Architecture and Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quadratic Approximation at a Stationary Point Let F(X, Y) Be a Given
Multivariable Calculus Grinshpan Quadratic approximation at a stationary point Let f(x; y) be a given function and let (x0; y0) be a point in its domain. Under proper differentiability conditions one has f(x; y) = f(x0; y0) + fx(x0; y0)(x − x0) + fy(x0; y0)(y − y0) 1 2 1 2 + 2 fxx(x0; y0)(x − x0) + fxy(x0; y0)(x − x0)(y − y0) + 2 fyy(x0; y0)(y − y0) + higher−order terms: Let (x0; y0) be a stationary (critical) point of f: fx(x0; y0) = fy(x0; y0) = 0. Then 2 2 f(x; y) = f(x0; y0) + A(x − x0) + 2B(x − x0)(y − y0) + C(y − y0) + higher−order terms, 1 1 1 1 where A = 2 fxx(x0; y0);B = 2 fxy(x0; y0) = 2 fyx(x0; y0), and C = 2 fyy(x0; y0). Assume for simplicity that (x0; y0) = (0; 0) and f(0; 0) = 0. [ This can always be achieved by translation: f~(x; y) = f(x0 + x; y0 + y) − f(x0; y0). ] Then f(x; y) = Ax2 + 2Bxy + Cy2 + higher−order terms. Thus, provided A, B, C are not all zero, the graph of f near (0; 0) resembles the quadric surface z = Ax2 + 2Bxy + Cy2: Generically, this quadric surface is either an elliptic or a hyperbolic paraboloid. We distinguish three scenarios: * Elliptic paraboloid opening up, (0; 0) is a point of local minimum. * Elliptic paraboloid opening down, (0; 0) is a point of local maximum. * Hyperbolic paraboloid, (0; 0) is a saddle point. It should certainly be possible to tell which case we are dealing with by looking at the coefficients A, B, and C, and this is the idea behind the Second Partials Test. -
Chapter 11. Three Dimensional Analytic Geometry and Vectors
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1. -
Calculus & Analytic Geometry
TQS 126 Spring 2008 Quinn Calculus & Analytic Geometry III Quadratic Equations in 3-D Match each function to its graph 1. 9x2 + 36y2 +4z2 = 36 2. 4x2 +9y2 4z2 =0 − 3. 36x2 +9y2 4z2 = 36 − 4. 4x2 9y2 4z2 = 36 − − 5. 9x2 +4y2 6z =0 − 6. 9x2 4y2 6z =0 − − 7. 4x2 + y2 +4z2 4y 4z +36=0 − − 8. 4x2 + y2 +4z2 4y 4z 36=0 − − − cone • ellipsoid • elliptic paraboloid • hyperbolic paraboloid • hyperboloid of one sheet • hyperboloid of two sheets 24 TQS 126 Spring 2008 Quinn Calculus & Analytic Geometry III Parametric Equations (§10.1) and Vector Functions (§13.1) Definition. If x and y are given as continuous function x = f(t) y = g(t) over an interval of t-values, then the set of points (x, y)=(f(t),g(t)) defined by these equation is a parametric curve (sometimes called aplane curve). The equations are parametric equations for the curve. Often we think of parametric curves as describing the movement of a particle in a plane over time. Examples. x = 2cos t x = et 0 t π 1 t e y = 3sin t ≤ ≤ y = ln t ≤ ≤ Can we find parameterizations of known curves? the line segment circle x2 + y2 =1 from (1, 3) to (5, 1) Why restrict ourselves to only moving through planes? Why not space? And why not use our nifty vector notation? 25 Definition. If x, y, and z are given as continuous functions x = f(t) y = g(t) z = h(t) over an interval of t-values, then the set of points (x,y,z)= (f(t),g(t), h(t)) defined by these equation is a parametric curve (sometimes called a space curve). -
Los Jardines De Gaudi
CHAPTERELEVEN Los Jardines de Gaudi Juan Bassegoda Nonell El estudio y la conservaci6n de los los maestros capaces de imprimir jardines hist6ricos, y concretamente de nuevas formas al arte de la los jardines islamicos,exige también el construcci6n. conocimiento de aquellas reaiizacï6nes Formado en la Escuela de que sin ser expecfficamente isl.imicas, Arquitecturae Barcelona que dirigfa en el tiempo o en el estilo, ofrecen Don Elfas Rogent Amat (1821-1897), ocasi6n de comprobar la influefilcia y tuvo ocasi6n de conocer los estudios la proyecci6n de una manera de trazar sobre la Alhambra granadina en el jardines que si bien tuvo su origen en libro de Owen Jones2 yen las la expansi6n arabiga hacia Asia. numerosas fotograffas de monumentos Africa y Europa a partir del siglo VIl isl~icos que la Escuela adquiri6 se perpetu6 luego en una caracterfstica siendo Gaudf estudiante. escuela que ha conocido sucesivos Es evidente que la arquitectuta rehacimientos en époCasdiversas. gaudiniana Conoci6 una marcada y Uno de loS momentos en que tai dominante influencia neoislamica en sucedi6 tue durante el eclecticismo sus inicios. La casa Vicens en Gr~cia europeo del siglo pasado y (1883-1888) el Capricho de Comillas concretamente en Catalufia en tiempoS (Santander) (1883-1885), el Pabel16n del modernismo y de su inmediato de la Compaiiia Trasatlantica en la antecesor el neomudéjar. Exposici6n Universal de Barcelona Ya Luis Domènech y Montaner (1888). los Pabellones Güell de (1850-1923) sefiai6 en 1878 en su Pedralbes en Sarrià (1882-1887). son estudio "En busca de una arquite,ctura muestras de esta clarfsima tendencia nacionai Il , la importancia de la rafz isl~ica. -
Structural Forms 1
Key principles The hyperboloid of revolution is a Surface and may be generated by revolving a Hyperbola about its conjugate axis. The outline of the elevation will be a Hyperbola. When the conjugate axis is vertical all horizontal sections are circles. The horizontal section at the mid point of the conjugate axis is known as the Throat. The diagram shows the incomplete construction for drawing a hyperbola in a rectangle. (a) Draw the outline of the both branches of the double hyperbola in the rectangle. The diagram shows the incomplete Elevation of a hyperboloid of revolution. (a) Determine the position of the throat circle in elevation. (b) Draw the outline of the both branches of the double hyperbola in elevation. DESIGN & COMMUNICATION GRAPHICS Structural forms 1 NAME: ______________________________ DATE: _____________ The diagram shows the plan and incomplete elevation of an object based on the hyperboloid of revolution. The focal points and transverse axis of the hyperbola are also shown. (a) Using the given information draw the outline of the elevation.. F The diagram shows the axis, focal points and transverse axis of a double hyperbola. (a) Draw the outline of both branches of the double hyperbola. (b) The difference between the focal distances for any point on a double hyperbola is constant and equal to the length of the transverse axis. (c) Indicate this principle on the drawing below. DESIGN & COMMUNICATION GRAPHICS Structural forms 2 NAME: ______________________________ DATE: _____________ Key principles The diagram shows the plan and incomplete elevation of a hyperboloid of revolution. The hyperboloid of revolution may also be generated by revolving one skew line about another. -
Quadric Surfaces
Quadric Surfaces Six basic types of quadric surfaces: • ellipsoid • cone • elliptic paraboloid • hyperboloid of one sheet • hyperboloid of two sheets • hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface, describe the traces of the surface in x = k, y = k, and z = k. Then pick the term from the list above which seems to most accurately describe the surface (we haven't learned any of these terms yet, but you should be able to make a good educated guess), and pick the correct picture of the surface. x2 y2 (a) − = z. 9 16 1 • Traces in x = k: parabolas • Traces in y = k: parabolas • Traces in z = k: hyperbolas (possibly a pair of lines) y2 k2 Solution. The trace in x = k of the surface is z = − 16 + 9 , which is a downward-opening parabola. x2 k2 The trace in y = k of the surface is z = 9 − 16 , which is an upward-opening parabola. x2 y2 The trace in z = k of the surface is 9 − 16 = k, which is a hyperbola if k 6= 0 and a pair of lines (a degenerate hyperbola) if k = 0. This surface is called a hyperbolic paraboloid , and it looks like picture (E) . It is also sometimes called a saddle. x2 y2 z2 (b) + + = 1. 4 25 9 • Traces in x = k: ellipses (possibly a point) or nothing • Traces in y = k: ellipses (possibly a point) or nothing • Traces in z = k: ellipses (possibly a point) or nothing y2 z2 k2 k2 Solution. The trace in x = k of the surface is 25 + 9 = 1− 4 . -
(Anti-)De Sitter Space-Time
Geometry of (Anti-)De Sitter space-time Author: Ricard Monge Calvo. Facultat de F´ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Dr. Jaume Garriga Abstract: This work is an introduction to the De Sitter and Anti-de Sitter spacetimes, as the maximally symmetric constant curvature spacetimes with positive and negative Ricci curvature scalar R. We discuss their causal properties and the characterization of their geodesics, and look at p;q the spaces embedded in flat R spacetimes with an additional dimension. We conclude that the geodesics in these spaces can be regarded as intersections with planes going through the origin of the embedding space, and comment on the consequences. I. INTRODUCTION In the case of dS4, introducing the coordinates (T; χ, θ; φ) given by: Einstein's general relativity postulates that spacetime T T is a differential (Lorentzian) manifold of dimension 4, X0 = a sinh X~ = a cosh ~n (4) a a whose Ricci curvature tensor is determined by its mass- energy contents, according to the equations: where X~ = X1;X2;X3;X4 and ~n = ( cos χ, sin χ cos θ, sin χ sin θ cos φ, sin χ sin θ sin φ) with T 2 (−∞; 1), 0 ≤ 1 8πG χ ≤ π, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, then the line element Rµλ − Rgµλ + Λgµλ = 4 Tµλ (1) 2 c is: where Rµλ is the Ricci curvature tensor, R te Ricci scalar T ds2 = −dT 2 + a2 cosh2 [dχ2 + sin2 χ dΩ2] (5) curvature, gµλ the metric tensor, Λ the cosmological con- a 2 stant, G the universal gravitational constant, c the speed of light in vacuum and Tµλ the energy-momentum ten- where the surfaces of constant time dT = 0 have metric 2 2 2 2 sor. -
Surfaces in 3-Space
Differential Geometry of Some SURFACES IN 3-SPACE Nicholas Wheeler December 2015 Introduction. Recent correspondence with Ahmed Sebbar concerning the theory of unimodular 3 3 circulant matrices1 × x y z det z x y = x3 + y3 + z3 3xyz = 1 y z x − brought to my attention a surface Σ in R3 which, I was informed, is encountered in work of H. Jonas (1915, 1921) and, because of its form when plotted, is known as “Jonas’ hexenhut” (witch’s hat). I was led by Google from “hexenhut” to a monograph B¨acklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, by C. Rogers & W. K. Schief (2002). These are subjects in which I have had longstanding interest, but which I have not thought about for many years. I am inspired by those authors’ splendid book to revisit this subject area. In part one I assemble the tools that play essential roles in the theory of surfaces in R3, and in part two use those tools to develop the properties of some specific surfaces—particularly the pseudosphere, because it was the cradle in which was born the sine-Gordon equation, which a century later became central to the physical theory of solitons.2 part one Concepts & Tools Essential to the Theory of Surfaces in 3-Space Fundamental forms. Relative to a Cartesian frame in R3, surfaces Σ can be described implicitly f(x, y, z) = 0 but for the purposes of differential geometry must be described parametrically x(u, v) r(u, v) = y(u, v) z(u, v) 1 See “Simplest generalization of Pell’s Problem,” (September, 2015). -
Gaudí Y La Arquitectura Orgánica Llaa Mmejorejor Mmaestraaestra
ambienta Junio 2002 LaLa NaturalezaNaturaleza enen laslas artesartes Gaudí y la arquitectura orgánica LLaa mmejorejor mmaestraaestra ■ El dragón del Park Güell es el soporte de una fuente y representa al guardián de las aguas subterráneas. Foto: Xavier Gómez Roig. Cover. 41 ambienta Junio 2002 LaLa NaturalezaNaturaleza enen laslas artesartes ■ Pasear por el Park Güell y recorrer sus innumerables recovecos ayuda a penetrar en el mundo imaginativo de Gaudí. Foto: J. Caballero. a Texto: M del Mar Merino A ntonio Gaudí supo observar y apren- der del entorno natural que le rodea- ba. Los árboles y el mar Mediterráneo, las montañas, las flores y los animales Durante este año 2002, se celebra el Año fueron una importante fuente de ins- piración tanto en la decoración como Internacional Gaudí, al conmemorarse el 150 en las estructuras de sus edificios. Las referencias botánicas y animales que aniversario del nacimiento del genial arquitecto. pueblan sus obras forman parte de un Exposiciones, conferencias, congresos, rutas “crescendo” creativo que culminará con sus trabajos de madurez —La Ca- turísticas por los emblemáticos espacios sa Batlló, la Casa Milá, La Cripta de la gaudinianos..., una excelente oportunidad para Colonia Güell, la Sagrada Familia...—, en los que consiguió una identificación disfrutar de su excepcional legado arquitectónico. perfecta entre arquitectura y naturale- za. Alejado de los postulados histori- Es un medio para conocer mejor a este artista cistas y eclécticos de sus primeros original y único que traspasó los límites del años, Gaudí se adelantó a su tiempo al conseguir una verdadera arquitec- Modernismo con una obra mucho más expresiva tura orgánica. -
Lecture 5: Illuminated Space
Osher Lifelong Learning Institute Carnegie Mellon University The Architecture of Antoni Gaudí Summer Session 2020 (Online Zoom) Matthew Schlueb, Instructor Lecture 5: Illuminated Space (2020.07.27) leitmotif: Illuminated Space: Study of light, angle of incidence and orientation, over daily and seasonal cycles; chiaroscuro contrast of light and shadow; dimensional form, casting shadow in light, shade gradations; nuanced renderings of varied materials and textures; layering fenestration and envelop filtering light; repetitive light and dark rhythms; play of light incidences scattering off fragmented facets; candlelight flame mobility of life; complimentary projections and recesses; concentrations of form modulating light within density of space; hyperboloids dispersing and softening light; creating an intimacy of subdued space. “Architecture is the main plastic art; all of its excellence comes from light. Architecture is the organization of light, sculpture is the play of light, painting is the reproduction of light through color, which is the decomposition of light.” manifesto: Casa Batlló (1904-06): Staircase light well, inverted sea, reflectivity and brightening hue of ceramic tiles drawing light downward, through openings of increasing size, to balance natural light within interior spaces, modulating light with color. “When people see a pale person, they say that he looks like a walking corpse. On the other hand, when they see a corpse that still has color, they say it seems to be still alive. And the fact is that all living beings have color, color is inherent in life and life is the essential quality of a work of art.” parti pris: Vidre de Colors: Colored glass, stained glass three color process, four layers of colored plate glass (yellow, red, blue, and white), to distribute light properly, each toned down with acid, to predominate balance of other colors, blending into infinite hues, adjusting intensity, clarity and vibrancy of tone, liberating light from opacity of painted enamels, choking out light. -
Chapter 3 Quadratic Curves, Quadric Surfaces
Chapter 3 Quadratic curves, quadric surfaces In this chapter we begin our study of curved surfaces. We focus on the quadric surfaces. To do this, we also need to look at quadratic curves, such as ellipses. We discuss: Equations and parametric descriptions of the plane quadratic curves: circles, ellipses, ² hyperbolas and parabolas. Equations and parametric descriptions of quadric surfaces, the 2{dimensional ana- ² logues of quadratic curves. We also discuss aspects of matrices, since they are relevant for our discussion. 3.1 Plane quadratic curves 3.1.1 From linear to quadratic equations Lines in the plane R2 are represented by linear equations and linear parametric descriptions. Degree 2 equations also correspond to curves you undoubtedly have come across before: circles, ellipses, hyperbolas and parabolas. This section is devoted to these curves. They will reoccur when we consider quadric surfaces, a class of fascinating shapes, since the intersection of a quadric surface with a plane consists of a quadratic curve. Lines di®er from quadratic curves in various respects, one of which is that all lines look the same (only their position in the plane may di®er), but that quadratic curves may truely di®er in shape. 3.1.2 The general equation of a quadratic curve The general equation of a line in R2 is ax + by = c. When we also allow terms of degree 2 in the variables x and y, i.e., x2, xy and y2, we obtain quadratic equations like x2 + y2 = 1, a circle. ² x2 + 2x + y = 3, a parabola; probably you recognize it as such if it is rewritten in the ² form y = 3 x2 2x or y = (x + 1)2 + 4. -
Antonio Gaudí Precursor De La Sostenibilidad En La Arquitectura
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA Antonio Gaudí precursor de la sostenibilidad en la arquitectura TESIS DOCTORAL Carlos Salas Mirat INGENIERO DE EDIFICACIÓN MÁSTER EN CONSTRUCCIÓN Y TECNOLOGÍA ARQUITECTÓNICAS AÑO 2018 DEPARTAMENTO DE CONSTRUCCIÓN Y TECNOLOGÍA ARQUITECTÓNICAS ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA Antonio Gaudí precursor de la sostenibilidad en la arquitectura Autor: Carlos Salas Mirat INGENIERO DE EDIFICACIÓN MÁSTER EN CONSTRUCCIÓN Y TECNOLOGÍA ARQUITECTÓNICAS Directores: César Bedoya Frutos DR. ARQUITECTO CATEDRÁTICO DE UNIVERSIDAD Josep Adell-Argilés DR. ARQUITECTO CATEDRÁTICO DE UNIVERSIDAD AÑO 2018 Tribunal nombrado por el Sr. Rector Magfco. de la Universidad Politécnica de Madrid, el día...............de.............................de 20.... Presidente: Vocal: Vocal: Vocal: Secretario: Suplente: Suplente: Realizado el acto de defensa y lectura de la Tesis el día..........de........................de 20… en la E.T.S.I. /Facultad.................................................... Calificación ........................................................ EL PRESIDENTE LOS VOCALES EL SECRETARIO A mi mujer Esther, por su cariño y apoyo incondicionales. Antonio Gaudí, precursor de la sostenibilidad en la arquitectura Índice Capítulo 0. RESUMEN - ABSTRACT Capítulo 1. INTRODUCCIÓN 1.1. Objetivos 9 1.2. Breve acercamiento a la vida y obra de Antonio Gaudí 11 1.3. La arquitectura de Gaudí en su contexto histórico 17 Capítulo 2. ESTADO DEL ARTE 2.1. Origen y evolución de la sostenibilidad 23 2.2. Sostenibilidad en la arquitectura 29 2.3. Calidad del diseño y desarrollo sostenible 39 2.4. El diseño bioclimático como fundamento de la arquitectura sostenible 43 2.5. Ética y sostenibilidad 49 Capítulo 3. NATURALEZA Y SOSTENIBILIDAD 3.1. La naturaleza como modelo de sostenibilidad 53 3.2. La arquitectura biomimética 59 3.3.