillance, Epidemiology, and End Results (SEER) Program Cancer Statistics Review (Noone et al., 2018) there were an estimated 124,733 people living with myeloma in the US and the lifetime risk of developing this cancer at some point is approximately 0.8 percent. Additionally, the number of new cases per year is 6.7 per 100,000 with 3.3 deaths per 100,000. In general, plasma cell neoplasms are most common in people who are at middle age or older. Treatment can be based on the stage of cancer, which is the result of a determination of combination of factors including the amount of cancer in the body and biomarkers such as albumin in the blood.
Recommended publications
  • Chimeric Antigen Receptor T-Cell Therapy – Clinical Guidelines
    Chimeric Antigen Receptor T-cell Therapy Clinical Guideline Effective July 13, 2021 THIS DOCUMENT IS PROPRIETARY AND CONFIDENTIAL TO OPTUM® Unauthorized use or copying without written consent is strictly prohibited. Printed copies are for reference only. Table of Contents Table of Contents Introduction .................................................................................................................................... 3 FDA-approved Agents ................................................................................................................... 3 Universal Minimum Eligibility Requirements .............................................................................. 4 Indication ........................................................................................................................................ 5 Multiple Myeloma ................................................................................................................ 5 Diffuse Large B-cell Lymphoma .......................................................................................... 7 Follicular Lymphoma ......................................................................................................... 13 Mantle Cell Lymphoma ..................................................................................................... 15 Acute Lymphoblastic Leukemia (ALL) .............................................................................. 17 Universal Contraindications ......................................................................................................
    [Show full text]
  • Axicabtagene Ciloleucel (Yescarta®)
    Policy Medical Policy Manual Approved Revision: Do Not Implement until 8/31/21 Axicabtagene Ciloleucel (Yescarta®) NDC CODE(S) 71287-0119-XX YESCARTA PLASTIC BAG, INJECTION (KITE PHARMA, IN) DESCRIPTION Axicabtagene ciloleucel is a CD19-directed genetically modified autologous T cell immunotherapy. To prepare the product an individual’s own T cells are harvested and genetically modified ex vivo by retroviral transduction to express a chimeric antigen receptor (CAR) comprising a murine anti-CD19 single chain variable fragment (scFv) linked to CD28 and CD3-zeta co-stimulatory domains. The anti-CD19 CAR T cells are expanded and infused back into the individual. Axicabtagene ciloleucel binds to CD19-expressing cancer cells and normal B cells. Studies demonstrated that following anti-CD19 CAR T cell engagement with CD19-expressing target cells, the CD28 and CD3-zeta co- stimulatory domains activate downstream signaling cascades that lead to T-cell activation, proliferation, acquisition of effector functions and secretion of inflammatory cytokines and chemokines. This sequence of events leads to killing of CD19-expressing cells. POLICY Axicabtagene ciloleucel for the treatment of the following is considered medically necessary if the medical appropriateness criteria are met. (See Medical Appropriateness below.) o Large B-cell Lymphoma o Follicular Lymphoma Axicabtagene ciloleucel for the treatment of other conditions/diseases is considered investigational. MEDICAL APPROPRIATENESS INITIAL APPROVAL CRITERIA Submission of medical records related
    [Show full text]
  • Yescarta™ (Axicabtagene Ciloleucel) – New Orphan Drug Approval
    Yescarta™ (axicabtagene ciloleucel) – New orphan drug approval • On October 18, 2017, Kite Pharma, a Gilead company, announced the FDA approval of Yescarta (axicabtagene ciloleucel), for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma. — Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma. • DLBCL is the most common type of non-Hodgkin lymphoma (NHL) in adults. Approximately 72,000 new cases of NHL are diagnosed in the U.S. each year, and DLBCL represents approximately one in three newly diagnosed cases. — An estimated 7,500 Americans with refractory DLBCL are eligible for chimeric antigen receptor (CAR) T-cell therapy. — With current standard of care, patients with refractory large B-cell lymphoma have a median overall survival of approximately 6 months, with only 7% attaining a complete remission (CR). — In addition, patients with large B-cell lymphoma in second or later lines of therapy have poor outcomes and greater unmet need, since nearly half of them either do not respond or relapse shortly after transplant. • Yescarta is a genetically-modified autologous T-cell immunotherapy. Each dose of Yescarta is a customized treatment created using an individual patient’s own T-cells, a type of white blood cell known as a lymphocyte. The patient’s T-cells are collected and sent to a manufacturing center where they are genetically modified to include a new gene that contains a CAR that directs the T-cell to target and kill certain cancer cells that have a specific antigen (CD19) on the surface.
    [Show full text]
  • Cancer Immunotherapy Comes of Age and Looks for Maturity ✉ Amanda Finck1, Saar I
    COMMENT https://doi.org/10.1038/s41467-020-17140-5 OPEN Cancer immunotherapy comes of age and looks for maturity ✉ Amanda Finck1, Saar I. Gill1 & Carl H. June 1,2 As Nature Communications celebrates a 10-year anniversary, the field has witnessed the transition of cancer immunotherapy from a pipe dream to an established powerful cancer treatment modality. Here we discuss the opportu- 1234567890():,; nities and challenges for the future. Improving the natural immune system through immune checkpoint blockade interference Advances in the understanding of basic immunology have ushered in two major approaches for cancer therapy over the past 10 years. The first is checkpoint therapy to augment the function of the natural immune system. The second uses the emerging discipline of synthetic biology and the tools of molecular biology and genome engineering to create new forms of biological structures, engineered viruses and cells with enhanced functionalities (Fig. 1). Trastuzumab, the monoclonal antibody targeting HER2, was the first recombinant antibody to be commercially approved, in 1997. However, over the past 10 years, a paradigm shift in cancer therapy occurred with the addition of inhibitors of the immune checkpoint blockade (ICB), CTLA-4 and PD-1, to the clinics. The first to be approved was the anti-CTLA-4 inhibitor ipilimumab for metastatic melanoma in 2011. More than a dozen types of cancer are now treated with ICBs. Perhaps most surprising to the field is that lung cancer can now be treated with PD-1 (CD279) and CTLA-4 (CD152) antagonists as a component of first line therapy. 10 years ago, the consensus among thoracic oncologists was that the solution for lung cancer was inhibitors of oncogene-driven signaling pathways and the field had dismissed the notion that lung cancer would be an immunologically responsive tumor.
    [Show full text]
  • Axicabtagene Ciloleucel, a First-In-Class CAR T Cell Therapy for Aggressive NHL
    Leukemia & Lymphoma ISSN: 1042-8194 (Print) 1029-2403 (Online) Journal homepage: http://www.tandfonline.com/loi/ilal20 Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL Zachary J. Roberts, Marc Better, Adrian Bot, Margo R. Roberts & Antoni Ribas To cite this article: Zachary J. Roberts, Marc Better, Adrian Bot, Margo R. Roberts & Antoni Ribas (2017): Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL, Leukemia & Lymphoma, DOI: 10.1080/10428194.2017.1387905 To link to this article: http://dx.doi.org/10.1080/10428194.2017.1387905 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group View supplementary material Published online: 23 Oct 2017. Submit your article to this journal Article views: 699 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ilal20 Download by: [UCLA Library] Date: 07 November 2017, At: 12:06 LEUKEMIA & LYMPHOMA, 2017 https://doi.org/10.1080/10428194.2017.1387905 REVIEW Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL Zachary J. Robertsa, Marc Bettera, Adrian Bota, Margo R. Robertsa and Antoni Ribasb aKite Pharma, Santa Monica, CA, USA; bDepartment of Medicine, University of California at Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA ABSTRACT ARTICLE HISTORY The development of clinically functional chimeric antigen receptor (CAR) T cell therapy is the cul- Received 2 June 2017 mination of multiple advances over the last three decades. Axicabtagene ciloleucel (formerly Revised 18 September 2017 KTE-C19) is an anti-CD19 CAR T cell therapy in development for patients with refractory diffuse Accepted 26 September 2017 large B cell lymphoma (DLBCL), including transformed follicular lymphoma (TFL) and primary KEYWORDS mediastinal B cell lymphoma (PMBCL).
    [Show full text]
  • Prospects for Combined Use of Oncolytic Viruses and CAR T-Cells Adam Ajina1 and John Maher2,3,4*
    J Immunother Cancer: first published as 10.1186/s40425-017-0294-6 on 21 November 2017. Downloaded from Ajina and Maher Journal for ImmunoTherapy of Cancer (2017) 5:90 DOI 10.1186/s40425-017-0294-6 REVIEW Open Access Prospects for combined use of oncolytic viruses and CAR T-cells Adam Ajina1 and John Maher2,3,4* Abstract With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence. Keywords: Oncolytic virus, Chimeric antigen receptor, CAR T-cell, Adoptive cell transfer, Combination strategies, Synergism, Solid tumours Background immune checkpoint inhibitors targeted against pro- This review focuses on the prospects for the synergistic grammed cell death protein 1 (PD-1; e.g.
    [Show full text]
  • Drug Price Forecast
    Drug Price Forecast July-August 2018 © 2018 Vizient, Inc. All rights reserved. Introduction It is our privilege to share with you highlights from the July 2018 Vizient® Drug Price Forecast, which offers insights into areas of interest such as specialty pharmaceuticals, oncology drugs, infectious disease agents and drug shortages. The report provides our projections of pricing behavior for the period of Jan. 1 through Dec. 31, 2019, and discusses critical issues that will likely affect the cost and use of pharmaceuticals. The increasing expense of medications continues to invite criticism, scrutiny and calls for government intervention. Since the publication of the January 2018 edition of the Drug Price Forecast, several regulatory changes have been enacted. Some of these changes, such as increased Medicare reimbursement opportunities for biosimilars, are very positive for pharmacy providers, while others, including lower Medicare reimbursement for disproportionate share hospitals, are detrimental to the ongoing mission of improving access to high-quality care. It is important to understand the existing landscape as well as to anticipate changes that could add further complexity to pharmacy enterprises. Executive summary The Drug Price Forecast is our best estimate of the change in the cost of key pharmaceuticals between Jan. 1 and Dec. 31, 2019. The forecast focuses on pharmaceutical products used across multiple health-system settings, including inpatient and non-acute environments, and provides a year-over-year estimate of the expected price change. Price change predictions for contract and noncontract product segments are shown in Table 1, along with the overall drug price inflation number for existing drugs as calculated by Vizient.
    [Show full text]
  • Jazz Pharmaceuticals Announces First Patient Enrolled in Phase 2 Clinical Trial Evaluating Defibrotide for the Prevention of CAR-T Associated Neurotoxicity
    Jazz Pharmaceuticals Announces First Patient Enrolled in Phase 2 Clinical Trial Evaluating Defibrotide for the Prevention of CAR-T Associated Neurotoxicity October 10, 2019 DUBLIN, Oct. 10, 2019 /PRNewswire/ -- Jazz Pharmaceuticals plc (Nasdaq: JAZZ) today announced that the first patient has been enrolled in an exploratory Phase 2 clinical trial evaluating the ability of defibrotide to prevent neurotoxicity in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) receiving CAR T-cell therapy. The prospective, multicenter, open-label, single-arm study will evaluate the safety and efficacy of defibrotide in the prevention of CAR T-cell associated neurotoxicity in patients with relapsed or refractory DLBCL receiving axicabtagene ciloleucel. "The introduction of CAR-T therapies to the oncology treatment landscape is groundbreaking but can be associated with serious complications such as neurotoxicity," said Robert Iannone, M.D., M.S.C.E., executive vice president, research and development of Jazz Pharmaceuticals. "At Jazz, we strive to improve outcomes for patients, and we are committed through our development program to explore the potential of defibrotide, including as a preventative treatment for neurotoxicity in patients receiving CAR-T therapy." Patients may experience neurotoxicity after CD19 targeted CAR-T therapy,1 and while the exact cause is unknown, research suggests that endothelial cell damage may play a role.1,2 Some researchers hypothesize that the damage caused by cytokine release after CAR-T therapy may compromise the ability of endothelial cells to protect the central nervous system (CNS), causing neurotoxicity.3 This study will explore whether defibrotide could help prevent CNS endothelial cell damage, thereby protecting the CNS and minimizing neurotoxicity.
    [Show full text]
  • PCORI-HCHSS-High Potential Disruption-May-2021
    PCORI Health Care Horizon Scanning System Volume 3 Issue 1 High Potential Disruption Report May 2021 Prepared for: Patient-Centered Outcomes Research Institute 1828 L St., NW, Suite 900 Washington, DC 20036 Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12 Prepared by: ECRI 5200 Butler Pike Plymouth Meeting, PA 19462 Investigators: Randy Hulshizer, MA, MS Jennifer De Lurio, MS Marcus Lynch, PhD, MBA Brian Wilkinson, MA Damian Carlson, MS Christian Cuevas, PhD Andrea Druga, MSPAS, PA-C Misha Mehta, MS Prital Patel, MPH Donna Beales, MLIS Eloise DeHaan, BS Eileen Erinoff, MSLIS Madison Kimball, MS Maria Middleton, MPH Melinda Rossi, BA Kelley Tipton, MPH Rosemary Walker, MLIS Andrew Furman, MD, MMM, FACEP Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions.
    [Show full text]
  • CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation
    cancers Review CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation Feifei Guo and Jiuwei Cui * Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-431-88782178 Simple Summary: Chimeric antigen receptor (CAR)-T cell therapy has exhibited good application prospects in the treatment of hematologic malignancies. However, there are still many unsolved problems, such as the limited antitumor effect of CAR-T on solid tumors and the potential risk of CAR-T therapy in clinical applications. In order to meet these challenges, more and more solutions are proposed. Therefore, in this review, we have discussed the recent breakthroughs in CAR-T therapy for cancer treatment, with an emphasis on the potentially effective CAR-T modifications and combined strategies. Abstract: Despite remarkable achievements in the treatment of hematologic malignancies, chimeric antigen receptor (CAR)-T cell therapy still faces many obstacles. The limited antitumor activity and persistence of infused CAR-T cells, especially in solid tumors, are the main limiting factors for CAR-T therapy. Moreover, clinical security and accessibility are important unmet needs for the application of CAR-T therapy. In view of these challenges, many potentially effective solutions have been proposed and confirmed. Both the independent and combined strategies of CAR-T therapy have exhibited Citation: Guo, F.; Cui, J. CAR-T in good application prospects. Thus, in this review, we have discussed the cutting-edge breakthroughs Cancer Treatment: Develop in in CAR-T therapy for cancer treatment, with the aim of providing a reference for addressing the Self-Optimization, Win-Win in current challenges.
    [Show full text]
  • Effects of the COVID-19 Pandemic on Publication Landscape in Chimeric Antigen Receptor
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446639; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RUNNING TITLE: Publication landscape in CAR-modified immune cell research Effects of the COVID-19 pandemic on publication landscape in chimeric antigen receptor- modified immune cell research Ahmet Yilmaz1 and Jianhua Yu2-5,# 1The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA. 2Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, Room 3017, Los Angeles, CA 91010, USA. 3Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA. 4Department of Immuno‑Oncology, City of Hope Beckman Research Institute, Los Angeles, CA 91010, USA. 5City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA 91010, USA. #Correspondence to: Dr. Jianhua Yu, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446639; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Chimeric antigen receptors (CARs) are artificial receptors introduced mainly into T cells. CAR- induced immune cell (CARi) products have achieved impressive success rates in treating some difficult-to-treat hematological malignancies.
    [Show full text]
  • Table of Contents
    CareSource Pharmacy Policy Statement Marketplace Table of Contents Amevive (alefacept) ............................................................................................................................................................... 4 Antihemophilic Agents (Advate, Adynovate, Afstyla, Alphanate, Alphanate/VWF Complex/Human, AlphaNine SD, Alprolix, Bebulin, Bebulin VH, BeneFIX, Coagadex, Corifact, Eloctate, Esperoct, Factor VIII SD (Human), Feiba, Feiba NF, Feiba VH Immuno, Fibryga, Helixate, Helixate FS, Hemlibra, Hemofil M, Humate-P, Humate-P Human, Idelvion, Ixinity, Jivi, Kcentra, Koate, Koate-DVI, Koate-HP, Kogenate, Kogenate FS, Kogenate FS Bio-Set, Kovaltry, Monoclate-P, Mononine, Novoeight, NovoSeven RT, Nuwiq, Obizur, Profilnine, Profilnine SD, Rebinyn, Recombinate, RiaSTAP, Rixubis, Tretten, Vonvendi, Wilate, Xyntha, and Xyntha Solofuse) ........................................................................................ 7 Benlysta (belimumab) .......................................................................................................................................................... 11 Berinert (C1 esterase inhibitor [human]) .............................................................................................................................. 13 Boniva (ibandronate) ............................................................................................................................................................ 15 Botox (onabotulinumtoxinA) ................................................................................................................................................
    [Show full text]