Characterization and Role of Major Deep-Sea Pennatulacean Corals in the Bathyal Zone of Eastern Canada

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Role of Major Deep-Sea Pennatulacean Corals in the Bathyal Zone of Eastern Canada Characterization and role of major deep-sea pennatulacean corals in the bathyal zone of Eastern Canada by ©Sandrine Baillon A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Ocean Sciences and Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada October 2014 i A mes parents, ii Abstract Pennatulaceans (Octocorallia: Pennatulacea), commonly called sea pens, are colonial corals that typically anchor themselves into soft sediment (mud, sand), allowing them to colonize large areas of the sea floor from the intertidal zone down to the abyssal plain. Sea pens can occur sparsely or form large aggregations, suggesting that they may provide an important structural habitat to other organisms by increasing the complexity of the muddy seabed. The investigation of the three most common sea pens (Anthoptilum grandiflorum, Halipteris finmarchica and Pennatula aculeata) of the continental slope of Newfoundland and Labrador (Northwest Atlantic) showed different morphologies and adaptations to environmental parameters. Variations in their morphology were visible along bathymetric and latitudinal gradients, following food availability. This study identified different feeding strategies according to stable isotope signatures and macromorphologies (polyp diameter, colony length, shape). Different defense strategies were also identified based on the presence and localisation of sclerites in the tissues. Reproductive strategies were determined for A. grandiflorum and H. finmarchica, with both species presenting a seasonal spawning between April (Southern Newfoundland) and July/August (Labrador). The latitudinal shift in spawning followed the development of the surface phytoplankton bloom (i.e. sinking of phytodetritus). Low fecundity at the polyp level (13 and 6 oocytes polyp-1, respectively) yielded similar whole-colony fecundity in the two species (500-6000 oocytes colony-1). The measure of fecundity is discussed to highlight the importance of standardizing metrics (mature oocyte just before spawning) to avoid an overestimation of the fecundity and to allow comparison among iii species. Only ~20% of the oocyte matured in both species. The remaining oocytes in A. grandiflorum disappeared, indicating that oogenesis develops and culminates over 12 months. In H. finmarchica the persistence of the small oocytes indicates protracted oogenesis (>12 months). Finally, an analysis of the associated biodiversity showed that sea pens have relatively few associates but that they play an important role in their life history. Some associates are obligate (e.g. parasitic copepods) and others facultative symbionts (the sea anemone Stephanauge nexilis). The seasonal (April-May) presence of fish larvae (Sebastes spp.) and shrimp larvae (Pandalus borealis, Pasiphae multidentata and Acanthephyra pelagica) emphasize the role of sea pens as nursery habitat, and provides an argument to recognize them as an essential fish habitat. iv Acknowledgements I would like to thank Annie Mercier and Jean-François Hamel for believing in me in 2008 at the beginning of my Masters and then for offering me the opportunity to pursue this Ph.D. Thanks for all your support during these last 6 years. It has been an amazing time with you.Thanks Annie for your availability to discuss the project. Thanks Jean- François for the long hours on the phone which have always been helpful. I also would like to thank all the scientific staff of Fisheries and Oceans Canada and the Canadian Coast Guard for helping us with sampling on board of the CCGS Teleost. Thanks to Vonda Wareham and Kent Gilkinson for access to the samples. Thanks to Iliana Dimitrove and Katrin Zipperlen from the School of Medical Studies for their assistance with histological processing. Thanks to the different students who helped me in the acquisition of the data, especially Matthew English and Christa Spurrell. Thanks to my supervisory committee members, Suzanne Dufour and Igor Eeckhaut, for advice during the last three years. Thanks to the members of my examination committee Gary Williams, Robert Hooper and Iain McGaw for their constructive comments. Thanks to the students in the Mercier Lab (Zhao, David and Katie G.) for your time, discussing about sciences and other topics. Thanks to all the new students (Bruno, Matt, Katie K., Emy, Jess) who have given me breaks in my writing to help in the lab during these last few months. v Thanks to my friends (Emily, Jen, Lindsey, Yannick, Kim and Marie) and roommates (Gen, Laura, Desta) for listening to me and for their understanding during my bad days. Thanks to my family, Vincent, Poy, Luca and Loïc. Last but not least I want to thank my parents for their support during these last 29 years. Nothing would have been possible without you. “Ne crois pas que tu t’es trompé de route quand tu n’es pas allé assez loin” Claude Aveline vi Table of contents Abstract ________________________________________________________ iii Acknowledgements ________________________________________________ v Table of contents ________________________________________________ vii List of tables ____________________________________________________ xi List of figures __________________________________________________ xiii List of appendices ______________________________________________ xviii Co-authorship statement __________________________________________ xx Chapter 1 : General introduction __________________________________ 1-1 1. Corals ________________________________________________________ 1-2 1.1 Coral morphology _____________________________________________________ 1-2 1.2 Reproduction _________________________________________________________ 1-4 2 Cold-water corals _______________________________________________ 1-6 2.1 Overview ____________________________________________________________ 1-6 2.2 Pennatulacean corals ___________________________________________________ 1-7 3. Study areas and focal species _____________________________________ 1-9 4. Objectives and chapter structure ________________________________ 1-10 References _____________________________________________________ 1-13 Figures ________________________________________________________ 1-20 Chapter 2 : Comparative biometry and isotopy of three dominant pennatulacean corals in the Northwest Atlantic _____________________ 2-1 Abstract ________________________________________________________ 2-2 1. Introduction ___________________________________________________ 2-3 2. Material and methods ___________________________________________ 2-7 2.1 Sampling ____________________________________________________________ 2-7 2.2 Biometrics ___________________________________________________________ 2-7 2.2.1 Colonies and polyps ______________________________________________________ 2-7 2.2.2 Sclerites ________________________________________________________________ 2-8 2.3 Isotopic analysis _____________________________________________________ 2-10 2.4 Data analysis ________________________________________________________ 2-11 3. Results ______________________________________________________ 2-12 3.1 Colony metrics ______________________________________________________ 2-12 3.1.1 Colony length, wet weight and weight/length ratio ______________________________ 2-12 3.1.2 Peduncle length _________________________________________________________ 2-15 3.2 Polyp diameter and density _____________________________________________ 2-16 vii 3.3 Sclerite metrics ______________________________________________________ 2-18 3.3.1 Description ____________________________________________________________ 2-18 3.3.2 Influence of colony length, depth and region on sclerite metrics ___________________ 2-20 3.4 Isotopic analysis _____________________________________________________ 2-22 4. Discussion ____________________________________________________ 2-23 4.1 Variations and similarities in macrometrics ________________________________ 2-24 4.2 Diet, trophic level and macrometrics _____________________________________ 2-25 4.3 Spatial and temporal trends in macrometrics _______________________________ 2-27 4.4 Description and role of sclerites _________________________________________ 2-30 4.5 Variations in sclerite metrics ____________________________________________ 2-32 Acknowledgements ______________________________________________ 2-33 References _____________________________________________________ 2-34 Tables _________________________________________________________ 2-42 Figures ________________________________________________________ 2-46 Supplementary materials _________________________________________ 2-56 Chapter 3 : Seasonality in reproduction of the deep-water pennatulacean coral Anthoptilum grandiflorum ______________________________________ 3-1 Abstract ________________________________________________________ 3-2 1. Introduction ___________________________________________________ 3-3 2. Material and methods ___________________________________________ 3-5 2.1 Sampling and handling _________________________________________________ 3-5 2.2 Sample processing _____________________________________________________ 3-7 2.3 Fecundity ____________________________________________________________ 3-7 2.4 Gametogenic stages ____________________________________________________ 3-8 2.5 Maturity stage index and oocyte and spermatocyst size distribution ______________ 3-9 2.6 Data analysis ________________________________________________________
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • End-Permian Mass Extinction in the Oceans: an Ancient Analog for the Twenty-First Century?
    EA40CH05-Payne ARI 23 March 2012 10:24 End-Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty-First Century? Jonathan L. Payne1 and Matthew E. Clapham2 1Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305; email: [email protected] 2Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064; email: [email protected] Annu. Rev. Earth Planet. Sci. 2012. 40:89–111 Keywords First published online as a Review in Advance on ocean acidification, evolution, isotope geochemistry, volcanism, January 3, 2012 biodiversity The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The greatest loss of biodiversity in the history of animal life occurred at the 10.1146/annurev-earth-042711-105329 end of the Permian Period (∼252 million years ago). This biotic catastro- Annu. Rev. Earth Planet. Sci. 2012.40:89-111. Downloaded from www.annualreviews.org Copyright c 2012 by Annual Reviews. phe coincided with an interval of widespread ocean anoxia and the eruption All rights reserved of one of Earth’s largest continental flood basalt provinces, the Siberian by Stanford University - Main Campus Robert Crown Law Library on 06/04/12. For personal use only. 0084-6597/12/0530-0089$20.00 Traps. Volatile release from basaltic magma and sedimentary strata dur- ing emplacement of the Siberian Traps can account for most end-Permian paleontological and geochemical observations. Climate change and, per- haps, destruction of the ozone layer can explain extinctions on land, whereas changes in ocean oxygen levels, CO2, pH, and temperature can account for extinction selectivity across marine animals.
    [Show full text]
  • Phytoplankton: a Significant Trophic Source for Soft Corals?
    Helgol Mar Res (2001) 55:198–211 DOI 10.1007/s101520100075 ORIGINAL ARTICLE Alexander Widdig · Dietrich Schlichter Phytoplankton: a significant trophic source for soft corals? Received: 4 July 2000 / Received in revised form: 17 April 2001 / Accepted: 17 April 2001 / Published online: 20 June 2001 © Springer-Verlag and AWI 2001 Abstract Histological autoradiographs and biochemical variety of mechanisms from different trophic sources. analyses show that 14C-labelled microalgae (diatoms, The polytrophic nature of the anthozoans varies greatly chlorophytes and dinoflagellates) are used by the soft among species with respect to morphology, habitats and coral Dendronephthya sp. Digestion of the algae took availability and diversity of food. The lack of reliable in- place at the point of exit of the pharynx into the coelen- formation on the total food supply and its constituents teron. Ingestion and assimilation of the labelled algae de- for a particular habitat, including interactions of physico- pended on incubation time, cell density, and to a lesser chemical, hydrological and biological factors, limits our extent on species-specificity. 14C incorporation into understanding of the feeding biology of anthozoans. polysaccharides, proteins, lipids and compounds of low Heterotrophy includes the uptake of particulate liv- molecular weight was analysed. The 14C-labelling pat- ing and dead organic matter (POM) and the absorption terns of the four classes of substances varied depending of dissolved organic material (DOM). In zooxanthellate on incubation time and cell density. 14C incorporation species, the phototrophic supply is delivered by endo- was highest into lipids and proteins. Dissolved labelled symbiotic microalgae (zooxanthellae = dinoflagellates algal metabolites, released during incubation into the of the Symbiodinium microadriaticum group; Carlos medium, contributed between 4% and 25% to the total et al.
    [Show full text]
  • Coelenterata: Anthozoa), with Diagnoses of New Taxa
    PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Long-Term Recruitment of Soft-Corals (Octocorallia: Alcyonacea) on Artificial Substrata at Eilat (Red Sea)
    MARINE ECOLOGY - PROGRESS SERIES Vol. 38: 161-167, 1987 Published June 18 Mar. Ecol. Prog. Ser. Long-term recruitment of soft-corals (Octocorallia: Alcyonacea) on artificial substrata at Eilat (Red Sea) Y.Benayahu & Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University, Tel Aviv 69978. Israel ABSTRACT: Recruitment of soft corals (Octocorallia: Alcyonacea) on concrete plates was studied in the reefs of the Nature Reserve of Eilat at depths of 17 to 29 m over 12 yr. Xenia macrospiculata was the pioneering species, appealing on the vast majority of the plates before any other spat. This species remained the most conspicuous inhabitant of the substrata throughout the whole study. Approximately 10 % of the plates were very extensively colonized by X. rnacrospiculata, resembling the percentage of living coverage by the species in the surrounding reef, thus suggesting that during the study X. rnacrospiculata populations reached their maximal potential to capture the newly available substrata. The successive appearance of an additional 11 soft coral species was recorded. The species composition of the recruits and their abundance corresponded with the soft coral community in the natural reef, indicahng that the estabhshed spat were progeny of the local populations. Soft coral recruits utilized the edges and lower surfaces of the plates most successfully, rather than the exposed upper surfaces. Such preferential settling of alcyonaceans allows the spat to escape from unfavourable conditions and maintains their high survival in the established community. INTRODUCTION determine the role played by alcyonaceans in the course of reef colonization and in the reef's space Studies on processes and dynamics of reef benthic allocation.
    [Show full text]
  • Coral Feeding on Microalgae Assessed with Molecular Trophic Markers
    Molecular Ecology (2013) doi: 10.1111/mec.12486 Coral feeding on microalgae assessed with molecular trophic markers MIGUEL C. LEAL,*† CHRISTINE FERRIER-PAGES,‡ RICARDO CALADO,* MEGAN E. THOMPSON,† MARC E. FRISCHER† and JENS C. NEJSTGAARD† *Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal, †Skidaway Institute of Oceanography, 10 Ocean Science Circle, 31411 Savannah, GA, USA, ‡Centre Scientifique de Monaco, Avenue St-Martin, 98000 Monaco, Monaco Abstract Herbivory in corals, especially for symbiotic species, remains controversial. To investi- gate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodo- monas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end-point PCR amplification of algae-specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders.
    [Show full text]
  • Cnidaria, Octocorallia) from the Northern Coast of Egypt
    Egyptian Journal of Aquatic Research (2014) 40, 261–268 HOSTED BY National Institute of Oceanography and Fisheries Egyptian Journal of Aquatic Research http://ees.elsevier.com/ejar www.sciencedirect.com FULL LENGTH ARTICLE Faunistic study of benthic Pennatulacea (Cnidaria, Octocorallia) from the Northern coast of Egypt Khaled Mahmoud Abdelsalam * National Institute of Oceanography and Fisheries, Qayet Bey, El-Anfoushy, Alexandria, Egypt Received 10 June 2014; revised 25 August 2014; accepted 28 August 2014 Available online 11 October 2014 KEYWORDS Abstract Using a trawling net, samples of order Pennatulacea (Sea pens) were collected from the Sea pens; northern coast of Egypt. The current work aims to establish taxonomical data about this distinctive Pennatulacea; group of animals that dwell in the Egyptian Mediterranean waters. The current study presents 3 New record; species namely; Cavernularia pusilla (Philippi, 1835), Pennatula rubra Ellis, 1764, and Pteroeides Northern coast; spinosum (Ellis, 1764). The first one pertains to the family of Veretillidae which belongs to the Egypt suborder Sessiliflorae; while the other two species affiliate to two families (Pennatulidae and Pteroeididae) which belong to the suborder Subselliflorae. The present records are the first from the Egyptian Mediterranean waters. A re-description supplied with full structural illustrations of the recorded species is given. ª 2014 Hosting by Elsevier B.V. on behalf of National Institute of Oceanography and Fisheries. Introduction They are colonial organisms that have a featherlike appear- ance, and are the only octocorals that are adapted to spend Sea pens, or pennatulaceans, are a highly specialized group of their entire life in soft sediments (Edwards and Moore, anthozoan cnidarians.
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Symbionts and Environmental Factors Related to Deep-Sea Coral Size and Health
    Symbionts and environmental factors related to deep-sea coral size and health Erin Malsbury, University of Georgia Mentor: Linda Kuhnz Summer 2018 Keywords: deep-sea coral, epibionts, symbionts, ecology, Sur Ridge, white polyps ABSTRACT We analyzed video footage from a remotely operated vehicle to estimate the size, environmental variation, and epibiont community of three types of deep-sea corals (class Anthozoa) at Sur Ridge off the coast of central California. For all three of the corals, Keratoisis, Isidella tentaculum, and Paragorgia arborea, species type was correlated with the number of epibionts on the coral. Paragorgia arborea had the highest average number of symbionts, followed by Keratoisis. Epibionts were identified to the lowest possible taxonomic level and categorized as predators or commensalists. Around twice as many Keratoisis were found with predators as Isidella tentaculum, while no predators were found on Paragorgia arborea. Corals were also measured from photos and divided into size classes for each type based on natural breaks. The northern sites of the mound supported larger Keratoisis and Isidella tentaculum than the southern portion, but there was no relationship between size and location for Paragorgia arborea. The northern sites of Sur Ridge were also the only place white polyps were found. These polyps were seen mostly on Keratoisis, but were occasionally found on the skeletons of Isidella tentaculum and even Lillipathes, an entirely separate subclass of corals from Keratoisis. Overall, although coral size appears to be impacted by 1 environmental variables and location for Keratoisis and Isidella tentaculum, the presence of symbionts did not appear to correlate with coral size for any of the coral types.
    [Show full text]
  • Two New Records of Dendronephthya Octocorals (Family: Nephtheidae) from Andaman and Nicobar Islands, India
    Indian Journal of Geo Marine Sciences Vol. 48 (03), March 2019, pp. 343-348 Two new records of Dendronephthya octocorals (Family: Nephtheidae) from Andaman and Nicobar Islands, India J.S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3, & R. Sornaraj2 1 Marine Aquarium and Regional Centre, Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, Digha, West Bengal, India 2 Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi, Tamil Nadu, India 3 Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, M Block, New Alipore, Kolkata, India *[E-mail: [email protected]] Received 04 August 2017: revised 23 November 2017 An extensive survey to explore the variety and distribution of octocorals and associated faunal community in and around the Andaman and Nicobar Islands yielded two species (Dendronephthya mucronata and D. savignyi), which is new zoogeographical record in India. The elaborate description, distribution and morphological characters are presented in this paper. The literature reveals that so far 55 species of Dendronephthya octocorals have been recorded from India. [Keywords: Soft corals, Octocorals, Dendronephthya, Carnation corals, Andaman and Nicobar islands] Introduction circumscribed to the works of Henderson17. The The genus Dendronephthya (Cnidaria: Octocorallia: above studies reported 53 new species. Henderson's Alcyonacea: Nephtheidae) is an azooxanthellate and work was based on the material made available from colourful soft coral reported in the warm coastal the Royal Indian Marine Survey ship collections from waters of the Indo-Pacific region, supporting reef several Indian Ocean locations, of which 34 species formation of coral reef ecosystems throughout the were reported from Andaman and Nicobar islands.
    [Show full text]