Chimeric Antigen Receptor T-Cell (CAR-T) and Advanced Cellular/Immune Effector Cell Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Chimeric Antigen Receptor T-Cell (CAR-T) and Advanced Cellular/Immune Effector Cell Therapy Drug and Biologic Coverage Policy Effective Date .......................................... 5/15/2021 Next Review Date… ..................................... 5/1/2022 Coverage Policy Number .................................. 1808 Chimeric Antigen Receptor T-Cell (CAR-T) and Advanced Cellular/Immune Effector Cell Therapy Table of Contents Related Coverage Resources Coverage Policy ................................................... 1 Adoptive Immunotherapy - (0225) FDA Approved Indications ................................... 3 Immunomodulators - (1805) Recommended Dosing ........................................ 4 General Background ............................................ 6 Coding/Billing Information .................................... 7 References .......................................................... 7 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations. Coverage Policy Chimeric Antigen Receptor T-Cell (CAR-T) and Advanced Cellular/Immune Effector Cell Therapy includes the following products: • Yescarta™ (axicabtagene ciloleucel) • Tecartus™ (brexucabtagene autoleucel) • Kymriah™ (tisagenlecleucel) I. Axicabtagene ciloleucel (Yescarta) is considered medically necessary when ALL of the following criteria are met: A. Age 18 years of age and older B. ANY of the following: i. Diagnosis of any of the following large B-cell lymphoma subtypes: diffuse large B-cell lymphoma [DLBCL] not otherwise specified, primary mediastinal large B-cell lymphoma, high grade B-cell lymphoma, AIDS-related B-cell lymphoma, human herpes virus 8-positive DLBCL, and post-transplant lymphoproliferative disorders [B-cell type]); AND a. Disease is relapsed or refractory after two or more lines of systemic therapy ii. Diagnosis of DLBCL arising from follicular lymphoma; AND Page 1 of 8 Coverage Policy Number: 1808 a. The individual has received prior treatment with two or more chemoimmunotherapy regimens which included at least one anthracycline or anthracenedione-based regimen, unless contraindicated iii. Diagnosis of DLBCL arising from nodal marginal zone lymphoma; AND a. The individual has received prior treatment with two or more chemoimmunotherapy regimens which included at least one anthracycline or anthracenedione-based regimen, unless contraindicated C. Individual is not being treated for primary central nervous system lymphoma D. No prior use of axicabtagene ciloleucel (Yescarta) or another CD19-directed CAR-T therapy Authorization is for a single dose. Axicabtagene ciloleucel (Yescarta) is considered not medically necessary for all other uses including the following: • Repeat administration of axicabtagene ciloleucel (Yescarta) • Acute lymphocytic leukemia • Burkitt lymphoma • Chronic lymphocytic leukemia • Mantle cell lymphoma • Small lymphocytic leukemia • Solid tumors • Splenic marginal zone lymphoma II. Brexucabtagene autoleucel (Tecartus) is considered medically necessary when ALL of the following criteria are met: A. Individual is 18 years of age or older B. Diagnosis relapsed or refractory of Mantle Cell Lymphoma (MCL) C. Individual has previously received chemoimmunotherapy (for example, anthracycline- or bendamustine- based chemotherapy, anti-CD20 monoclonal antibody) AND a Bruton tyrosine kinase inhibitor D. Individual has received lymphodepleting (for example, cyclophosphamide and fludarabine) chemotherapy prior to Tecartus infusion E. Tecartus is prescribed by, or in consultation with, a hematologist or oncologist F. No prior use of another CD19-directed CAR-T therapy (for example, Kymriah or Yescarta) Authorization is for a single dose. Brexucabtagene autoleucel (Tecartus) is considered not medically necessary for all other uses. III. Tisagenlecleucel (Kymriah) is considered medically necessary when ALL of the following criteria are met: A. EITHER of the following: 1) Treatment for an individual up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is ONE of the following: a. Disease is refractory, or in second or later relapse b. Minimal residual disease positive after consolidation therapy c. Philadelphia chromosome-positive and ONE of the following: i. Less than complete response ii. High-risk genetics iii. Tyrosine kinase inhibitor (TKI) intolerant or refractory (TKIs include: Sprycel® [dasatinib tablets], imatinib tablets, Iclusig® [ponatinib tablets], Tasigna® [nilotinib capsules], and Bosulif® [bosutinib tablets]) iv. Relapse post-hematopoietic stem cell transplantation 2) Treatment for an adult when ANY of the following criteria are met: Page 2 of 8 Coverage Policy Number: 1808 a. Diagnosis of any of the following large B-cell lymphoma subtypes: diffuse large B- cell lymphoma [DLBCL] not otherwise specified, primary mediastinal large B-cell lymphoma, high grade B-cell lymphoma, AIDS-related B-cell lymphoma, human herpes virus 8-positive DLBCL, and post-transplant lymphoproliferative disorders [B- cell type]); AND i. Disease is relapsed or refractory after two or more lines of systemic therapy b. Diagnosis of DLBCL arising from follicular lymphoma; AND i. The individual has received prior treatment with two or more chemoimmunotherapy regimens which included at least one anthracycline or anthracenedione-based regimen, unless contraindicated c. Diagnosis of DLBCL arising from nodal marginal zone lymphoma; AND i. The individual has received prior treatment with two or more chemoimmunotherapy regimens which included at least one anthracycline or anthracenedione-based regimen, unless contraindicated B. Individual is not being treated for primary central nervous system lymphoma C. No prior use of axicabtagene ciloleucel (Yescarta) or another CD19-directed CAR-T therapy Authorization is for a single dose. Tisagenlecleucel (Kymriah) is considered not medically necessary for all other uses including the following: • Repeat administration of tisagenlecleucel (Kymriah) • Acute Myeloid Leukemia (AML) • Chronic lymphocytic leukemia • Hodgkin lymphoma • Mantle cell lymphoma • Plasma cell disorders • Solid tumors • T-cell leukemia/lymphoma When coverage is available and medically necessary, the dosage, frequency, duration of therapy, and site of care should be reasonable, clinically appropriate, and supported by evidence-based literature and adjusted based upon severity, alternative available treatments, and previous response to therapy. Note: Receipt of sample product does not satisfy any criteria requirements for coverage. FDA Approved Indications FDA Approved Indication Axicabtagene ciloleucel (Yescarta) Yescarta is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma, high grade B-cell lymphoma, and DLBCL arising from follicular lymphoma. Limitation of Use: Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma. REMS Program • Because of the risk of CRS and neurologic toxicities, Yescarta is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the Yescarta REMS • The required components of the Yescarta REMS are: o Healthcare facilities that dispense and administer Yescarta must be enrolled and comply with the REMS requirements. Certified healthcare facilities must have on-site, immediate Page 3 of 8 Coverage Policy Number: 1808 access to tocilizumab, and ensure that a minimum of 2 doses of tocilizumab are available for each patient for infusion within 2 hours after Yescarta infusion, if needed for treatment of CRS o Certified healthcare facilities must ensure that healthcare
Recommended publications
  • Chimeric Antigen Receptor T-Cell Therapy – Clinical Guidelines
    Chimeric Antigen Receptor T-cell Therapy Clinical Guideline Effective July 13, 2021 THIS DOCUMENT IS PROPRIETARY AND CONFIDENTIAL TO OPTUM® Unauthorized use or copying without written consent is strictly prohibited. Printed copies are for reference only. Table of Contents Table of Contents Introduction .................................................................................................................................... 3 FDA-approved Agents ................................................................................................................... 3 Universal Minimum Eligibility Requirements .............................................................................. 4 Indication ........................................................................................................................................ 5 Multiple Myeloma ................................................................................................................ 5 Diffuse Large B-cell Lymphoma .......................................................................................... 7 Follicular Lymphoma ......................................................................................................... 13 Mantle Cell Lymphoma ..................................................................................................... 15 Acute Lymphoblastic Leukemia (ALL) .............................................................................. 17 Universal Contraindications ......................................................................................................
    [Show full text]
  • Axicabtagene Ciloleucel (Yescarta®)
    Policy Medical Policy Manual Approved Revision: Do Not Implement until 8/31/21 Axicabtagene Ciloleucel (Yescarta®) NDC CODE(S) 71287-0119-XX YESCARTA PLASTIC BAG, INJECTION (KITE PHARMA, IN) DESCRIPTION Axicabtagene ciloleucel is a CD19-directed genetically modified autologous T cell immunotherapy. To prepare the product an individual’s own T cells are harvested and genetically modified ex vivo by retroviral transduction to express a chimeric antigen receptor (CAR) comprising a murine anti-CD19 single chain variable fragment (scFv) linked to CD28 and CD3-zeta co-stimulatory domains. The anti-CD19 CAR T cells are expanded and infused back into the individual. Axicabtagene ciloleucel binds to CD19-expressing cancer cells and normal B cells. Studies demonstrated that following anti-CD19 CAR T cell engagement with CD19-expressing target cells, the CD28 and CD3-zeta co- stimulatory domains activate downstream signaling cascades that lead to T-cell activation, proliferation, acquisition of effector functions and secretion of inflammatory cytokines and chemokines. This sequence of events leads to killing of CD19-expressing cells. POLICY Axicabtagene ciloleucel for the treatment of the following is considered medically necessary if the medical appropriateness criteria are met. (See Medical Appropriateness below.) o Large B-cell Lymphoma o Follicular Lymphoma Axicabtagene ciloleucel for the treatment of other conditions/diseases is considered investigational. MEDICAL APPROPRIATENESS INITIAL APPROVAL CRITERIA Submission of medical records related
    [Show full text]
  • Yescarta™ (Axicabtagene Ciloleucel) – New Orphan Drug Approval
    Yescarta™ (axicabtagene ciloleucel) – New orphan drug approval • On October 18, 2017, Kite Pharma, a Gilead company, announced the FDA approval of Yescarta (axicabtagene ciloleucel), for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma. — Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma. • DLBCL is the most common type of non-Hodgkin lymphoma (NHL) in adults. Approximately 72,000 new cases of NHL are diagnosed in the U.S. each year, and DLBCL represents approximately one in three newly diagnosed cases. — An estimated 7,500 Americans with refractory DLBCL are eligible for chimeric antigen receptor (CAR) T-cell therapy. — With current standard of care, patients with refractory large B-cell lymphoma have a median overall survival of approximately 6 months, with only 7% attaining a complete remission (CR). — In addition, patients with large B-cell lymphoma in second or later lines of therapy have poor outcomes and greater unmet need, since nearly half of them either do not respond or relapse shortly after transplant. • Yescarta is a genetically-modified autologous T-cell immunotherapy. Each dose of Yescarta is a customized treatment created using an individual patient’s own T-cells, a type of white blood cell known as a lymphocyte. The patient’s T-cells are collected and sent to a manufacturing center where they are genetically modified to include a new gene that contains a CAR that directs the T-cell to target and kill certain cancer cells that have a specific antigen (CD19) on the surface.
    [Show full text]
  • Decision Memo for Chimeric Antigen Receptor (CAR) T-Cell Therapy for Cancers (CAG-00451N)
    Decision Memo for Chimeric Antigen Receptor (CAR) T-cell Therapy for Cancers (CAG-00451N) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website. Decision Summary A. The Centers for Medicare & Medicaid Services (CMS) covers autologous treatment for cancer with T-cells expressing at least one chimeric antigen receptor (CAR) when administered at healthcare facilities enrolled in the FDA risk evaluation and mitigation strategies (REMS) and used for a medically accepted indication as defined at Social Security Act section 1861(t)(2) i.e., is used for either an FDA-approved indication (according to the FDA-approved label for that product), or for other uses when the product has been FDA-approved and the use is supported in one or more CMS-approved compendia. B. The use of non-FDA-approved autologous T-cells expressing at least one CAR is non-covered. Autologous treatment for cancer with T-cells expressing at least one CAR is non-covered when the requirements in Section A are not met. C. This policy continues coverage for routine costs in clinical trials that use CAR T-cell therapy as an investigational agent that meet the requirements listed in NCD 310.1. See Appendix B for the language representative of Medicare's national coverage determination (NCD) for implementation purposes only. Decision Memo TO: Administrative File: CAG-00451N FROM: Tamara Syrek Jensen, JD Director, Coverage and Analysis Group Joseph Chin, MD, MS Deputy Director, Coverage and Analysis Group Lori M. Ashby, MA Director, Division of Policy and Evidence Review Rosemarie Hakim, PhD Acting Director, Evidence Development Division Lori A.
    [Show full text]
  • Cancer Immunotherapy Comes of Age and Looks for Maturity ✉ Amanda Finck1, Saar I
    COMMENT https://doi.org/10.1038/s41467-020-17140-5 OPEN Cancer immunotherapy comes of age and looks for maturity ✉ Amanda Finck1, Saar I. Gill1 & Carl H. June 1,2 As Nature Communications celebrates a 10-year anniversary, the field has witnessed the transition of cancer immunotherapy from a pipe dream to an established powerful cancer treatment modality. Here we discuss the opportu- 1234567890():,; nities and challenges for the future. Improving the natural immune system through immune checkpoint blockade interference Advances in the understanding of basic immunology have ushered in two major approaches for cancer therapy over the past 10 years. The first is checkpoint therapy to augment the function of the natural immune system. The second uses the emerging discipline of synthetic biology and the tools of molecular biology and genome engineering to create new forms of biological structures, engineered viruses and cells with enhanced functionalities (Fig. 1). Trastuzumab, the monoclonal antibody targeting HER2, was the first recombinant antibody to be commercially approved, in 1997. However, over the past 10 years, a paradigm shift in cancer therapy occurred with the addition of inhibitors of the immune checkpoint blockade (ICB), CTLA-4 and PD-1, to the clinics. The first to be approved was the anti-CTLA-4 inhibitor ipilimumab for metastatic melanoma in 2011. More than a dozen types of cancer are now treated with ICBs. Perhaps most surprising to the field is that lung cancer can now be treated with PD-1 (CD279) and CTLA-4 (CD152) antagonists as a component of first line therapy. 10 years ago, the consensus among thoracic oncologists was that the solution for lung cancer was inhibitors of oncogene-driven signaling pathways and the field had dismissed the notion that lung cancer would be an immunologically responsive tumor.
    [Show full text]
  • Axicabtagene Ciloleucel, a First-In-Class CAR T Cell Therapy for Aggressive NHL
    Leukemia & Lymphoma ISSN: 1042-8194 (Print) 1029-2403 (Online) Journal homepage: http://www.tandfonline.com/loi/ilal20 Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL Zachary J. Roberts, Marc Better, Adrian Bot, Margo R. Roberts & Antoni Ribas To cite this article: Zachary J. Roberts, Marc Better, Adrian Bot, Margo R. Roberts & Antoni Ribas (2017): Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL, Leukemia & Lymphoma, DOI: 10.1080/10428194.2017.1387905 To link to this article: http://dx.doi.org/10.1080/10428194.2017.1387905 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group View supplementary material Published online: 23 Oct 2017. Submit your article to this journal Article views: 699 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ilal20 Download by: [UCLA Library] Date: 07 November 2017, At: 12:06 LEUKEMIA & LYMPHOMA, 2017 https://doi.org/10.1080/10428194.2017.1387905 REVIEW Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL Zachary J. Robertsa, Marc Bettera, Adrian Bota, Margo R. Robertsa and Antoni Ribasb aKite Pharma, Santa Monica, CA, USA; bDepartment of Medicine, University of California at Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA ABSTRACT ARTICLE HISTORY The development of clinically functional chimeric antigen receptor (CAR) T cell therapy is the cul- Received 2 June 2017 mination of multiple advances over the last three decades. Axicabtagene ciloleucel (formerly Revised 18 September 2017 KTE-C19) is an anti-CD19 CAR T cell therapy in development for patients with refractory diffuse Accepted 26 September 2017 large B cell lymphoma (DLBCL), including transformed follicular lymphoma (TFL) and primary KEYWORDS mediastinal B cell lymphoma (PMBCL).
    [Show full text]
  • Prospects for Combined Use of Oncolytic Viruses and CAR T-Cells Adam Ajina1 and John Maher2,3,4*
    J Immunother Cancer: first published as 10.1186/s40425-017-0294-6 on 21 November 2017. Downloaded from Ajina and Maher Journal for ImmunoTherapy of Cancer (2017) 5:90 DOI 10.1186/s40425-017-0294-6 REVIEW Open Access Prospects for combined use of oncolytic viruses and CAR T-cells Adam Ajina1 and John Maher2,3,4* Abstract With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence. Keywords: Oncolytic virus, Chimeric antigen receptor, CAR T-cell, Adoptive cell transfer, Combination strategies, Synergism, Solid tumours Background immune checkpoint inhibitors targeted against pro- This review focuses on the prospects for the synergistic grammed cell death protein 1 (PD-1; e.g.
    [Show full text]
  • Drug Price Forecast
    Drug Price Forecast July-August 2018 © 2018 Vizient, Inc. All rights reserved. Introduction It is our privilege to share with you highlights from the July 2018 Vizient® Drug Price Forecast, which offers insights into areas of interest such as specialty pharmaceuticals, oncology drugs, infectious disease agents and drug shortages. The report provides our projections of pricing behavior for the period of Jan. 1 through Dec. 31, 2019, and discusses critical issues that will likely affect the cost and use of pharmaceuticals. The increasing expense of medications continues to invite criticism, scrutiny and calls for government intervention. Since the publication of the January 2018 edition of the Drug Price Forecast, several regulatory changes have been enacted. Some of these changes, such as increased Medicare reimbursement opportunities for biosimilars, are very positive for pharmacy providers, while others, including lower Medicare reimbursement for disproportionate share hospitals, are detrimental to the ongoing mission of improving access to high-quality care. It is important to understand the existing landscape as well as to anticipate changes that could add further complexity to pharmacy enterprises. Executive summary The Drug Price Forecast is our best estimate of the change in the cost of key pharmaceuticals between Jan. 1 and Dec. 31, 2019. The forecast focuses on pharmaceutical products used across multiple health-system settings, including inpatient and non-acute environments, and provides a year-over-year estimate of the expected price change. Price change predictions for contract and noncontract product segments are shown in Table 1, along with the overall drug price inflation number for existing drugs as calculated by Vizient.
    [Show full text]
  • Jazz Pharmaceuticals Announces First Patient Enrolled in Phase 2 Clinical Trial Evaluating Defibrotide for the Prevention of CAR-T Associated Neurotoxicity
    Jazz Pharmaceuticals Announces First Patient Enrolled in Phase 2 Clinical Trial Evaluating Defibrotide for the Prevention of CAR-T Associated Neurotoxicity October 10, 2019 DUBLIN, Oct. 10, 2019 /PRNewswire/ -- Jazz Pharmaceuticals plc (Nasdaq: JAZZ) today announced that the first patient has been enrolled in an exploratory Phase 2 clinical trial evaluating the ability of defibrotide to prevent neurotoxicity in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) receiving CAR T-cell therapy. The prospective, multicenter, open-label, single-arm study will evaluate the safety and efficacy of defibrotide in the prevention of CAR T-cell associated neurotoxicity in patients with relapsed or refractory DLBCL receiving axicabtagene ciloleucel. "The introduction of CAR-T therapies to the oncology treatment landscape is groundbreaking but can be associated with serious complications such as neurotoxicity," said Robert Iannone, M.D., M.S.C.E., executive vice president, research and development of Jazz Pharmaceuticals. "At Jazz, we strive to improve outcomes for patients, and we are committed through our development program to explore the potential of defibrotide, including as a preventative treatment for neurotoxicity in patients receiving CAR-T therapy." Patients may experience neurotoxicity after CD19 targeted CAR-T therapy,1 and while the exact cause is unknown, research suggests that endothelial cell damage may play a role.1,2 Some researchers hypothesize that the damage caused by cytokine release after CAR-T therapy may compromise the ability of endothelial cells to protect the central nervous system (CNS), causing neurotoxicity.3 This study will explore whether defibrotide could help prevent CNS endothelial cell damage, thereby protecting the CNS and minimizing neurotoxicity.
    [Show full text]
  • PCORI-HCHSS-High Potential Disruption-May-2021
    PCORI Health Care Horizon Scanning System Volume 3 Issue 1 High Potential Disruption Report May 2021 Prepared for: Patient-Centered Outcomes Research Institute 1828 L St., NW, Suite 900 Washington, DC 20036 Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12 Prepared by: ECRI 5200 Butler Pike Plymouth Meeting, PA 19462 Investigators: Randy Hulshizer, MA, MS Jennifer De Lurio, MS Marcus Lynch, PhD, MBA Brian Wilkinson, MA Damian Carlson, MS Christian Cuevas, PhD Andrea Druga, MSPAS, PA-C Misha Mehta, MS Prital Patel, MPH Donna Beales, MLIS Eloise DeHaan, BS Eileen Erinoff, MSLIS Madison Kimball, MS Maria Middleton, MPH Melinda Rossi, BA Kelley Tipton, MPH Rosemary Walker, MLIS Andrew Furman, MD, MMM, FACEP Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions.
    [Show full text]
  • CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation
    cancers Review CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation Feifei Guo and Jiuwei Cui * Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-431-88782178 Simple Summary: Chimeric antigen receptor (CAR)-T cell therapy has exhibited good application prospects in the treatment of hematologic malignancies. However, there are still many unsolved problems, such as the limited antitumor effect of CAR-T on solid tumors and the potential risk of CAR-T therapy in clinical applications. In order to meet these challenges, more and more solutions are proposed. Therefore, in this review, we have discussed the recent breakthroughs in CAR-T therapy for cancer treatment, with an emphasis on the potentially effective CAR-T modifications and combined strategies. Abstract: Despite remarkable achievements in the treatment of hematologic malignancies, chimeric antigen receptor (CAR)-T cell therapy still faces many obstacles. The limited antitumor activity and persistence of infused CAR-T cells, especially in solid tumors, are the main limiting factors for CAR-T therapy. Moreover, clinical security and accessibility are important unmet needs for the application of CAR-T therapy. In view of these challenges, many potentially effective solutions have been proposed and confirmed. Both the independent and combined strategies of CAR-T therapy have exhibited Citation: Guo, F.; Cui, J. CAR-T in good application prospects. Thus, in this review, we have discussed the cutting-edge breakthroughs Cancer Treatment: Develop in in CAR-T therapy for cancer treatment, with the aim of providing a reference for addressing the Self-Optimization, Win-Win in current challenges.
    [Show full text]
  • Effects of the COVID-19 Pandemic on Publication Landscape in Chimeric Antigen Receptor
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446639; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RUNNING TITLE: Publication landscape in CAR-modified immune cell research Effects of the COVID-19 pandemic on publication landscape in chimeric antigen receptor- modified immune cell research Ahmet Yilmaz1 and Jianhua Yu2-5,# 1The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43210, USA. 2Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, Room 3017, Los Angeles, CA 91010, USA. 3Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA. 4Department of Immuno‑Oncology, City of Hope Beckman Research Institute, Los Angeles, CA 91010, USA. 5City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA 91010, USA. #Correspondence to: Dr. Jianhua Yu, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446639; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Chimeric antigen receptors (CARs) are artificial receptors introduced mainly into T cells. CAR- induced immune cell (CARi) products have achieved impressive success rates in treating some difficult-to-treat hematological malignancies.
    [Show full text]