FDA Approval Summary: Axicabtagene Ciloleucel for Relapsed Or Refractory Large B-Cell Lymphoma Najat Bouchkouj1, Yvette L

Total Page:16

File Type:pdf, Size:1020Kb

FDA Approval Summary: Axicabtagene Ciloleucel for Relapsed Or Refractory Large B-Cell Lymphoma Najat Bouchkouj1, Yvette L Published OnlineFirst November 9, 2018; DOI: 10.1158/1078-0432.CCR-18-2743 CCR Drug Updates Clinical Cancer Research FDA Approval Summary: Axicabtagene Ciloleucel for Relapsed or Refractory Large B-cell Lymphoma Najat Bouchkouj1, Yvette L. Kasamon2, R. Angelo de Claro2, Bindu George1, Xue Lin1, Shiowjen Lee1, Gideon M. Blumenthal2,3, Wilson Bryan1, Amy E. McKee2,3, and Richard Pazdur2,3 Abstract In October 2017, the FDA granted regular approval to rate per independent review committee was 72% [95% axicabtagene ciloleucel, a CD19-directed chimeric antigen confidence interval (CI), 62–81], with a CR rate of 51% receptor (CAR) T-cell therapy, for treatment of adult patients (95% CI, 41–62). With a median follow-up of 7.9 months, with relapsed or refractory large B-cell lymphoma after two or themedianDORwasnotreachedinpatientsachievingCR more lines of systemic therapy. Efficacy was based on complete (95% CI, 8.1 months; not estimable, NE), whereas patients remission (CR) rate and duration of response (DOR) in 101 with partial remission had an estimated median DOR of 2.1 adult patients with relapsed or refractory large B-cell lymphoma months (95% CI, 1.3–5.3). Among 108 patients evaluated (median 3 prior systemic regimens) treated on a single-arm for safety, serious adverse reactions occurred in 52%. Cyto- trial. Patients received a single infusion of axicabtagene cilo- kine release syndrome and neurologic toxicities occurred in leucel, preceded by lymphodepleting chemotherapy with 94% and 87% of patients, respectively, leading to imple- cyclophosphamide and fludarabine. The objective response mentation of a risk evaluation and mitigation strategy. Introduction remission (CR) rates were 15%, and the median overall survival was 6 months (6). Although standard chemoimmunotherapy is considered cura- Axicabtagene ciloleucel (YESCARTA; Kite Pharma, Inc.) is an tive for more than half of all patients with newly diagnosed diffuse immunotherapy consisting of autologous T cells that have been large B-cell lymphoma (DLBCL), an estimated 20% to 30% transduced with a retroviral vector encoding an anti-CD19 relapse after an initial remission, and an estimated 10% of chimeric antigen receptor (CAR). On October 18, 2017, after a patients have primary refractory disease (1, 2). High-dose che- priority review, the FDA granted regular approval to axicabtagene motherapy with autologous hematopoietic stem cell transplan- ciloleucel for the treatment of adult patients with relapsed or tation (HSCT) is the usual standard for first relapse of DLBCL, refractory large B-cell lymphoma after two or more lines of provided that the relapse is chemosensitive, and can cure a subset systemic therapy, including DLBCL not otherwise specified, pri- of patients. However, over 50% of such relapses can be resistant to mary mediastinal large B-cell lymphoma (PMBCL), high-grade second-line therapy (3), typically precluding HSCT. There is no B-cell lymphoma, and DLBCL arising from follicular lymphoma universal standard of care for such patients, or for patients who are (9). Axicabtagene ciloleucel is not indicated for the treatment of ineligible for HSCT due to comorbidities or who relapse despite patients with primary central nervous system (CNS) lymphoma. HSCT (1, 4, 5). Outcomes tend to be poor with DLBCL that is Herein, we provide a summary of the FDA clinical review and refractory or relapses early after autologous HSCT (6–8). In a rationale for regular approval of this marketing application. meta-analysis of over 500 such patients, the objective response rate (ORR) to subsequent therapy was 20% to 30%, complete Drug Product Axicabtagene ciloleucel is produced from the patient's periph- 1 eral blood mononuclear cells collected by apheresis. The mono- Center for Biologics Evaluation and Research, U.S. Food and Drug Administra- nuclear cells are enriched for T cells, activated with recombinant tion, Silver Spring, Maryland. 2Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland. 3Oncology Center of human IL2 and anti-CD3 antibody, and transduced with a Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland. replication-incompetent retroviral vector expressing the anti- CD19 CAR transgene. The CAR protein has a CD19-specific, Note: This is a U.S. Government work. There are no restrictions on its use. murine single-chain variable fragment linked to two costimula- N. Bouchkouj and Y.L. Kasamon contributed equally to this article. tory domains derived from human CD3-z and CD28 genes (10). Corresponding Author: Najat Bouchkouj, U.S. Food and Drug Administration, The transduced T cells are expanded in cell culture and delivered 10903 New Hampshire Avenue, White Oak Building 71, Silver Spring, MD 20993. cryopreserved in a patient-specific infusion bag(s). After engage- Phone: 301-402-8408; Fax: 301-595-1403; E-mail: [email protected] ment of the anti-CD19 CAR T cells with CD19-expressing target doi: 10.1158/1078-0432.CCR-18-2743 cells, the costimulatory domains in the CAR construct activate Ó2018 American Association for Cancer Research. downstream signaling cascades that lead to T-cell activation, www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst November 9, 2018; DOI: 10.1158/1078-0432.CCR-18-2743 Bouchkouj et al. proliferation, effector functions, and secretion of inflammatory prior autologous HSCT. However, all patients had an ECOG cytokines and chemokines (10). This in turn promotes apoptosis performance status of 0 or 1 per protocol requirement. and necrosis of the target cells, which include CD19-expressing Among the 101 treated patients, the ORR as determined by an cancer cells and normal B cells. independent review committee (IRC) was 72%, with a CR rate of The target dose is a single infusion of 2 Â 106 CAR-positive 51% [95% confidence interval, 41–62; Table 1]. The concordance T cells per kg, with a maximum allowable dose of 2 Â 108 CAR between ORR per IRC and ORR per investigator was 79%. On T cells. To facilitate CAR T-cell engraftment and expansion, intention-to-treat analysis, using as the denominator all patients lymphodepleting chemotherapy is administered prior to infusion in the phase II who underwent leukapheresis, the ORR per IRC was of axicabtagene ciloleucel (cyclophosphamide 500 mg/m2 i.v. 66%, with a CR rate of 47% (95% CI, 37–57). and fludarabine 30 mg/m2 i.v. both given on the fifth, fourth, and Figure 1 shows a waterfall plot, displaying reduction in disease third day before infusion). In patients treated with this regimen, burden in relation to the best overall response (BOR). The median following infusion of axicabtagene ciloleucel, the CAR T cells maximal concentration (Cmax) and median area under the curve exhibited an initial rapid expansion achieving maximal concen- (AUC0–28d) of the CAR T cells were approximately two fold trations within the first 7 to 14 days, followed by a decline to near- higher in responding patients than in patients who did not baseline levels by 3 months (9). achieve a response. Response durations tended to be longer in patients with a BOR Clinical Trial Design of CR, as compared with a BOR of partial remission (PR). With an estimated median follow-up of 7.9 months, the median DOR per The basis of approval is a single-arm, open-label, multicenter IRC had not been reached in patients achieving CR (95% CI, 8.1 phase 1/II trial (ZUMA-1; NCT02348216) in adults with aggres- months; not estimable, NE). In contrast, the estimated median sive B-cell non-Hodgkin lymphoma (NHL), with a primary DOR among patients in PR was 2.1 months (95% CI, 1.3–5.3). Of efficacy endpoint of ORR per investigator assessment after a the 52 patients who achieved CR, 14 initially had stable disease single infusion of axicabtagene ciloleucel. Eligible patients had (seven patients) or PR (seven patients), with a median time to disease that was refractory to the most recent therapy or that improvement of 2.1 months (range: 1.6–5.3 months). relapsed within 1 year after autologous HSCT. The study excluded patients with prior allogeneic HSCT, prior CD19- Safety directed therapy, or any history of central nervous system The prescribing information for axicabtagene ciloleucel (CNS) involvement by lymphoma and required an Eastern contains boxed warnings for cytokine release syndrome (CRS) Cooperative Oncology Group (ECOG) performance status and neurologic toxicities, which in both cases have included <2, absolute lymphocyte count 100/mL, creatinine clearance fatal and life-threatening reactions. Other Warnings and Pre- 60 mL/min, hepatic transaminases 2.5 times the upper cautions in the prescribing information include hypersensitiv- limit of normal, cardiac ejection fraction 50%, and absence ity reactions, serious infections, prolonged cytopenias, hypo- of active infection. gammaglobulinemia, second malignancies, and, due to the In the phases I and II portions combined, 119 patients under- potential for neurologic events, restrictions on driving and went leukapheresis and 108 patients were treated with axicabta- other activities. gene ciloleucel, which was preceded by fludarabine/cyclophos- Safety was evaluated in all 108 patients who received an phamide at the approved dose-schedule. The trial did not permit infusion of axicabtagene ciloleucel in ZUMA-1. bridging therapy between leukapheresis and lymphodepleting Of 34 deaths that occurred during the main safety evaluation chemotherapy. All patients were hospitalized for the CAR T-cell period, four were attributed to reasons other than disease pro- infusion and for a minimum of 7 days afterward. gression: three to CRS and one to pulmonary embolism. One patient, who died of disease progression, had ongoing CRS Results symptoms. All patients experienced at least one AR, and serious Efficacy ARs were reported in 52% of patients. The most common In the phase II portion, 101 of 111 patients who underwent grade 3 ARs (incidence 10%) were neurologic toxicities leukapheresis received axicabtagene ciloleucel and comprise the (31%), infections (23%), fever (16%), CRS (13%), hypotension main efficacy population.
Recommended publications
  • Chimeric Antigen Receptor T-Cell Therapy – Clinical Guidelines
    Chimeric Antigen Receptor T-cell Therapy Clinical Guideline Effective July 13, 2021 THIS DOCUMENT IS PROPRIETARY AND CONFIDENTIAL TO OPTUM® Unauthorized use or copying without written consent is strictly prohibited. Printed copies are for reference only. Table of Contents Table of Contents Introduction .................................................................................................................................... 3 FDA-approved Agents ................................................................................................................... 3 Universal Minimum Eligibility Requirements .............................................................................. 4 Indication ........................................................................................................................................ 5 Multiple Myeloma ................................................................................................................ 5 Diffuse Large B-cell Lymphoma .......................................................................................... 7 Follicular Lymphoma ......................................................................................................... 13 Mantle Cell Lymphoma ..................................................................................................... 15 Acute Lymphoblastic Leukemia (ALL) .............................................................................. 17 Universal Contraindications ......................................................................................................
    [Show full text]
  • Axicabtagene Ciloleucel (Yescarta®)
    Policy Medical Policy Manual Approved Revision: Do Not Implement until 8/31/21 Axicabtagene Ciloleucel (Yescarta®) NDC CODE(S) 71287-0119-XX YESCARTA PLASTIC BAG, INJECTION (KITE PHARMA, IN) DESCRIPTION Axicabtagene ciloleucel is a CD19-directed genetically modified autologous T cell immunotherapy. To prepare the product an individual’s own T cells are harvested and genetically modified ex vivo by retroviral transduction to express a chimeric antigen receptor (CAR) comprising a murine anti-CD19 single chain variable fragment (scFv) linked to CD28 and CD3-zeta co-stimulatory domains. The anti-CD19 CAR T cells are expanded and infused back into the individual. Axicabtagene ciloleucel binds to CD19-expressing cancer cells and normal B cells. Studies demonstrated that following anti-CD19 CAR T cell engagement with CD19-expressing target cells, the CD28 and CD3-zeta co- stimulatory domains activate downstream signaling cascades that lead to T-cell activation, proliferation, acquisition of effector functions and secretion of inflammatory cytokines and chemokines. This sequence of events leads to killing of CD19-expressing cells. POLICY Axicabtagene ciloleucel for the treatment of the following is considered medically necessary if the medical appropriateness criteria are met. (See Medical Appropriateness below.) o Large B-cell Lymphoma o Follicular Lymphoma Axicabtagene ciloleucel for the treatment of other conditions/diseases is considered investigational. MEDICAL APPROPRIATENESS INITIAL APPROVAL CRITERIA Submission of medical records related
    [Show full text]
  • Yescarta™ (Axicabtagene Ciloleucel) – New Orphan Drug Approval
    Yescarta™ (axicabtagene ciloleucel) – New orphan drug approval • On October 18, 2017, Kite Pharma, a Gilead company, announced the FDA approval of Yescarta (axicabtagene ciloleucel), for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma. — Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma. • DLBCL is the most common type of non-Hodgkin lymphoma (NHL) in adults. Approximately 72,000 new cases of NHL are diagnosed in the U.S. each year, and DLBCL represents approximately one in three newly diagnosed cases. — An estimated 7,500 Americans with refractory DLBCL are eligible for chimeric antigen receptor (CAR) T-cell therapy. — With current standard of care, patients with refractory large B-cell lymphoma have a median overall survival of approximately 6 months, with only 7% attaining a complete remission (CR). — In addition, patients with large B-cell lymphoma in second or later lines of therapy have poor outcomes and greater unmet need, since nearly half of them either do not respond or relapse shortly after transplant. • Yescarta is a genetically-modified autologous T-cell immunotherapy. Each dose of Yescarta is a customized treatment created using an individual patient’s own T-cells, a type of white blood cell known as a lymphocyte. The patient’s T-cells are collected and sent to a manufacturing center where they are genetically modified to include a new gene that contains a CAR that directs the T-cell to target and kill certain cancer cells that have a specific antigen (CD19) on the surface.
    [Show full text]
  • Decision Memo for Chimeric Antigen Receptor (CAR) T-Cell Therapy for Cancers (CAG-00451N)
    Decision Memo for Chimeric Antigen Receptor (CAR) T-cell Therapy for Cancers (CAG-00451N) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website. Decision Summary A. The Centers for Medicare & Medicaid Services (CMS) covers autologous treatment for cancer with T-cells expressing at least one chimeric antigen receptor (CAR) when administered at healthcare facilities enrolled in the FDA risk evaluation and mitigation strategies (REMS) and used for a medically accepted indication as defined at Social Security Act section 1861(t)(2) i.e., is used for either an FDA-approved indication (according to the FDA-approved label for that product), or for other uses when the product has been FDA-approved and the use is supported in one or more CMS-approved compendia. B. The use of non-FDA-approved autologous T-cells expressing at least one CAR is non-covered. Autologous treatment for cancer with T-cells expressing at least one CAR is non-covered when the requirements in Section A are not met. C. This policy continues coverage for routine costs in clinical trials that use CAR T-cell therapy as an investigational agent that meet the requirements listed in NCD 310.1. See Appendix B for the language representative of Medicare's national coverage determination (NCD) for implementation purposes only. Decision Memo TO: Administrative File: CAG-00451N FROM: Tamara Syrek Jensen, JD Director, Coverage and Analysis Group Joseph Chin, MD, MS Deputy Director, Coverage and Analysis Group Lori M. Ashby, MA Director, Division of Policy and Evidence Review Rosemarie Hakim, PhD Acting Director, Evidence Development Division Lori A.
    [Show full text]
  • Cancer Immunotherapy Comes of Age and Looks for Maturity ✉ Amanda Finck1, Saar I
    COMMENT https://doi.org/10.1038/s41467-020-17140-5 OPEN Cancer immunotherapy comes of age and looks for maturity ✉ Amanda Finck1, Saar I. Gill1 & Carl H. June 1,2 As Nature Communications celebrates a 10-year anniversary, the field has witnessed the transition of cancer immunotherapy from a pipe dream to an established powerful cancer treatment modality. Here we discuss the opportu- 1234567890():,; nities and challenges for the future. Improving the natural immune system through immune checkpoint blockade interference Advances in the understanding of basic immunology have ushered in two major approaches for cancer therapy over the past 10 years. The first is checkpoint therapy to augment the function of the natural immune system. The second uses the emerging discipline of synthetic biology and the tools of molecular biology and genome engineering to create new forms of biological structures, engineered viruses and cells with enhanced functionalities (Fig. 1). Trastuzumab, the monoclonal antibody targeting HER2, was the first recombinant antibody to be commercially approved, in 1997. However, over the past 10 years, a paradigm shift in cancer therapy occurred with the addition of inhibitors of the immune checkpoint blockade (ICB), CTLA-4 and PD-1, to the clinics. The first to be approved was the anti-CTLA-4 inhibitor ipilimumab for metastatic melanoma in 2011. More than a dozen types of cancer are now treated with ICBs. Perhaps most surprising to the field is that lung cancer can now be treated with PD-1 (CD279) and CTLA-4 (CD152) antagonists as a component of first line therapy. 10 years ago, the consensus among thoracic oncologists was that the solution for lung cancer was inhibitors of oncogene-driven signaling pathways and the field had dismissed the notion that lung cancer would be an immunologically responsive tumor.
    [Show full text]
  • Axicabtagene Ciloleucel, a First-In-Class CAR T Cell Therapy for Aggressive NHL
    Leukemia & Lymphoma ISSN: 1042-8194 (Print) 1029-2403 (Online) Journal homepage: http://www.tandfonline.com/loi/ilal20 Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL Zachary J. Roberts, Marc Better, Adrian Bot, Margo R. Roberts & Antoni Ribas To cite this article: Zachary J. Roberts, Marc Better, Adrian Bot, Margo R. Roberts & Antoni Ribas (2017): Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL, Leukemia & Lymphoma, DOI: 10.1080/10428194.2017.1387905 To link to this article: http://dx.doi.org/10.1080/10428194.2017.1387905 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group View supplementary material Published online: 23 Oct 2017. Submit your article to this journal Article views: 699 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ilal20 Download by: [UCLA Library] Date: 07 November 2017, At: 12:06 LEUKEMIA & LYMPHOMA, 2017 https://doi.org/10.1080/10428194.2017.1387905 REVIEW Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL Zachary J. Robertsa, Marc Bettera, Adrian Bota, Margo R. Robertsa and Antoni Ribasb aKite Pharma, Santa Monica, CA, USA; bDepartment of Medicine, University of California at Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA ABSTRACT ARTICLE HISTORY The development of clinically functional chimeric antigen receptor (CAR) T cell therapy is the cul- Received 2 June 2017 mination of multiple advances over the last three decades. Axicabtagene ciloleucel (formerly Revised 18 September 2017 KTE-C19) is an anti-CD19 CAR T cell therapy in development for patients with refractory diffuse Accepted 26 September 2017 large B cell lymphoma (DLBCL), including transformed follicular lymphoma (TFL) and primary KEYWORDS mediastinal B cell lymphoma (PMBCL).
    [Show full text]
  • Prospects for Combined Use of Oncolytic Viruses and CAR T-Cells Adam Ajina1 and John Maher2,3,4*
    J Immunother Cancer: first published as 10.1186/s40425-017-0294-6 on 21 November 2017. Downloaded from Ajina and Maher Journal for ImmunoTherapy of Cancer (2017) 5:90 DOI 10.1186/s40425-017-0294-6 REVIEW Open Access Prospects for combined use of oncolytic viruses and CAR T-cells Adam Ajina1 and John Maher2,3,4* Abstract With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence. Keywords: Oncolytic virus, Chimeric antigen receptor, CAR T-cell, Adoptive cell transfer, Combination strategies, Synergism, Solid tumours Background immune checkpoint inhibitors targeted against pro- This review focuses on the prospects for the synergistic grammed cell death protein 1 (PD-1; e.g.
    [Show full text]
  • Drug Price Forecast
    Drug Price Forecast July-August 2018 © 2018 Vizient, Inc. All rights reserved. Introduction It is our privilege to share with you highlights from the July 2018 Vizient® Drug Price Forecast, which offers insights into areas of interest such as specialty pharmaceuticals, oncology drugs, infectious disease agents and drug shortages. The report provides our projections of pricing behavior for the period of Jan. 1 through Dec. 31, 2019, and discusses critical issues that will likely affect the cost and use of pharmaceuticals. The increasing expense of medications continues to invite criticism, scrutiny and calls for government intervention. Since the publication of the January 2018 edition of the Drug Price Forecast, several regulatory changes have been enacted. Some of these changes, such as increased Medicare reimbursement opportunities for biosimilars, are very positive for pharmacy providers, while others, including lower Medicare reimbursement for disproportionate share hospitals, are detrimental to the ongoing mission of improving access to high-quality care. It is important to understand the existing landscape as well as to anticipate changes that could add further complexity to pharmacy enterprises. Executive summary The Drug Price Forecast is our best estimate of the change in the cost of key pharmaceuticals between Jan. 1 and Dec. 31, 2019. The forecast focuses on pharmaceutical products used across multiple health-system settings, including inpatient and non-acute environments, and provides a year-over-year estimate of the expected price change. Price change predictions for contract and noncontract product segments are shown in Table 1, along with the overall drug price inflation number for existing drugs as calculated by Vizient.
    [Show full text]
  • Jazz Pharmaceuticals Announces First Patient Enrolled in Phase 2 Clinical Trial Evaluating Defibrotide for the Prevention of CAR-T Associated Neurotoxicity
    Jazz Pharmaceuticals Announces First Patient Enrolled in Phase 2 Clinical Trial Evaluating Defibrotide for the Prevention of CAR-T Associated Neurotoxicity October 10, 2019 DUBLIN, Oct. 10, 2019 /PRNewswire/ -- Jazz Pharmaceuticals plc (Nasdaq: JAZZ) today announced that the first patient has been enrolled in an exploratory Phase 2 clinical trial evaluating the ability of defibrotide to prevent neurotoxicity in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) receiving CAR T-cell therapy. The prospective, multicenter, open-label, single-arm study will evaluate the safety and efficacy of defibrotide in the prevention of CAR T-cell associated neurotoxicity in patients with relapsed or refractory DLBCL receiving axicabtagene ciloleucel. "The introduction of CAR-T therapies to the oncology treatment landscape is groundbreaking but can be associated with serious complications such as neurotoxicity," said Robert Iannone, M.D., M.S.C.E., executive vice president, research and development of Jazz Pharmaceuticals. "At Jazz, we strive to improve outcomes for patients, and we are committed through our development program to explore the potential of defibrotide, including as a preventative treatment for neurotoxicity in patients receiving CAR-T therapy." Patients may experience neurotoxicity after CD19 targeted CAR-T therapy,1 and while the exact cause is unknown, research suggests that endothelial cell damage may play a role.1,2 Some researchers hypothesize that the damage caused by cytokine release after CAR-T therapy may compromise the ability of endothelial cells to protect the central nervous system (CNS), causing neurotoxicity.3 This study will explore whether defibrotide could help prevent CNS endothelial cell damage, thereby protecting the CNS and minimizing neurotoxicity.
    [Show full text]
  • PCORI-HCHSS-High Potential Disruption-May-2021
    PCORI Health Care Horizon Scanning System Volume 3 Issue 1 High Potential Disruption Report May 2021 Prepared for: Patient-Centered Outcomes Research Institute 1828 L St., NW, Suite 900 Washington, DC 20036 Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12 Prepared by: ECRI 5200 Butler Pike Plymouth Meeting, PA 19462 Investigators: Randy Hulshizer, MA, MS Jennifer De Lurio, MS Marcus Lynch, PhD, MBA Brian Wilkinson, MA Damian Carlson, MS Christian Cuevas, PhD Andrea Druga, MSPAS, PA-C Misha Mehta, MS Prital Patel, MPH Donna Beales, MLIS Eloise DeHaan, BS Eileen Erinoff, MSLIS Madison Kimball, MS Maria Middleton, MPH Melinda Rossi, BA Kelley Tipton, MPH Rosemary Walker, MLIS Andrew Furman, MD, MMM, FACEP Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions.
    [Show full text]
  • CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation
    cancers Review CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation Feifei Guo and Jiuwei Cui * Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-431-88782178 Simple Summary: Chimeric antigen receptor (CAR)-T cell therapy has exhibited good application prospects in the treatment of hematologic malignancies. However, there are still many unsolved problems, such as the limited antitumor effect of CAR-T on solid tumors and the potential risk of CAR-T therapy in clinical applications. In order to meet these challenges, more and more solutions are proposed. Therefore, in this review, we have discussed the recent breakthroughs in CAR-T therapy for cancer treatment, with an emphasis on the potentially effective CAR-T modifications and combined strategies. Abstract: Despite remarkable achievements in the treatment of hematologic malignancies, chimeric antigen receptor (CAR)-T cell therapy still faces many obstacles. The limited antitumor activity and persistence of infused CAR-T cells, especially in solid tumors, are the main limiting factors for CAR-T therapy. Moreover, clinical security and accessibility are important unmet needs for the application of CAR-T therapy. In view of these challenges, many potentially effective solutions have been proposed and confirmed. Both the independent and combined strategies of CAR-T therapy have exhibited Citation: Guo, F.; Cui, J. CAR-T in good application prospects. Thus, in this review, we have discussed the cutting-edge breakthroughs Cancer Treatment: Develop in in CAR-T therapy for cancer treatment, with the aim of providing a reference for addressing the Self-Optimization, Win-Win in current challenges.
    [Show full text]
  • Effects of the COVID-19 Pandemic on Publication Landscape in Chimeric Antigen Receptor
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446639; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RUNNING TITLE: Publication landscape in CAR-modified immune cell research Effects of the COVID-19 pandemic on publication landscape in chimeric antigen receptor- modified immune cell research Ahmet Yilmaz1 and Jianhua Yu2-5,# 1The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA. 2Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, Room 3017, Los Angeles, CA 91010, USA. 3Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA. 4Department of Immuno‑Oncology, City of Hope Beckman Research Institute, Los Angeles, CA 91010, USA. 5City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA 91010, USA. #Correspondence to: Dr. Jianhua Yu, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446639; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Chimeric antigen receptors (CARs) are artificial receptors introduced mainly into T cells. CAR- induced immune cell (CARi) products have achieved impressive success rates in treating some difficult-to-treat hematological malignancies.
    [Show full text]