Primary-Cast-Study-Notes-Episode-4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Physiology an Integrated Approach
Gas Exchange and Transport Gas Exchange in the Lungs and Tissues 18 Lower Alveolar P Decreases Oxygen Uptake O2 Diff usion Problems Cause Hypoxia Gas Solubility Aff ects Diff usion Gas Transport in the Blood Hemoglobin Binds to Oxygen Oxygen Binding Obeys the Law of Mass Action Hemoglobin Transports Most Oxygen to the Tissues P Determines Oxygen-Hb Binding O2 Oxygen Binding Is Expressed As a Percentage Several Factors Aff ect Oxygen-Hb Binding Carbon Dioxide Is Transported in Three Ways Regulation of Ventilation Neurons in the Medulla Control Breathing Carbon Dioxide, Oxygen, and pH Infl uence Ventilation Protective Refl exes Guard the Lungs Higher Brain Centers Aff ect Patterns of Ventilation The successful ascent of Everest without supplementary oxygen is one of the great sagas of the 20th century. — John B. West, Climbing with O’s , NOVA Online (www.pbs.org) Background Basics Exchange epithelia pH and buff ers Law of mass action Cerebrospinal fl uid Simple diff usion Autonomic and somatic motor neurons Structure of the brain stem Red blood cells and Giant liposomes hemoglobin of pulmonary Blood-brain barrier surfactant (40X) From Chapter 18 of Human Physiology: An Integrated Approach, Sixth Edition. Dee Unglaub Silverthorn. Copyright © 2013 by Pearson Education, Inc. All rights reserved. 633 Gas Exchange and Transport he book Into Thin Air by Jon Krakauer chronicles an ill- RUNNING PROBLEM fated trek to the top of Mt. Everest. To reach the summit of Mt. Everest, climbers must pass through the “death zone” T High Altitude located at about 8000 meters (over 26,000 ft ). Of the thousands of people who have attempted the summit, only about 2000 have been In 1981 a group of 20 physiologists, physicians, and successful, and more than 185 have died. -
Peak Flow Measure: an Index of Respiratory Function?
International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Peak Flow Measure: An Index of Respiratory Function? D. Devadiga, Aiswarya Liz Varghese, J. Bhat, P. Baliga, J. Pahwa Department of Audiology and Speech Language Pathology, Kasturba Medical College (A Unit of Manipal University), Mangalore -575001 Corresponding Author: Aiswarya Liz Varghese Received: 06/12/2014 Revised: 26/12/2014 Accepted: 05/01/2015 ABSTRACT Aerodynamic analysis is interpreted as a reflection of the valving activity of the larynx. It involves measuring changes in air volume, flow and pressure which indicate respiratory function. These measures help in determining the important aspects of lung function. Peak expiratory flow rate is a widely used respiratory measure and is an effective measure of effort dependent airflow. Aim: The aim of the current study was to study the peak flow as an aerodynamic measure in healthy normal individuals Method: The study group was divided into two groups with n= 60(30 males and 30 females) in the age range of 18-22 years. The peak flow was measured using Aerophone II (Voice Function Analyser). The anthropometric measurements such as height, weight and Body Mass Index was calculated for all the participants. Results: The peak airflow was higher in females as compared to that of males. It was also observed that the peak air flow rate was correlating well with height and weight in males. Conclusions: Speech language pathologist should consider peak expiratory airflow, a short sharp exhalation rate as a part of routine aerodynamic evaluation which is easier as compared to the otherwise commonly used measure, the vital capacity. -
Spirometry Basics
SPIROMETRY BASICS ROSEMARY STINSON MSN, CRNP THE CHILDREN’S HOSPITAL OF PHILADELPHIA DIVISION OF ALLERGY AND IMMUNOLOGY PORTABLE COMPUTERIZED SPIROMETRY WITH BUILT IN INCENTIVES WHAT IS SPIROMETRY? Use to obtain objective measures of lung function Physiological test that measures how an individual inhales or exhales volume of air Primary signal measured–volume or flow Essentially measures airflow into and out of the lungs Invaluable screening tool for respiratory health compared to BP screening CV health Gold standard for diagnosing and measuring airway obstruction. ATS, 2005 SPIROMETRY AND ASTHMA At initial assessment After treatment initiated and symptoms and PEF have stabilized During periods of progressive or prolonged asthma control At least every 1-2 years: more frequently depending on response to therapy WHY NECESSARY? o To evaluate symptoms, signs or abnormal laboratory tests o To measure the effect of disease on pulmonary function o To screen individuals at risk of having pulmonary disease o To assess pre-operative risk o To assess prognosis o To assess health status before beginning strenuous physical activity programs ATS, 2005 SPIROMETRY VERSUS PEAK FLOW Recommended over peak flow meter measurements in clinician’s office. Variability in predicted PEF reference values. Many different brands PEF meters. Peak Flow is NOT a diagnostic tool. Helpful for monitoring control. EPR 3, 2007 WHY MEASURE? o Some patients are “poor perceivers.” o Perception of obstruction variable and spirometry reveals obstruction more severe. o Family members “underestimate” severity of symptoms. o Objective assessment of degree of airflow obstruction. o Pulmonary function measures don’t always correlate with symptoms. o Comprehensive assessment of asthma. -
Risk Assessment of Recirculation Systems in Salmonid Hatcheries
Norwegian Scientific Committee for Food Safety (VKM) Doc.no 09/808-Final Risk Assessment of Recirculation Systems in Salmonid Hatcheries Opinion of the Panel on Animal Health and Welfare of the Norwegian Scientific Committee for Food Safety Date: 10.01.12 Doc. no.: 09-808-Final ISBN: 978-82-8259-048-8 VKM Report 2012: 01 1 Norwegian Scientific Committee for Food Safety (VKM) Doc.no 09/808-Final Risk Assessment of Recirculation Systems in Salmonid Hatcheries Brit Hjeltnes (chair of ad hoc group) Grete Bæverfjord Ulf Erikson Stein Mortensen Trond Rosten Peter Østergård 2 Norwegian Scientific Committee for Food Safety (VKM) Doc.no 09/808-Final Contributors Persons working for VKM, either as appointed members of the Committee or as ad hoc experts, do this by virtue of their scientific expertise, not as representatives for their employers. The Civil Services Act instructions on legal competence apply for all work prepared by VKM. Acknowledgements The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has appointed an ad hoc group consisting of both VKM members and external experts to answer the request from the Norwegian Food Safety Authority. The members of the ad hoc group are acknowledged for their valuable work on this opinion. The members of the ad hoc group are: VKM members Brit Hjeltnes (Chair), Panel on Animal Health and Welfare Ulf Erikson, Panel on Animal Health and Welfare Stein Mortensen, Panel on Animal Health and Welfare External experts Grete Bæverfjord, Nofima Marin, Sunndalsøra Trond Rosten, SINTEF Fisheries and Aquaculture Peter Østergård, Sp/F Aquamed, Faroe Islands Other contributors to the assessment are Frode Mathisen, Anders Fjellheim and Brit Tørud. -
BSL Lesson 13
Physiology Lessons Lesson 13 for use with the PULMONARY FUNCTION II Biopac Student Lab Pulmonary Flow Rates Forced Expiratory Volume (FEV1,2,3) PC under Windows 95/98/NT 4.0/2000 Maximal Voluntary Ventilation (MVV) or Macintosh Manual Revision 12132000.PL3.6.6-ML3.0.7 Number of cycles in 12 second interval Average Volume Richard Pflanzer, Ph.D. per cycle Associate Professor Indiana University School of Medicine Purdue University School of Science J.C. Uyehara, Ph.D. Biologist Number of cycles/minute = Number of cycles in 12 second interval X 5 MVV = (Average volume per cycle) X (Number of cycles per minute) BIOPAC Systems, Inc. William McMullen Vice President BIOPAC Systems, Inc. BIOPAC Systems, Inc. 42 Aero Camino, Santa Barbara, CA 93117 (805) 685-0066, Fax (805) 685-0067 Email: [email protected] Web Site: http://www.biopac.com Page 2 Lesson 13: Pulmonary Function II Biopac Student Lab V3.0 I. INTRODUCTION The respiratory or pulmonary system performs the important functions of supplying oxygen (O2) during inhalation, removing carbon dioxide (CO2) during exhalation, and adjusting the acid-base balance (pH) of the body by removing acid-forming CO2. Because oxygen is necessary for cellular metabolism, the amount of air that the pulmonary system provides is important in setting the upper limits on work capacities or metabolism. Therefore, the measurement of lung volumes and the rate of air movement (airflow) are important tools in assessing the health and capacities of a person. In this lesson, you will measure: Forced Vital Capacity (FVC), which is the maximal amount of air that a person can forcibly exhale after a maximal inhalation. -
Restrictive Lung Disease
Downloaded from https://academic.oup.com/ptj/article/48/5/455/4638136 by guest on 29 September 2021 RESTRICTIVE LUNG DISEASE WARREN M. GOLD, M.D. RESTRICTIVE LUNG DISEASE is a These disorders can be divided into two pattern of abnormal lung function defined by groups: extrapulmonary and pulmonary. a decrease in lung volume (Fig. I).1,2 The In extrapulmonary restriction, an abnormal total lung capacity is decreased and, in severe increase in the stiffness of the chest wall (kypho restrictive defects, all of the subdivisions of the scoliosis) restricts the lung volumes, as does total lung capacity including vital capacity, respiratory muscle weakness (poliomyelitis or functional residual capacity, and residual vol muscular dystrophy). These extrapulmonary ume are decreased. In mild or moderately se causes of pulmonary restriction are treated vere restrictive defects, the residual volume may be normal or slightly increased. CLINICAL DISORDERS CAUSING TABLE 1 RESTRICTIVE LUNG DISEASE CAUSES OF RESTRICTIVE LUNG DISEASE Restrictive lung disease is not a specific clin I. Extrapulmonary restriction 3 ical entity, but only one of several patterns of A. Chest wall stiffness (kyphoscoliosis) B. Respiratory-muscle weakness (muscular dystrophy)4 abnormal lung function. It is produced by a C. Pleural disease (pneumothorax)5 number of clinical disorders (see Table 1). II. Pulmonary restriction A. Surgical resection (pneumonectomy)6.7 Dr. Gold: Director, Pulmonary Laboratory and Re B. Tumor (bronchogenic carcinoma or metastatic tumor)8 search Associate in Cardiology (Pulmonary Physiology), C. Heart disease (hypertensive, arteriosclerotic, rheu Children's Hospital Medical Center; Associate in Pedi matic, congenital)9 atrics and Tutor in Medical Science, Harvard Medical 10 11 School, Boston, Massachusetts. -
Standardisation of Spirometry
Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method . -
Respiratory Physiology
Physiology Unit 4 RESPIRATORY PHYSIOLOGY Respiraon • External respiraon – ven3laon – gas exchange • Internal respiraon – cellular respiraon – gas exchange • Respiratory Cycle – Inspiraon • Moving atmospheric air into the lungs – Expiraon • Moving air out of the lungs Lungs vs. Balloons • A lung is similar to a balloon in that it resists stretch, tending to collapse almost totally unless held inflated by a pressure difference between its inside and outside • Lungs and the chest have elas3c proper3es Lung Compliance • Compliance – Elas3city – Tendency to recoil – Tendency of an elas3c structure to oppose stretching or distor3on * Resists distension • Surface tension * Resists distension - Surfactant • Reduces surface tension • Increases compliance (makes them easier to stretch) Airway Resistance F = ΔP/R • Same variables that affect resistance in blood vessels – Tube length, tube radius, fric3on – Tube radius most important factor • Airway resistance is so small that small pressure differences produce large volumes of air flow – Average atmosphere-to-alveoli pressure difference is 1 mmHg, but 500 mL of air is moved (%dal volume) – Low pressure and low resistance • Pulmonary 1/10th of systemic vascular resistance Ven3laon • Exchange of air between atmosphere and alveoli • Atmospheric air pressure is 760 mmHg at sea level • Air moves by bulk flow – F = ΔP/R – F = (Palv – Patm)/R Boyle’s Law • Boyle’s law = (P/V) • Pressure of a given quan3ty of gas is inversely propor3onal to volume • An increase in the volume of the container (lungs) decreases the pressure of the gas (air) Ven3laon Mechanics • Lung volume depends on: 1. Transpulmonary pressure (Ptp) • Inside to outside of the lung • Ptp = Palv – Pip • The force that keeps the lungs inflated • Transmural pressure – Across the wall 2. -
Chapter 16 I. the Respiratory System Respiratory System Respiration Gas Exchange in Lungs Alveoli
10/24/11 I. The Respiratory System Chapter 16 Respiratory Physiology Lecture PowerPoint Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Respiratory System Respiration • Includes: • Divided into: – Ventilation (breathing) – Gas exchange between blood and lungs and – Respiratory zone: site of gas exchange between blood and tissues – Oxygen utilization by tissues to make ATP – Conduction zone: gets air to the respiratory • Ventilation and gas exchange in lungs = zone external respiration • Oxygen utilization and gas exchange in tissues = internal respiration Gas Exchange in Lungs Alveoli • Occurs via diffusion • Air sacs in the lungs where gas exchange occurs • O2 concentration is higher in the lungs than in the blood, so O2 diffuses into blood. • 300 million of them – Provide large surface area (760 square feet) to increase diffusion rate • CO2 concentration in the blood is higher than in the lungs, so CO2 diffuses out of blood. 1 10/24/11 Alveoli Alveoli Capillary within alveolar wall Bronchiole and alveoli Alveolar Cells Conducting Zone • Air travels down the nasal cavity Pharynx • Type I: 95−97% total surface area where Larynx gas exchange occurs Trachea Right and left primary bronchi • Type II: secrete pulmonary surfactant and Secondary bronchi reabsorb sodium and water, preventing Tertiary bronchi (more branching) Terminal bronchioles fluid buildup Respiratory zone (respiratory bronchioles Terminal alveolar sacs Respiratory Structures Trachea and Respiratory Bronchi 2 10/24/11 Functions of Conducting Zone Functions of Conducting Zone • Transports air to the lungs • Warms, humidifies, filters, and cleans the air – Mucus traps small particles, and cilia move it away from the lungs. • Voice production in the larynx as air passes over the vocal folds Thoracic Cavity Thoracic Cavity Cross Section • Contains the heart, trachea, esophagus, and thymus within the central mediastinum • The lungs fill the rest of the cavity. -
Interrelationship Between Lung Volume, Expiratory Flow, and Lung Transfer Factor in Fibrosing Alveolitis
Thorax: first published as 10.1136/thx.36.11.858 on 1 November 1981. Downloaded from thorax 1981 ;36:858-862 Interrelationship between lung volume, expiratory flow, and lung transfer factor in fibrosing alveolitis JN PANDE From the Respiratory Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India ABSTRACT Fifty patients with fibrosing alveolitis studied on 104 occasions exhibited significant direct correlations between vital capacity (VC), maximum mid-expiratory flow rate (MMFR), and transfer factor for carbon monoxide (TLCO). Forced expired volume in the first second (FEV,)/VC ratio bore a weak negative correlation with VC. Peak expiratory flow, MMFR, and maximum flow rates at 50 % and 25 % of VC were often reduced in patients with severe grades of pulmonary dys- function. It appears that as the severity of the fibrotic process increases, the lung volumes shrink and the transfer factor for CO decreases. The total lung capacity decreases predominantly on account of reduction in VC. With a decrease in lung volume the MMFR also falls. Decrease in flow rates at low lung volumes is greater as compared to the fall in peak flow. The expiratory flow rates how- ever were normal or even increased when related to absolute lung volume. Some patients exhibit disproportionate expiratory slowing as evidenced by a decrease in MMFR which is out of propor- tion to the reduction in VC. These patients also have a reduced FEV1,/VC ratio. These changes are probably the consequence of associated peripheral airway narrowing. copyright. Increased elastic recoil of the lung limiting maximal 33 women. Their age ranged from 16-68 years (mean inflation is considered to be the main abnormality of ± SE 42-1 ± 1-7 years). -
Errors in the Measurement of Vital Capacity a Comparison of Three Methods in Normal Subjects and in Patients with Pulmonary Emphysema
Thorax: first published as 10.1136/thx.28.5.584 on 1 September 1973. Downloaded from Thorax (1973), 28, 584. Errors in the measurement of vital capacity A comparison of three methods in normal subjects and in patients with pulmonary emphysema D. C. S. HUTCHISON, C. E. BARTER', and N. A. MARTELLI2 Chest Unit, King's College Hospital, London SE5 Hutchison, D. C. S., Barter, C. E., and Martelli, N. A. (1973). Thorax, 28, 584-587. Errors in the measurement of vital capacity: a comparison of three methods in normal subjects and in patients with pulmonary emphysema. Three methods of measuring the vital capacity have been compared in six normal subjects and in six with pulmonary emphysema, according to a randomized design. The methods were (a) the inspiratory vital capacity (IVC), (b) the expiratory vital capacity (EVC), and (c) the forced vital capacity (FVC). In normal subjects, there was a small but significant difference between the methods. The residual standard deviation derived from analysis of variance was 94 ml (coefficient of variation 1.7 %). A slight but significant rise in vital capacity with repeated effort was observed. In emphysematous subjects, there was no significant difference between the IVC and EVC methods. The FVC gave values which were, on average, approximately 0.5 litre less copyright. than those obtained by the other methods. The standard deviation in all three methods was substantially greater than for the normal subjects. The FVC is not a suitable method for the measurement of vital capacity in patients with pulmonary emphysema. The EVC is satisfactory, provided it is used with caution, but in practice the IVC is the preferred method. -
Alternative Methods for Assessing Bronchodilator Reversibility In
Thorax 2001;56:713–720 713 Alternative methods for assessing bronchodilator Thorax: first published as 10.1136/thx.56.9.713 on 1 September 2001. Downloaded from reversibility in chronic obstructive pulmonary disease J Hadcroft, P M A Calverley Abstract Chronic obstructive pulmonary disease Background—Bronchodilator reversibil- (COPD) is characterised by airflow limitation ity testing is recommended in all patients which varies little over several months of with chronic obstructive pulmonary dis- observation or after treatment.12 The assess- ease (COPD) but does not predict im- ment of airflow limitation usually relies on provements in breathlessness or exercise spirometric testing and, in particular, the performance. Two alternative ways of forced expiratory volume in 1 second (FEV1) assessing lung mechanics—measurement which is the usual outcome measure in of end expiratory lung volume (EELV) diagnostic bronchodilator reversibility testing.3 using the inspiratory capacity manoeuvre Although useful diagnostically and prognosti- and application of negative expiratory cally,4 spirometric abnormalities are poor pressure (NEP) during tidal breathing to descriptors of the severity of breathlessness in detect tidal airflow limitation—do relate 5 COPD. Likewise, significant changes in FEV1 to the degree of breathlessness in COPD. after inhaled bronchodilators are not necessary Their usefulness as end points in broncho- for improvement in exercise performance or dilator reversibility testing has not been dyspnoea to occur.5–7 Two alternative tech- examined. niques of measuring lung mechanics relatively Methods—We studied 20 patients with easily are now available. Both are better corre- clinically stable COPD (mean age 69.9 lates of breathlessness than FEV , but their (1.5) years, 15 men, forced expiratory vol- 1 reproducibility and sensitivity to change in ume in one second (FEV ) 29.5 (1.6)% pre- 1 response to bronchodilator drugs has not been dicted) with tidal flow limitation as assessed—an important consideration if they assessed by their maximum flow-volume loop.