ASTRONOMY and ASTROPHYSICS an Atlas of Mid-Infrared Dust

Total Page:16

File Type:pdf, Size:1020Kb

ASTRONOMY and ASTROPHYSICS an Atlas of Mid-Infrared Dust A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: ASTROPHYSICS missing; you have not inserted them February 27, 2001 An atlas of mid-infrared dust emission in spiral galaxies? H. Roussel1,L.Vigroux1,A.Bosma2,M.Sauvage1, C. Bonoli3, P. Gallais1, T. Hawarden4, J. Lequeux5,S.Madden1, and P. Mazzei3 1 DAPNIA/Service d’Astrophysique, CEA/Saclay, 91191 Gif-sur-Yvette cedex, France 2 Observatoire de Marseille, 2 Place Le Verrier, 13248 Marseille cedex 4, France 3 Osservatorio Astronomico di Padova, 5 Vicolo dell’Osservatorio, 35122 Padova, Italy 4 Joint Astronomy Center, 660 N. A’ohoku Place, Hilo, Hawaii 96720, USA 5 Observatoire de Paris, 61 Avenue de l’Observatoire, 75014 Paris, France Received 3 November 2000 / Accepted 23 January 2001 Abstract. We present maps of dust emission at 7 µmand as characterized by e.g.)]Desert, tracing different physical 15 µm/7 µm intensity ratios of selected regions in 43 spiral conditions. A stellar contribution can also exist at 7 µm galaxies observed with ISOCAM. This atlas is a comple- (Boselli et al. 1998), but is negligible except in a few early- ment to studies based on these observations, dealing with type galaxies. star formation in centers of barred galaxies and in spiral The general description of the sample and detailed disks. It is accompanied by a detailed description of data photometric results are given in Paper I, where the spectra reduction and an inventory of generic morphological prop- are also published. Here, we provide the details of obser- erties in groups defined according to bar strength and HI vations and data reduction, total fluxes at 7 and 15 µm, gas content. a morphological description of galaxies grouped into ap- propriate categories and maps at 7 µm, along with optical Key words: atlas – galaxies: spiral – galaxies: ISM – images. The 15 µm maps have very similar morphology infrared: ISM: continuum – infrared: ISM: lines and bands and are therefore not shown. These images demonstrate the peculiar character of circumnuclear regions seen in the mid-infrared. Information on the F15=F7 colors of bright 1. Introduction complexes and other selected regions is added. All of the maps are published for the first time, ex- The mid-infrared maps presented here are part of a larger cept those of M 51 (Sauvage et al. 1996) and NGC 6946 sample of nearby spiral galaxies analyzed in Roussel et (Malhotra et al. 1996), which are both re-analyzed here. al. (2001a and b: Papers I and II). Paper I primarily investigates the dynamical effects of bars on circumnu- clear star formation activity, studied through dust emis- 2. Observations sion at 7 and 15 µm, and proposes an interpretation of All galaxies were observed with two broadband filters, these mid-infrared data in conjunction with information LW3 centered at 15 µm (12–18 µm) and LW2 centered at on molecular gas and stellar populations. Paper II deals 7 µm (5–8.5 µm), that we shall hereafter designate by their with the use of mid-infrared fluxes as a star formation central wavelength. Maps covering the whole infrared- indicator in spiral disks. Observations belong to guaran- emitting disk were built in raster mode, with sufficient teed time programs of ISOCAM, a camera operating be- overlap between adjacent pointings (half the detector field tween 5 and 18 µm onboard the satellite ISO (?, described of view in most cases) to avoid border artifacts and to pro- by)]Cesarsky. The sample consists of a first group of large vide redundancy for spoiled exposures. In all cases, the and regular spirals, mainly barred, and of a second group field of view is large enough to obtain a reliable determi- of spiral galaxies belonging to the Virgo cluster. The an- nation of the background level, except for NGC 4736 and gular resolution of 1000 (HPBW), combined with spec- 6744. NGC 5457, the largest spiral in the sample with an ≈ troscopic information from the same instrument, enables optical size of nearly 300, was imaged with a combination a detailed view of the variations of two dust phases (?, of two overlapping observations made during different rev- unidentified infrared band carriers and very small grains, olutions of the satellite. The pixel size is either 300 or 600, Send offprint requests to: H. Roussel (e-mail: [email protected]) depending on the galaxy size, but for Virgo galaxies it ? Based on observations with ISO, an ESA project with in- was always 600, in order to increase the signal to noise ra- struments funded by ESA Member States (especially the PI tio. The half-power/half-maximum diameters of the point countries: France, Germany, the Netherlands and the United spread function are respectively 6:800/ 3:100 at 7 µmwith ' Kingdom) and with the participation of ISAS and NASA. a300 pixel size, 9:500/5:700 at 7 µmwitha600 pixel size, 2 H. Roussel et al.: An atlas of mid-infrared dust emission in spiral galaxies 9:600/3:500 at 15 µmwitha300 pixel size and 14:200/6:100 at 3 – The removal of cosmic ray impacts is complicated by 15 µmwitha600 pixel size. Table 1 summarizes the rele- the long-duration memory effects they can produce. The vant information regarding the observations. arrival of an energetic cosmic ray may be followed by ei- To estimate the relative importance of different emit- ther a slowly decreasing tail or a responsivity drop, as ting species in different galactic regions, spectral imaging explained above. The vast majority of glitches are, how- between 5 and 16 µm of the inner disks of five bright galax- ever, of short duration (one to three exposures) and can ies was also carried out. These observations are essential be rejected by median filtering. To also remove small tails to interpret broadband imaging results. They consist of and plateaus induced by glitch pile-up, the exposures im- one pointing with two circular variable filters, from 16.5 mediately surrounding exposures flagged by the deglitcher to 9 µm and from 9.6 to 5 µm, with a spectral resolution were examined and their flux level compared with that of λ/∆λ(FWHM) = 35 to 50. The sampling varies between adjacent non-flagged exposures, i.e. we iterated the me- 0.24 and 0.45 of ∆λ(FWHM). dian filtering once after rejecting the cosmic ray peaks. This filtering cannot blindly be applied everywhere. First, at a step between a faint and a bright illumination level 3. Data analysis and vice-versa, some real signal variation may be masked 3.1. Broadband filter maps by the deglitcher. Therefore, the signal in the first and last exposures for each sky position was compared with that Data reduction was performed using and adapting the in the neighboring exposures for the same sky position, ISOCAM Interactive Analysis package (CIA). The main and flags cancelled if necessary. Second, during a point- difficulty and source of uncertainty is the slow time re- ing on a bright peaked source such as galactic circumnu- sponse of the detector, which is typical of cold photo- clear regions, the noise includes, in addition to the readout conductors. Below 20 K, the mobility of carriers becomes and photon noises, high amplitude fluctuations which are very slow, which generates long time constants, both in approximately proportional to the signal and due to the the bulk of the photoconductor and at contact electrodes. satellite jitter. For the purpose of glitch detection, an ad- The typical time spent per pointing is 40–100 s whereas ≈ ditional noise component proportional to the signal was in general several hundred seconds are needed to reach thus tuned to reproduce the jitter effects, and for very stabilization within 10% of the flux step. bright sources, defined by a flux threshold set above the Several causes of memory effects can be distinguished, background, fluctuations of 20% around the median flux although they always involve the same physics of the de- were allowed. The memory effects following some glitches, tector. We will use different designations for convenience: for which no model exists, are temporarily set aside and – (short-term) transients: they are due to the slow stabi- examined at step 6. lization following a flux step (either upward or downward), 4 – Short-term transients are corrected for by using the after moving from one sky position to another; they are latest available technique taking into account the detector the origin of remnant images seen after observing a bright characteristics (Coulais & Abergel 2000). The parameters source. of the model have been determined in low and uniform – long-term transients: drifts and oscillations visible dur- illumination cases only, but are likely to vary with signal ing the whole observation and influenced by previous his- intensity and are inexact in the presence of strong spa- tory; contrary to short-term transients, no model exists to tial gradients. Indeed, when switching from a moderate correct for them. flux level to a bright resolved source, the correction hardly – glitch tails: slow return to the sky flux level following modifies the data. After a large amplitude flux step, the the deposition of energy in the detector by intense cosmic stabilization is, however, faster, and thus the last expo- rays (this is an unpredictable effect). sures are likely closer to the real flux than in the case of – responsivity drops: they also follow cosmic ray impacts small flux steps. The readout histories of pixels imaging and produce “holes” which can last more than one hun- galactic nuclei or extranuclear bright complexes were care- dred exposures (this is again an unpredictable effect). fully examined after step 7 to check whether the computed The data reduction proceeded in the following way: flux level was consistent with the level expected from the 1 – The subtraction of the dark current follows a model last valid exposures; if not, it was replaced with the mean which predicts its time evolution for even and odd rows of signal in the last part of the readout history that was ap- the detector.
Recommended publications
  • Near-Infrared Luminosity Relations and Dust Colors L
    A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5).
    [Show full text]
  • A Survey of HC3N in Extragalactic Sources Is HC3N a Tracer of Activity in Ulirgs? Lindberg, J
    University of Groningen A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? Lindberg, J. E.; Aalto, S.; Costagliola, F.; Perez Beaupuits, Juan; Monje, R.; Muller, S. Published in: Astronomy & astrophysics DOI: 10.1051/0004-6361/201015565 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lindberg, J. E., Aalto, S., Costagliola, F., Perez Beaupuits, J., Monje, R., & Muller, S. (2011). A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? Astronomy & astrophysics, 527, [A150]. https://doi.org/10.1051/0004-6361/201015565 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 A&A 527, A150 (2011) Astronomy DOI: 10.1051/0004-6361/201015565 & c ESO 2011 Astrophysics AsurveyofHC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? J.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • N6l0-Aistralian Observatory
    ^^—^^r N6L0-AISTRALIAN OBSERVATORY GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 V.D. Pence and C.P. BlackMn AAO PP 194 * Suonitted to: Mon.Not.R.astr.Soc. Distribution date: February, 1984 P.O. BOX 296. EPPING. N.S.W.. 2121 PHONE 868-1666. TELEX ASTRO 26230 „. *u~ - .*.SÄ._TNW. - Afto-<?(*-- ^M GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 W.D.Pence. Anglo-Australian Observatory. P.O. Box 296. Epplng. NSW. Australia. C.P.Blactanan. Department of Astronomy. Edinburgh University. Received t SUMMAKT - The gas velocity fields in the barred spiral galaxies NGC 7496 and 289 have been measured by means of long-slit spectra obtained with the Anglo-Australian Telescope. Pronounced deviations fro« circular motion of the type predicted by recent theoretical mooels are seen in NGC 74961 the isovelocity contours are distorted into a characteristic S-shaped pattern and there is a large velocity gradient across the bar. The velocity field is virtually identical to that of a previously observed barred spiral, NGC 5383 for which a number of models have been published. The nuclear [OUI] emission lines are very asymmetric with a wing extending to about 1000 km s-1 to the blue of the systemic velocity; this wing is only faintly seen in the Balmer lines. NGC 289 has a much smaller bar *nd consequently the noncircular motions are less pronounced. The most obvious effect is that the Xinematic major and minor axes are not perpendicular which is a signature of oval distortions. Both galaxies have a mass (within the 10 outermost velocity measurement) of 9 x iO M0 and M/Lß » 6.
    [Show full text]
  • Southern Arp - AM # Order
    Southern Arp - AM # Order A B C D E F G H I J 1 AM # Constellation Object Name RA DEC Mag. Size Uranom. Uranom. Millenium 2 1st Ed. 2nd Ed. 3 AM 0003-414 Phoenix ESO 293-G034 00h06m19.9s -41d30m00s 13.7 3.2 x 1.0 386 177 430 Vol I 4 AM 0006-340 Sculptor NGC 10 00h08m34.5s -33d51m30s 13.3 2.4 x 1.2 350 159 410 Vol I 5 AM 0007-251 Sculptor NGC 24 00h09m56.5s -24d57m47s 12.4 5.8 x 1.3 305 141 366 Vol I 6 AM 0011-232 Cetus NGC 45 00h14m04.0s -23d10m55s 11.6 8.5 x 5.9 305 141 366 Vol I 7 AM 0027-333 Sculptor NGC 134 00h30m22.0s -33d14m39s 11.4 8.5 x 2.0 351 159 409 Vol I 8 AM 0029-643 Tucana ESO 079- G003 00h32m02.2s -64d15m12s 12.6 2.7 x 0.4 440 204 409 Vol I 9 AM 0031-280B Sculptor NGC 150 00h34m15.5s -27d48m13s 12 3.9 x 1.9 306 141 387 Vol I 10 AM 0031-320 Sculptor NGC 148 00h34m15.5s -31d47m10s 13.3 2 x 0.8 351 159 387 Vol I 11 AM 0033-253 Sculptor IC 1558 00h35m47.1s -25d22m28s 12.6 3.4 x 2.5 306 141 365 Vol I 12 AM 0041-502 Phoenix NGC 238 00h43m25.7s -50d10m58s 13.1 1.9 x 1.6 417 177 449 Vol I 13 AM 0045-314 Sculptor NGC 254 00h47m27.6s -31d25m18s 12.6 2.5 x 1.5 351 176 386 Vol I 14 AM 0050-312 Sculptor NGC 289 00h52m42.3s -31d12m21s 11.7 5.1 x 3.6 351 176 386 Vol I 15 AM 0052-375 Sculptor NGC 300 00h54m53.5s -37d41m04s 9 22 x 16 351 176 408 Vol I 16 AM 0106-803 Hydrus ESO 013- G012 01h07m02.2s -80d18m28s 13.6 2.8 x 0.9 460 214 509 Vol I 17 AM 0105-471 Phoenix IC 1625 01h07m42.6s -46d54m27s 12.9 1.7 x 1.2 387 191 448 Vol I 18 AM 0108-302 Sculptor NGC 418 01h10m35.6s -30d13m17s 13.1 2 x 1.7 352 176 385 Vol I 19 AM 0110-583 Hydrus NGC
    [Show full text]
  • Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS Imaging and STIS Spectroscopy
    Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS imaging and STIS Spectroscopy.1 M. A. Hughes1, D. Axon11, J. Atkinson1, A. Alonso-Herrero2, C. Scarlata7, A. Marconi4, D. Batcheldor1, J. Binney6, A. Capetti5, C. M. Carollo7, L. Dressel3, J. Gerssen12, D. Macchetto3, W. Maciejewski4,10, M. Merrifield8, M. Ruiz1, W. Sparks3, M. Stiavelli3, Z. Tsvetanov9, ABSTRACT We investigate the central regions of 23 spiral galaxies using archival NICMOS imag- ing and STIS spectroscopy. The sample is taken from our program to determine the masses of central massive black holes (MBH) in 54 nearby spiral galaxies. Stars are likely to contribute significantly to any dynamical central mass concentration that we find in our MBH program and this paper is part of a series to investigate the nuclear properties of these galaxies. We use the Nuker law to fit surface brightness profiles, derived from the NICMOS images, to look for nuclear star clusters and find possible extended sources in 3 of the 23 galaxies studied (13 per cent). The fact that this fraction is lower than that inferred from optical Hubble Space Telescope studies is probably due to the greater spatial resolution of those studies. Using R-H and J-H colors and equiv- alent widths of Hα emission (from the STIS spectra) we investigate the nature of the stellar population with evolutionary models. Under the assumption of hot stars ionizing the gas, as opposed to a weak AGN, we find that there are young stellar populations (∼10–20 Myr) however these data do not allow us to determine what percentage of the 1Centre for Astrophysical Research, STRI, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • [C II] Emission and Star Formation in Late-Type Galaxies. II a Model
    Astronomy & Astrophysics manuscript no. dpierini˙paper October 30, 2018 (DOI: will be inserted by hand later) [C II] emission and star formation in late-type galaxies. II A model ⋆ D. Pierini1,2, K.J. Leech3, and H.J. V¨olk4 1 Ritter Astrophysical Research Center, The University of Toledo, Toledo, OH 43606 2 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching e-mail: [email protected] 3 ISO Data Centre, Astrophysics Division, ESA Space Science Dept., P.O. Box 50727 Madrid e-mail: [email protected] 4 Max-Planck-Institut f¨ur Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg e-mail: [email protected] Received ..., 2001; accepted ..., 2002 Abstract. We study the relationship between gas cooling via the [C II] (λ = 158 µm) line emission and dust cooling via the far-IR continuum emission on the global scale of a galaxy in normal (i.e. non-AGN dominated and non- starburst) late-type systems. It is known that the luminosity ratio of total gas and dust cooling, LC II/LFIR, shows a non-linear behaviour with the equivalent width of the Hα (λ = 6563 A)˚ line emission, the ratio decreasing in galaxies of lower massive star-formation activity. This result holds despite the fact that known individual Galactic and extragalactic sources of the [C II] line emission show different [C II] line-to-far-IR continuum emission ratios. This non-linear behaviour is reproduced by a simple quantitative model of gas and dust heating from different stellar populations, assuming that the photoelectric effect on dust, induced by far-UV photons, is the dominant mechanism of gas heating in the general diffuse interstellar medium of the galaxies under investigation.
    [Show full text]
  • SPIRIT Target Lists
    JANUARY and FEBRUARY deep sky objects JANUARY FEBRUARY OBJECT RA (2000) DECL (2000) OBJECT RA (2000) DECL (2000) Category 1 (west of meridian) Category 1 (west of meridian) NGC 1532 04h 12m 04s -32° 52' 23" NGC 1792 05h 05m 14s -37° 58' 47" NGC 1566 04h 20m 00s -54° 56' 18" NGC 1532 04h 12m 04s -32° 52' 23" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1672 04h 45m 43s -59° 14' 52" NGC 1313 03h 18m 16s -66° 29' 43" NGC 1313 03h 18m 15s -66° 29' 51" NGC 1365 03h 33m 37s -36° 08' 27" NGC 1566 04h 20m 01s -54° 56' 14" NGC 1097 02h 46m 19s -30° 16' 32" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1232 03h 09m 45s -20° 34' 45" NGC 1433 03h 42m 01s -47° 13' 19" NGC 1068 02h 42m 40s -00° 00' 48" NGC 1792 05h 05m 14s -37° 58' 47" NGC 300 00h 54m 54s -37° 40' 57" NGC 2217 06h 21m 40s -27° 14' 03" Category 1 (east of meridian) Category 1 (east of meridian) NGC 1637 04h 41m 28s -02° 51' 28" NGC 2442 07h 36m 24s -69° 31' 50" NGC 1808 05h 07m 42s -37° 30' 48" NGC 2280 06h 44m 49s -27° 38' 20" NGC 1792 05h 05m 14s -37° 58' 47" NGC 2292 06h 47m 39s -26° 44' 47" NGC 1617 04h 31m 40s -54° 36' 07" NGC 2325 07h 02m 40s -28° 41' 52" NGC 1672 04h 45m 43s -59° 14' 52" NGC 3059 09h 50m 08s -73° 55' 17" NGC 1964 05h 33m 22s -21° 56' 43" NGC 2559 08h 17m 06s -27° 27' 25" NGC 2196 06h 12m 10s -21° 48' 22" NGC 2566 08h 18m 46s -25° 30' 02" NGC 2217 06h 21m 40s -27° 14' 03" NGC 2613 08h 33m 23s -22° 58' 22" NGC 2442 07h 36m 20s -69° 31' 29" Category 2 Category 2 M 42 05h 35m 17s -05° 23' 25" M 42 05h 35m 17s -05° 23' 25" NGC 2070 05h 38m 38s -69° 05' 39" NGC 2070 05h 38m 38s -69°
    [Show full text]
  • ARRAKIS: Atlas of Resonance Rings As Known in The
    Astronomy & Astrophysics manuscript no. arrakis˙v12 c ESO 2018 September 28, 2018 ARRAKIS: atlas of resonance rings as known in the S4G⋆,⋆⋆ S. Comer´on1,2,3, H. Salo1, E. Laurikainen1,2, J. H. Knapen4,5, R. J. Buta6, M. Herrera-Endoqui1, J. Laine1, B. W. Holwerda7, K. Sheth8, M. W. Regan9, J. L. Hinz10, J. C. Mu˜noz-Mateos11, A. Gil de Paz12, K. Men´endez-Delmestre13 , M. Seibert14, T. Mizusawa8,15, T. Kim8,11,14,16, S. Erroz-Ferrer4,5, D. A. Gadotti10, E. Athanassoula17, A. Bosma17, and L.C.Ho14,18 1 University of Oulu, Astronomy Division, Department of Physics, P.O. Box 3000, FIN-90014, Finland e-mail: [email protected] 2 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie 20, FI-21500, Piikki¨o, Finland 3 Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea 4 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 5 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain 6 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 7 European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noorwijk, the Netherlands 8 National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Space Telescope Science Institute, 3700 San Antonio Drive, Baltimore, MD 21218, USA 10 European Southern Observatory, Casilla 19001, Santiago 19, Chile 11 MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 12 Departamento de Astrof´ısica,
    [Show full text]
  • Nuclear Activity in Circumnuclear Ring Galaxies
    International Journal of Astronomy and Astrophysics, 2016, 6, 219-235 Published Online September 2016 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2016.63018 Nuclear Activity in Circumnuclear Ring Galaxies María P. Agüero1, Rubén J. Díaz2,3, Horacio Dottori4 1Observatorio Astronómico de Córdoba, UNCand CONICET, Córdoba, Argentina 2ICATE, CONICET, San Juan, Argentina 3Gemini Observatory, La Serena, Chile 4Instituto de Física, UFRGS, Porto Alegre, Brazil Received 23 May 2016; accepted 26 July 2016; published 29 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs), compiled from published data. From the properties of this sample a typical circumnuclear ring can be characterized as having a median radius of 0.7 kpc (mean 0.8 kpc, rms 0.4 kpc), located at a spiral Sa/Sb galaxy (75% of the hosts), with a bar (44% weak, 37% strong bars). The sample includes 73 emission line rings, 12 dust rings and 9 stellar rings. The sample was compared with a carefully matched control sample of galaxies with very similar global properties but without detected circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: 1) bright companion galaxies seem
    [Show full text]