Respiratory System.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Respiratory System.Pdf Respiratory System Respiratory System - Overview: Assists in the detection Protects system of odorants Respiratory (debris / pathogens / dessication) System 5 3 4 Produces sound (vocalization) Provides surface area for gas exchange (between air / blood) 1 2 For the body to survive, there must be a constant supply of Moves air to / from gas O2 and a constant exchange surface disposal of CO 2 Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Table 19.1 Respiratory System Respiratory System Functional Anatomy: Functional Anatomy: Trachea Epiglottis Naming of pathways: • > 1 mm diameter = bronchus Upper Respiratory • Conduction of air • < 1 mm diameter = bronchiole System • Gas exchange Primary • < 0.5 mm diameter = terminal bronchiole Bronchus • Filters / warms / humidifies Lower Respiratory Bronchi System incoming air bifurcation (23 orders) 1) External nares 5) Larynx 2) Nasal cavity • Provide open airway Green = Conducting zone • Resonance chamber • channel air / food Purple = Respiratory zone 3) Uvula • voice production (link) 4) Pharynx 6) Trachea 7) Bronchial tree • Nasopharynx Bronchiole 8) Alveoli • Oropharynx Terminal Bronchiole Respiratory Bronchiole • Laryngopharynx Alveolus Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.1 Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Respiratory System Respiratory System Functional Anatomy: Functional Anatomy: Respiratory Mucosa / Submucosa: How are inhaled debris / pathogens cleared from respiratory tract? Near Near trachea alveoli Nasal Cavity: Epithelium: Particles > 10 µm Pseudostratified Simple columnar cuboidal Conducting Zone: Particles 5 – 10 µm Cilia No cilia Respiratory Zone: Mucus Escalator Particles 1 – 5 µm Mucosa: Lamina Propria (areolar tissue layer): Mucous membrane (epithelium / areolar tissue) smooth smooth muscle muscle Mucous No glands mucous glands Cartilage: Rings Plates / none Macrophages Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.2 1 Respiratory System Respiratory System Functional Anatomy: Pseudostratified ciliated Functional Anatomy: columnar epithelium Trachea Right primary bronchus wider, shorter & steeper Goblet cells: ( blockage hazard) Unicellular mucous secreting glands Bronchus (> 1 mm diameter) • 1º = Extrapulmonary bronchi • 2º = Intrapulmonary bronchi Esophagus Bronchitis: Inflammation of airways Pseudostratified ciliated columnar epithelium Tough, flexible tube Smooth muscle 15 – 20 tracheal (~ 1” diameter) cartilages (C-shaped) • Protect airway Cartilage plate • Allow for food passage Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Respiratory System Respiratory System Functional Anatomy: Mucous glands rare – Why? Functional Anatomy: Pseudostratified Surrounded by fine ciliated columnar elastic fibers epithelium Respiratory bronchiole Cartilage plates? Terminal Alveolar bronchiole sac Thick smooth muscle Type I Pneumocytes: • Simple squamous; forms wall of alveoli Allergic attack = Histamine = Bronchoconstriction Total surface area: • Alveolar pores (1 – 6 / alveoli) 75 - 90 m2 (~1/2 tennis court) Type II Pneumocytes: Sympathetic stimulation (NE; 2 receptors) • Leads to bronchodilation 200 m • Cuboidal / round; secrete surfactant • Reduces surface tension (stops alveoli collapse) Synthetic drugs (e.g., albuterol) E (medulla) triggers Alveolar macrophages: Bronchiole trigger response response (< 1 mm diameter) • Clear debris on alveolar surface Parasympathetic stimulation (ACh; muscarinic receptors) • Leads to bronchoconstriction Alveoli Alveolar (300 million / lung) pores Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 22.8 Respiratory System Respiratory System Pneumonia: Functional Anatomy: Thickening of respiratory membrane Respiratory Physiology: Gas exchange occurs readily in the alveoli of the lung via simple diffusion across the respiratory membrane 0.1 – 0.5 m thick Respiration includes: 1 1) Pulmonary ventilation (pumping air in / out of lungs) 2) External respiration (gas exchange @ blood-gas barrier) 2 3) Transport of respiratory gases (blood) 4) Internal respiration (gas exchange @ tissues) 3 Respiratory Membrane: 1) Type I pneumocytes 2) Endothelial cells of capillaries 4 3) Fused basement membranes Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 22.9 Randall et al. (Eckert Animal Physiology, 5th ed.) – Figure 13.19 2 Respiratory System Respiratory System Pulmonary Ventilation: Pulmonary Ventilation: Simplified Model: Atmospheric pressure = ~ 760 mm Hg (Consider Patmospheric = 0 mm Hg) Trachea Trachea Visceral pleura Lung Pressure relationships in the thoracic cavity: Parietal Pleural 1) Intrapulmonary Pressure (w/in the alveoli): pleura cavity • Static conditions = 0 mm Hg Thoracic wall • Inhalation (inspiration) = Ppul slightly negative Intrapulmonary • Exhalation (expiration) = Ppul slightly positive Lung pressure (Ppul = 0 mm Hg) 2) Intrapleural pressure (w/in pleural cavity): • Always relatively negative (~ - 4 mm Hg) • Prevents lungs from collapsing Pleural cavity Diaphragm Intrapleural pressure Diaphragm Thoracic Diaphragm (Pip = - 4 mm Hg) wall atmospheric pressure = Patm = 0 mm Hg Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 22.12 Respiratory System Respiratory System Pulmonary Ventilation: Pulmonary Ventilation: Why is the intrapleural pressure negative? Pulmonary ventilation is a mechanical process that depends on thoracic cavity volume changes Answer: Interaction of opposing forces Forces equilibrate at P = - 4 mm Hg ip Boyle’s Law: Forces acting to collapse lung: P1V1 = P2V2 1) Elasticity of lungs Surface tension of 2) Alveolar surface tension serous fluids keep lungs “stuck” to P = pressure of gas (mm Hg) Force resisting lung collapse: chest wall V = volume of gas (mm3) 1) Elasticity of chest wall P1 = initial pressure; V1 = initial volume P2 = resulting pressure; V2 = resulting volume Pneumothorax: 3 3 Example: 4 mm Hg (2 mm ) = P2 (4 mm ) P2 = 2 mm Hg (“sucking chest wound”) Puncture of chest wall; results in inability to CHANGING THE VOLUME RESULTS IN INVERSE generate negative pressure CHANGE OF PRESSURE and expand the lungs Costanzo (Physiology, 4th ed.) – Figure 5.9 Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.13 Respiratory System Respiratory System Pulmonary Ventilation: Pulmonary Ventilation: Pulmonary ventilation is a mechanical process that depends on Pulmonary ventilation is a mechanical process that depends on thoracic cavity volume changes thoracic cavity volume changes 0 mm Hg 0 mm Hg Inspiration: Inspiration: Muscular expansion of thoracic cavity - 4 mm Hg Muscular expansion of thoracic cavity - 6 mm Hg A) Contraction of diaphragm A) Contraction of diaphragm • Lengthens thorax (pushes liver down) • Lengthens thorax (pushes liver down) B) Contraction of external intercostal muscles B) Contraction of external intercostal muscles • Widens thorax • Widens thorax 0 mm Hg - 1 mm Hg Results in: • Reduced intrapleural pressure (Pip) • Reduced intrapulmonary pressure (Ppul) Results in decreased pressure in thoracic Diaphragm cavity and air enters Diaphragm Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 22.13 3 Respiratory System Respiratory System Internal pressure Pulmonary Ventilation: can reach +100 mm Hg Pulmonary Ventilation: (e.g., why you should exhale when lifting weights) Pulmonary ventilation is a mechanical process that depends on thoracic cavity volume changes Results in increased pressure 0 mm Hg Expiration: in thoracic cavity; air exits Retraction of thoracic cavity - 4 mm Hg A) Passive Expiration • Diaphragm / external intercostals relax • Elastic rebound (lungs rebound) B) Active (“Forced”) Expiration +10 mm Hg • Abdominal muscles contract • Internal intercostals contract Eupnea: Hyperpnea: Quiet breathing Forced breathing Diaphragm (active inspiration; (active inspiration; (passive expiration) (active expiration) Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 22.13 Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 22.14 Respiratory System Respiratory System Respiratory Distress Syndrome Pulmonary Ventilation: Pulmonary Ventilation: (e.g., pre-mature babies) Several physical factors exist influence pulmonary ventilation Several physical factors exist influence pulmonary ventilation A) Airway resistance B) Surface tension in alveoli Q = Airflow (L / min) Surface tension generated as neighboring liquid molecules on the surface P = Pressure gradient (mm Hg) of alveoli are drawn together by attractive forces Q = P / R Pressure required to R = Airway resistance (mm Hg / L / sec) keep alveolus open P = Collapsing pressure on alveolus (dynes / cm2) Airflow is directly proportional to pressure difference between outside air 2T T = Surface tension (dynes / cm) and alveoli and inversely proportional to resistance of the airway Law of Laplace: P = r r = Radius of alveolus (cm) Resistance determined by Why don’t the smallest airways provide the highest resistance? Poiseuille’s Law: Medium-sized Surfactant bronchi 8Lη Reminder: R = Parasympathetic system produces 4 r bronchial constriction Problem? Terminal ( diameter = resistance) R = Resistance bronchioles η = Viscosity of inspired air Resistance
Recommended publications
  • Human Physiology an Integrated Approach
    Gas Exchange and Transport Gas Exchange in the Lungs and Tissues 18 Lower Alveolar P Decreases Oxygen Uptake O2 Diff usion Problems Cause Hypoxia Gas Solubility Aff ects Diff usion Gas Transport in the Blood Hemoglobin Binds to Oxygen Oxygen Binding Obeys the Law of Mass Action Hemoglobin Transports Most Oxygen to the Tissues P Determines Oxygen-Hb Binding O2 Oxygen Binding Is Expressed As a Percentage Several Factors Aff ect Oxygen-Hb Binding Carbon Dioxide Is Transported in Three Ways Regulation of Ventilation Neurons in the Medulla Control Breathing Carbon Dioxide, Oxygen, and pH Infl uence Ventilation Protective Refl exes Guard the Lungs Higher Brain Centers Aff ect Patterns of Ventilation The successful ascent of Everest without supplementary oxygen is one of the great sagas of the 20th century. — John B. West, Climbing with O’s , NOVA Online (www.pbs.org) Background Basics Exchange epithelia pH and buff ers Law of mass action Cerebrospinal fl uid Simple diff usion Autonomic and somatic motor neurons Structure of the brain stem Red blood cells and Giant liposomes hemoglobin of pulmonary Blood-brain barrier surfactant (40X) From Chapter 18 of Human Physiology: An Integrated Approach, Sixth Edition. Dee Unglaub Silverthorn. Copyright © 2013 by Pearson Education, Inc. All rights reserved. 633 Gas Exchange and Transport he book Into Thin Air by Jon Krakauer chronicles an ill- RUNNING PROBLEM fated trek to the top of Mt. Everest. To reach the summit of Mt. Everest, climbers must pass through the “death zone” T High Altitude located at about 8000 meters (over 26,000 ft ). Of the thousands of people who have attempted the summit, only about 2000 have been In 1981 a group of 20 physiologists, physicians, and successful, and more than 185 have died.
    [Show full text]
  • Maximum Expiratory Flow Rates in Induced Bronchoconstriction in Man
    Maximum expiratory flow rates in induced bronchoconstriction in man A. Bouhuys, … , B. M. Kim, A. Zapletal J Clin Invest. 1969;48(6):1159-1168. https://doi.org/10.1172/JCI106073. Research Article We evaluated changes of maximum expiratory flow-volume (MEFV) curves and of partial expiratory flow-volume (PEFV) curves caused by bronchoconstrictor drugs and dust, and compared these to the reverse changes induced by a bronchodilator drug in previously bronchoconstricted subjects. Measurements of maximum flow at constant lung inflation (i.e. liters thoracic gas volume) showed larger changes, both after constriction and after dilation, than measurements of peak expiratory flow rate, 1 sec forced expiratory volume and the slope of the effort-independent portion of MEFV curves. Changes of flow rates on PEFV curves (made after inspiration to mid-vital capacity) were usually larger than those of flow rates on MEFV curves (made after inspiration to total lung capacity). The decreased maximum flow rates after constrictor agents are not caused by changes in lung static recoil force and are attributed to narrowing of small airways, i.e., airways which are uncompressed during forced expirations. Changes of maximum expiratory flow rates at constant lung inflation (e.g. 60% of the control total lung capacity) provide an objective and sensitive measurement of changes in airway caliber which remains valid if total lung capacity is altered during treatment. Find the latest version: https://jci.me/106073/pdf Maximum Expiratory Flow Rates in Induced Bronchoconstriction in Man A. Bouiuys, V. R. HuNTr, B. M. Kim, and A. ZAPLETAL From the John B. Pierce Foundation Laboratory and the Yale University School of Medicine, New Haven, Connecticut 06510 A B S T R A C T We evaluated changes of maximum ex- rates are best studied as a function of lung volume.
    [Show full text]
  • The Oxyhaemoglobin Dissociation Curve in Critical Illness
    Basic sciences review The Oxyhaemoglobin Dissociation Curve in Critical Illness T. J. MORGAN Intensive Care Facility, Division of Anaesthesiology and Intensive Care, Royal Brisbane Hospital, Brisbane, QUEENSLAND ABSTRACT Objective: To review the status of haemoglobin-oxygen affinity in critical illness and investigate the potential to improve gas exchange, tissue oxygenation and outcome by manipulations of the oxyhaemoglobin dissociation curve. Data sources: Articles and published peer-review abstracts. Summary of review: The P50 of a species is determined by natural selection according to animal size, tissue metabolic requirements and ambient oxygen tension. In right to left shunting mathematical modeling indicates that an increased P50 defends capillary oxygenation, the one exception being sustained hypercapnia. Increasing the P50 should also be protective in tissue ischaemia, and this is supported by modeling and experimental evidence. Most studies of critically ill patients have indicated reduced 2,3-DPG concentrations. This is probably due to acidaemia, and the in vivo P50 is likely to be normal despite low 2,3-DPG levels. It may soon be possible to achieve significant P50 elevations without potentially harmful manipulations of acid-base balance or hazardous drug therapy. Conclusions: Despite encouraging theoretical and experimental data, it is not known whether manipulations of the P50 in critical illness can improve gas exchange and tissue oxygenation or improve outcome. The status of the P50 may warrant more routine quantification and consideration along with the traditional determinants of tissue oxygen availability. (Critical Care and Resuscitation 1999; 1: 93-100) Key words: Critical illness, haemoglobin-oxygen affinity, ischaemia, P50, tissue oxygenation, shunt In intensive care practice, manipulations to improve in the tissues.
    [Show full text]
  • Lesson 1 ELECTROMYOGRAPHY 1 Motor Unit Recruitment
    Physiology Lessons for use with the Biopac Science Lab MP40 Lesson 12 Respiration 1 Apnea PC running Windows® XP or Mac® OS X 10.3-10.4 Lesson Revision 3.15.2006 BIOPAC Systems, Inc. 42 Aero Camino, Goleta, CA 93117 (805) 685-0066, Fax (805) 685-0067 [email protected] www.biopac.com © BIOPAC Systems, Inc. 2006 Page 2 Biopac Science Lab Lesson 12 The Respiratory Cycle I. SCIENTIFIC PRINCIPLES All body cells require oxygen for metabolism and produce carbon dioxide as a metabolic waste product. The respiratory system supplies oxygen to the blood for delivery to cells, and removes carbon dioxide added to the blood by the cells. Cyclically breathing in and out while simultaneously circulating blood between the lungs and other body tissues facilitates the exchange of oxygen and carbon dioxide between the body and the external environment. This process serves cells by maintaining rates of oxygen delivery and carbon dioxide removal adequate to meet the cells’ metabolic needs. The breathing cycle, or respiratory cycle, consists of inspiration during which new air containing oxygen is inhaled, followed by expiration during which old air containing carbon dioxide is exhaled. Average adult people at rest breathe at a frequency of 12 to 15 breaths per minute (BPM), and with each cycle, move an equal volume of air, called tidal volume (TV), into and back out of the lungs. The actual value of tidal volume varies in direct proportion to the depth of inspiration. During normal, quiet, unlabored breathing (eupnea) at rest, adult tidal volume is about 450 ml to 500 ml.
    [Show full text]
  • Bronchoconstriction in Normal and Asthmatic Subjects
    Thorax: first published as 10.1136/thx.43.11.890 on 1 November 1988. Downloaded from Thorax 1988;43:890-895 The nasal response to exercise and exercise induced bronchoconstriction in normal and asthmatic subjects KINGMAN P STROHL, MICHAEL J DECKER, LESLIE G OLSON, TOD A FLAK, PETER L HOEKJE Airway Disease Center, Departments ofMedicine, University Hospitals ofCleveland; and Case Western Reserve University, Cleveland, Ohio, USA ABSTRACT Two studies were carried out to test the hypothesis that the fall and recovery of nasal resistance after exercise in asthmatic and non-asthmatic subjects are related to the development of bronchoconstriction after exercise. In study 1 nasal resistance (posterior rhinomanometry) and specific airway resistance (sRaw) were measured before challenge and one, five, 10 and 30 minutes after four minutes of exhausting legwork exercise in nine asthmatic subjects and nine age matched healthy subjects. One minute after exercise there was a reduction in nasal resistance of49% (SD 15%) from baseline in the healthy subjects and of 66% (17%) in the asthmatic subjects. This response and the subsequent return ofnasal resistance to baseline values did not differ significantly between the two groups despite a substantial difference in the change in sRaw, an increase of 74% (45%) in the asthmatic subjects 10 minutes after exercise, and no change in the non-asthmatic subjects. In study 2, nasal and specific airway resistances were monitored according to the same measurement protocolcopyright. in six subjects with increased airway reactivity. Subjects exercised on two occasions, wearing a noseclip, once while breathing cold, dry air and once while breathing warm, humid air.
    [Show full text]
  • Hemoglobin : Its Protein of Molecular Weight 64,450 , in Human Beings It
    Hemoglobin : its protein of molecular weight 64,450 , in human beings it is enclose in the RBC .if it were in plasma, some of it leaks through the capillary membrane into the tissue space or through the glomerular membrane of the kidney into the glomerular filtrate each time the blood passes through the capillaries , high free plasma concentration of Hb increased blood viscosity and osmotic pressure. So for Hb to remain in the bloodstream , it must exist in the RBCs ,its major function is to carry O2 to the tissue and also it transport CO2 from the tissues to the lungs Normal hemoglobin type: Hb A: Its normal adult Hb . Its molecule consist of four polypeptide chains ,2 alpha (α) chains (each of which contains 141 amino acids) and 2 beta chains (each of which contains 146 amino acids).thus Hb A is designated α2 and β2. Hb A is predominant type of Hb in adult (95- 97% of total Hb) . Hb A2 : in the normal adult about 25% of the total Hb is Hb A2 in which chain are replaced by delta chains and is designated 2 α 2δ2 . Each δ chain also contain 146 amino acid but 10 amino acid differ from those in the β chain . Hb F (Fetal Hb): it is the main Hb in fetus and new born . It is 2α 2γ,gamma(γ) chain also has 146 amino acid but 37 amino acid differ from those in β chain, Hb F is replaced gradually by adult Hb soon after birth, usually at about 6 months to one year of age, the normal adult Hb predominates .
    [Show full text]
  • Metabolic Stable Isotope Fractionation
    Photograph by author, Gina M.A. Carroll Metabolic Stable Isotope Fractionation: Biogeochemical Approaches to Diagnosing Sickle Cell and Thalassemia Anemia in the Archaeological Record MSc Thesis Faculty of Archaeology MSc Proefschrift Faculteit der Archaeologie Gina M.A. Carroll 1 Photograph by Gina. M.A. Carroll Taken with permission from the Municipal Museum of Écija, Spain April 2014 Gina M.A. Carroll Alberta, Canada Leiden, The Netherlands [email protected] 1 Metabolic Stable Isotope Fractionation: Biogeochemical Approaches to Diagnosing Sickle Cell and Thalassemia Anemia in the Archaeological Record. MSc Thesis MSc Proefschrift Gina M.A. Carroll Human Osteology and Funerary s1371266 Archaeology MSc Thesis Archaeology University of Leiden Faculty of Archaeology ARCH 1044WY Prof. Dr. Waters-Rist Leiden, The Netherlands & Prof. Dr. Inskip Leiden, 26 May 2015 Final Draft. 2 TABLE OF CONTENTS DEDICATIONS ...................................................................................................................... 9 ACKNOWLEDGEMENTS .................................................................................................. 10 CHAPTER 1 INTRODUCTION ....................................................................... 12-30 1. BRIEF HISTORY OF ARCHAEOLOGICAL RESEARCH ........................................ 13 1.1. The Anemias in Archaeology ....................................................... 14 1.2. The Application of Stable Isotopes in Palaeopathology ............... 18 2. HYPOTHESIS ................................................................................................
    [Show full text]
  • Design of Respiration Rate Meter Using Flexible Sensor
    JEEMI, Vol. 2, No. 1, January 2020, pp: 13-18 DOI: 10.35882/jeeemi.v2i1.3 ISSN:2656-8632 Design of Respiration Rate Meter Using Flexible Sensor Sarah Aghnia Miyagi#,1, Muhammad Ridha Mak’ruf1, Endang Dian Setyoningsih1, Tarak Das2 1Department of Electromedical Engineering Poltekkes Kemenkes, Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia 2Department of Biomedical Engineering Netaji Subhash, Engineering College Kolkata, India #[email protected], [email protected], [email protected], [email protected] Abstract— Respiration rate is an important physiological parameter that helps to provide important information about the patient's health status, especially from the human respiratory system. So it is necessary to measure the human respiratory rate by calculating the number of respiratory frequencies within 1 minute. The respiratory rate meter is a tool used to calculate the respiratory rate by counting the number of breaths for 1 minute. The author makes a tool to detect human respiratory rate by using a sensor that detects the ascend and descend of the chest cavity based on a microcontroller so that the operator can measure the breathing rate more practically and accurately. Component tool contains analog signal conditioning circuit and microcontroller circuit accompanied by display in the form of LCD TFT. The results of measurement data on 10 respondents obtained an average error value, namely the position of the right chest cavity 6.6%, middle chest cavity 7.92%, and left chest cavity 6.85%. This value is still below the error tolerance limit of 10%. It can be concluded that to obtain the best measurement results, the sensor is placed in the position of the right chest cavity.
    [Show full text]
  • A Cephalopod Approach to Rethinking About the Importance of the Bohr and Haldane Effects·
    Pacific Science (1982), vol. 36, no. 3 © 1983 by the University of Hawaii Press. All rights reserved A Cephalopod Approach to Rethinking about the Importance of the Bohr and Haldane Effects· G. LYKKEBOE2 and K. JOHANSEN2 ABSTRACT: This study concerns the physiological implications of the Bohr and Haldane effects and the buffer values in the blood from the cephalopods Nautilus pompilius, Octopus macropus, Sepia latimanus, Nototodarus sloani philippinensis, and Sepioteuthis lessoniana. All species studied except one (Nautilus) have Bohr and Haldane coefficients numerically higher than unity, and the two effects were found to be nearly identical in all cases, in accord with the theoretical prediction of Wyman (1964). However, the functional Haldane coefficient was significantly lower than the Haldane coefficient in two cases (Sepia and Sepioteuthis). Buffer values were highest in the two species with the lowest oxygen requirement (Nautilus and Octopus), whereas the three fast swim­ mers studied (Nototodarus, Sepia, and Sepioteuthis) display comparatively low buffer values. It is concluded that the large Bohr effects seen in four of the five species may have their primary effect on oxygen loading in the gills. THE OXYGEN AFFINITY ofcephalopod blood is Since the Bohr effect is generally acredited pH-sensitive in all reported cases. However, physiological significance in respiratory blood for no other group of animals does the pH­ gas transport, variations in it that are related sensitivity ofthe O 2 binding, expressed by the to behavior, habitat, or systemic factors Bohr coefficient (Lllog P50/LlpH), show such a should be easily discernible in cephalopods. large variability between species (P50 denotes The present study compares blood respi­ the oxygen tension at half02 saturation ofthe ratory properties and discusses their possible blood).
    [Show full text]
  • 17 the Respiratory System
    Mechanics of Breathing The Respiratory System 17 Bones and Muscles of the Thorax Surround the Lungs Pleural Sacs Enclose the Lungs Airways Connect Lungs to the External Environment The Airways Warm, Humidify, and Filter Inspired Air Alveoli Are the Site of Gas Exchange Pulmonary Circulation Is High-Flow, Low-Pressure G a s L a w s Air Is a Mixture of Gases Gases Move Down Pressure Gradients Boyle’s Law Describes Pressure-Volume Relationships Ventilation Lung Volumes Change During Ventilation During Ventilation, Air Flows Because of Pressure Gradients Inspiration Occurs When Alveolar Pressure Decreases Expiration Occurs When Alveolar Pressure Increases Intrapleural Pressure Changes During Ventilation Lung Compliance and Elastance May Change in Disease States Surfactant Decreases the Work of Breathing Airway Diameter Determines Airway Resistance Rate and Depth of Breathing Determine the Effi ciency of Breathing Gas Composition in the Alveoli Varies Little During Normal Breathing Ventilation and Alveolar Blood Flow Are Matched Auscultation and Spirometry Assess Pulmonary Function This being of mine, whatever it really is, consists of a little fl esh, a little breath, and the part which governs. — Marcus Aurelius Antoninus ( C . E . 121–180) Background Basics Ciliated and exchange epithelia Pressure, volume, fl ow, and resistance Pulmonary circulation Surface tension Colored x-ray of the lung Autonomic and somatic showing the motor neurons branching Velocity of fl ow airways. 600 Mechanics of Breathing magine covering the playing surface of a racquetball court cavity to control their contact with the outside air. Internalization (about 75 m2 ) with thin plastic wrap, then crumpling up the creates a humid environment for the exchange of gases with the wrap and stuffi ng it into a 3-liter soft drink bottle.
    [Show full text]
  • Published on May 14, 2008 As Doi: 10.1183/09031936.00126507 ERJ
    ERJ Express. Published on May 14, 2008 as doi: 10.1183/09031936.00126507 ACCURACY AND RELIABILITY OF PULSE OXIMETRY AT DIFFERENT PaCO2 LEVELS Authors: Muñoz Xa,b,d , Torres Fc , Sampol Ga,d , Rios Jc , Martí Sa,d , Escrich Eb a) Servei de Pneumologia,Hospital Universitari Vall d’Hebron, Barcelona, Spain b) Departament de Biología Cel·lular, de Fisiologia i d’Immunologia, UAB, Barcelona, Spain c) Laboratorio de Bioestadística i Epidemiología (Universitat Autònoma de Barcelona); Servei de Farmacologia Clínica, IDIBAPS, (Hospital Clínic), Barcelona d) CIBER de Enfermedades Respiratorias (Ciberes) Correspondence to: Dr. Xavier Muñoz Servei de Pneumologia Hospital Vall d'Hebron Pº Vall d'Hebron, 119-129 08035 Barcelona Spain Telf: 00 34 93 2746157 Fax: 00 34 93 2746083 E-mail: [email protected] Short title: ACCURACY OF PULSE OXIMETRY AND PaCO2 LEVELS The first two authors have contributed equally to this study. Copyright 2008 by the European Respiratory Society. ABSTRACT Aim: To assess whether arterial carbon dioxide pressure (PaCO2) has an impact on agreement between oxygen saturation measured with pulse oximetry (SpO2) or arterial blood gas co- oximetry (SaO2). Methods: A study was performed on SaO2 and SpO2 determinations obtained simultaneously from 846 patients under assessment for long-term home oxygen therapy in a specialized outpatient clinic. Both measurements were taken with patients seated and breathing room air. Agreement between SaO2 and SpO2 results was analyzed by the Bland-Altman method and the Lin concordance coefficient. In addition, potential interactions of PaO2 or PaCO2 on agreement were analyzed by adjusted multivariate analysis. Results: At comparison of SaO2 and SpO2 results, the Bland-Altman technique yielded a bias (95% CI) of -1.24 (-6.86; 4.38) and -1.32 (-7.78; 5.15) when PaCO2 was higher than 48 mmHg or PaO2 lower than 54 mmHg, respectively.
    [Show full text]
  • Risk Assessment of Recirculation Systems in Salmonid Hatcheries
    Norwegian Scientific Committee for Food Safety (VKM) Doc.no 09/808-Final Risk Assessment of Recirculation Systems in Salmonid Hatcheries Opinion of the Panel on Animal Health and Welfare of the Norwegian Scientific Committee for Food Safety Date: 10.01.12 Doc. no.: 09-808-Final ISBN: 978-82-8259-048-8 VKM Report 2012: 01 1 Norwegian Scientific Committee for Food Safety (VKM) Doc.no 09/808-Final Risk Assessment of Recirculation Systems in Salmonid Hatcheries Brit Hjeltnes (chair of ad hoc group) Grete Bæverfjord Ulf Erikson Stein Mortensen Trond Rosten Peter Østergård 2 Norwegian Scientific Committee for Food Safety (VKM) Doc.no 09/808-Final Contributors Persons working for VKM, either as appointed members of the Committee or as ad hoc experts, do this by virtue of their scientific expertise, not as representatives for their employers. The Civil Services Act instructions on legal competence apply for all work prepared by VKM. Acknowledgements The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has appointed an ad hoc group consisting of both VKM members and external experts to answer the request from the Norwegian Food Safety Authority. The members of the ad hoc group are acknowledged for their valuable work on this opinion. The members of the ad hoc group are: VKM members Brit Hjeltnes (Chair), Panel on Animal Health and Welfare Ulf Erikson, Panel on Animal Health and Welfare Stein Mortensen, Panel on Animal Health and Welfare External experts Grete Bæverfjord, Nofima Marin, Sunndalsøra Trond Rosten, SINTEF Fisheries and Aquaculture Peter Østergård, Sp/F Aquamed, Faroe Islands Other contributors to the assessment are Frode Mathisen, Anders Fjellheim and Brit Tørud.
    [Show full text]