Trichoderma Spp. As Agent of Biological Control in Local Rice Diseases in Tidal Swamp Lands in South Kalimantan, Indonesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biological Control of Rhizoctonia Solani by Indigenous Trichoderma Spp
Hebron University Research Journal. H.U.R.J. is available online at Vol.(3), No.(1), pp.(1 – 15), 2007 http://www.hebron.edu/journal Biological Control of Rhizoctonia solani by Indigenous Trichoderma spp. Isolates from Palestine 1 1 *Radwan M. Barakat , Fadel Al-Mahareeq , 2 1 Mohammed S. Ali -Shtayeh , and Mohammad I. AL- Masri 1Faculty of Agriculture, Hebron University, Hebron- Palestine 2Faculty of Science, An-Najah National University, Nablus- Palestine Abstract: The effect of indigenous Trichoderma isolates against the soil-borne phytopathogen Rhizoctonia solani was investigated in dual culture and bioassay on bean plants. Ap- plication of the bioagent isolates as a conidial suspension (3*107) greatly reduced the disease index of bean plants caused by R. solani in different rates and the most effective Trichoderma harzianum isolate (Jn14) reduced the disease by 65%. In dual culture, the T. harzianum (Jn14) overgrew the pathogen R. solani in an average of 16.75 mm/day at 30 °C. In addition, the results showed that T. harzianum (Jn14) and T. hamatum (T36) were the most effective isolates at 25°C and inhibited R. solani mycelial growth by 42% and 78% respectively, due to fungitoxic metabolites production. The Effect of Trichoderma on bean seedlings growth was obvious; height was nearly doubled (160% - 200%), while fresh and dry weights increased by 133% and 217%, respectively. Ger- mination of bean seeds in treated soil with Trichoderma isolates occurred about four days earlier than those in untreated soils. The results revealed however some variation between isolates which was due to genetic variation, mycelium-coiling rate, sporulation rate, fungitoxic metabolites, induced growth response and temperature effect. -
Mini-Paper – the Use of Microbial Biocontrol Agents Against Soil-Borne Diseases
Focus Group SOIL-BORNE DISEASES Mini-paper – The use of microbial biocontrol agents against soil-borne diseases Ilaria Pertot; Claude Alabouvette; Estefanía Hinarejos Esteve; Soraya Franca INTRODUCTION The value of the global biopesticide market is expected to reach $4,556.37 Million by 2019, at a compound annual growth rate of 15.30% from 2014 to 2019 (source: Marketsandmarkets.com, 2014; last access 31/03/2015). The reasons for such growth can be found in: the increasing concerns on the impact of residues and overuse of synthetic chemical pesticides and the increasing relevance of pests and pathogens due to growth in food demand, the withdrawal of several chemical pesticides including soil fumigants, the appearance of new invasive species and pesticide resistant strains of pests, the effect of climate change and the specialised monoculture. The decrease of the cost of several biopesticides, the introduction of technologically advanced products, the increase knowledge of farmers and the strict thresholds in pesticides residues set by many food retailers are also promoting the switch form chemical to biopesticides. In addition in EU the Directive on the Sustainable Use of Pesticides (2009/128/EC) is also expected to stimulate the biopesticide market positively. Some active ingredients have been included in Annex 1 according Regulation EC 1107/2009 and several new others are most probably under development by multinational agrochemical companies following recent acquisitions. According the present regulation if a microorganism has fungicide activity should be registered in order to be applied for such use. The high cost of registration prevents a large number of potential biocontrol agents to reach the market. -
Two New Species and a New Chinese Record of Hypocreaceae As Evidenced by Morphological and Molecular Data
MYCOBIOLOGY 2019, VOL. 47, NO. 3, 280–291 https://doi.org/10.1080/12298093.2019.1641062 RESEARCH ARTICLE Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data Zhao Qing Zeng and Wen Ying Zhuang State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China ABSTRACT ARTICLE HISTORY To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet Received 13 February 2019 of China were examined and two new species and a new Chinese record were discovered. Revised 27 June 2019 Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1a, and RPB2 Accepted 4 July 2019 regions support their placements in Hypocreaceae and the establishments of the new spe- Hypomyces hubeiensis Agaricus KEYWORDS cies. sp. nov. is characterized by occurrence on fruitbody of Hypomyces hubeiensis; sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phia- morphology; phylogeny; lides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stro- mata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium- like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China. 1. Introduction Members of the genus are mainly distributed in temperate and tropical regions and economically The family Hypocreaceae typified by Hypocrea Fr. -
Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. -
Biocontrol Potential of Trichoderma Viride, Pseudomonas Fluorescens for Fusarium Wilt of Cowpea (Vigna Unguiculata L.)
International Journal of Agricultural Technology 2020 Vol. 16(2): 377-392 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Biocontrol potential of Trichoderma viride, Pseudomonas fluorescens for Fusarium wilt of cowpea (Vigna unguiculata L.) Ramasamy, P. and Sundaram, L.* Department of Botany, School of Life Sciences, Periyar University, Salem. Tamil Nadu, India. Ramasamy, P. and Sundaram, L. (2020). Biocontrol potential of Trichoderma viride, Pseudomonas fluorescens for fusarium wilt of cow pea (Vigna unguiculata L.). International Journal of Agricultural Technology 16(2): 377-392. Abstract Trichoderma viride (MH333256), Pseudomonas fluorescens (Ps01), Fusarium oxysporum (Fu04) were morphological identified and biochemical characterization was determined under compound microscope. All isolates were phylogenetic confirmed by genetic DNA isolation and PCR analysis. The healthy seeds of Cowpea (Vigna unguiculata L.) were used in experiment. Results described in treatments of control, Ps01, Tr02, Fu04, Ps01+ Fu04, Tr02+ Fu04, Ps01+ Fu04+Tr02, after inoculation to the seeds sown in the pots. In pot experiment, the bio-inoculated plant (Tr02) significantly enhanced the plant biomass, chlorophyll, nitrogen, NPK content and soil microbial population after 45 DAI. Bioinoculant (Tr02, Ps01) highly inhibited plant pathogen (Fu04) and increased in plant fresh weight (13.4 g) when compared to the control (9 g) and Fu04 (6 g). Keywords: Trichoderma viride, Pseudomonas fluorescens, Fusarium oxysporum, Siderophore, Phosphate solublization Introduction Soil-borne pathogens cause the diseases leading to low quality and yield of the crops. Fungi is the most important soil-borne pathogens that damaged the several major crops. Pythium, Botrytis, Rhizoctonia and Fusarium are found to be the main pathogenic fungi (Djonovic et al., 2007). -
Indoor Fungal Infestations and Mycotoxicity: Guidance for Public Health Professionals and Industrial Hygienists
Indoor fungal infestations and mycotoxicity: guidance for public health professionals and industrial hygienists Robert Thiboldeaux, Ph.D., Toxicologist, Wisconsin Bureau of Environmental and Occupational Health, Department of Health and Family Services Introduction and scope. “Mold spores are omnipresent, and a constantly elevated humidity in given building containing organic components will inevitably lead to [fungal] growth and subsequent damage to the materials” (Gravensen, 1999). In recent years indoor fungal growth and airborne particles have gained the reputation of a serious health threat. The extent to which this perception is justified is controversial. We know that mold dust and spores can be allergenic, and that excessive exposure to fungal materials can cause infectious respiratory ailments. We also know that some mold species may produce toxic secondary metabolites. Less clear is the extent to which the presence of fungal material represents an imminent threat to human heath. Health experts agree that visible mold growth should be discouraged in the indoor environment, and that management of the indoor environment should take the form of controlling indoor humidity, disinfecting surfaces with visible mold growth, and discarding moldy articles. These are recommendations for general indoor sanitation and do not necessarily recognize indoor mold as an acute health threat. However, in recent years it has become common to confront visible indoor mold with professional assessments and drastic, costly remedies. Such measures may not be beneficial, and may cause unneeded economic stress and disruption. The purpose of this review is to provide guidance on indoor mold and mycotoxicity to the public health community. This review, while focusing on mycotoxicity, will argue that the health effects claimed to follow from inhalational exposure to fungal particles in residential, school, and office settings are poorly documented and probably multifactorial. -
Bioefficacy of Antagonists Against Root-Rot Fungus Macrophomina Phaseolina of Safflower
Bioefficacy of antagonists against root-rot fungus Macrophomina phaseolina of safflower Vrijendra Singh, A. M. Ranaware and Nandini Nimbkar Nimbkar Agricultural Research Institute, Lonand Road, Phaltan 415523, Maharashtra, India. [email protected] Abstract Safflower (Carthamus tinctorius L.) is affected by a number of diseases. Though root-rot caused by Rhizoctonia bataticola is of minor importance, it is sporadic in some areas and as it forms a disease complex with wilt, is difficult to manage. The present investigation deals with the biological control of Macrophomina phaseolina-the pycnidial stage of this fungus. A series of isolations were made from the soil of rhizosphere of healthy safflower plants. Among 13 isolates assayed for antagonism, all the seven fungi and six bacteria significantly inhibited colony growth of M. phaseolina in dual culture plates. In paper towel tests, four of the antagonists when used for seed treatment, did not show any detrimental effect on germination. On the contrary, the antagonist-coated seeds improved safflower germination and proved effective in protecting safflower from root-rot. Moreover, it also resulted in significant increase in root length and high vigour index. The four antagonists were later identified as Trichoderma viride, T. harzianum, Bacillus subtilis and Pseudomonas fluorescens. Keywords: Macrophomina phaseolina – antagonists – Trichoderma - Bacillus - Pseudomonas Introduction Safflower is affected by a number of diseases caused by fungi and a few caused by bacteria and viruses. In last few years the root-rot disease caused by the fungus Macrophomina phaseolina has become quite serious resulting in considerable yield losses in safflower. Seed treatment with fungicides does not protect the crop for very long. -
GRAS Notice 756, Endo-1,4-Beta-Glucanase from Trichoderma Reesei
GRAS Notice (GRN) No. 756 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm AB Enzymes AB Enzymes GmbH - Feldbergstrasse 78, D-64293 Darmstadt January 5, 2018 Office of Food Additive Safety (HFS-255), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740. RE: GR GRAS Notification for an endo-1,4-13- glucanase from a genetically modified Trichoderma reesei AB Enzymes GmbH, we are submitting for FDA review, Form 3667, one paper copy, and the enclosed CD, free of viruses, containing a GRAS notification for endo-1,4-13- glucanase. The attached documentation contains the specific information that addresses the safe human food uses for the subject notified substances as discussed in GRAS final rule, 21 CFR Part 170.30 (a)(b), subpart E. Please contact the undersigned by telephone or email if you have any questions or additional information is required. We look forward to your feedback. Candice Cryne Regulatory Affairs Manager 1 647-919-3964 Candi [email protected] Form Approved: 0MB No. 0910-0342 ; Expiration Date: 09/30/2019 (See last page for 0MB Statement) FDA USE ONLY GRN NUMBER DATE OF,~ CEIPT ~(!)t:) "76@ I '2..11-J 2o g DEPARTMENT OF HEAL TH AND HUMAN SERVICES ESTIMATED DAILY INTAKE INTENDED USE FOR INTERNET Food and Drug Administration GENERALLY RECOGNIZED AS SAFE - NAME FOR INTERNET (GRAS) NOTICE (Subpart E of Part 170) KEYWORDS Transmit completed form and attachments electronically via the Electronic Submission Gateway (see Instructions); OR Transmit completed form and attachments in paper format or on physical media to: Office of Food Additive Safety (HFS-200), Center for Food Safety and Applied Nutrition, Food and Drug Administration,5001 Campus Drive, College Park, MD 20740-3835. -
Biocontrol Mechanisms of Trichoderma Harzianum Against Soybean Charcoal Rot Caused by Macrophomina Phaseolina
JOURNAL OF PLANT PROTECTION RESEARCH DOI: 10.1515/jppr-2016-0004 Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina Nima Khaledi*, Parissa Taheri Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box: 91775–1163, Mashhad, Iran Received: October 1, 2015 Accepted: January 26, 2016 Abstract: Throughout the world, charcoal rot, caused by Macrophomina phaseolina, is one of the most destructive and widespread dis- eases of crop plants such as soybean. In this study, the biological control capability of 11 Trichoderma spp. isolates against M. phaseolina was investigated using screening tests. Among all the tested Trichoderma spp. isolates, inhibition varied from 20.22 to 58.67% in dual culture tests. Dual culture, volatile and non-volatile tests revealed that two isolates of Trichoderma harzianum (including the isolates T7 and T14) best inhibited the growth of M. phaseolina in vitro. Therefore, these isolates were selected for biocontrol of M. phaseolina in vivo. The results of greenhouse experiments revealed that disease severity in the seed treatment with T. harzianum isolates was significantly lower than that of the soil treatment. In most of the cases, though, soil treatment with T. harzianum resulted in higher plant growth parameters, such as root and shoot weight. The effects of T. harzianum isolates on the activity of peroxidase enzyme and phenolic contents of the soybean root in the presence and absence of M. phaseolina were determined in greenhouse conditions. Our results suggested that a part of the inhibitory effect of T. harzianum isolates on soybean charcoal rot might be related to the indirect influence on M. -
Trichoderma- a Potential and Effective Bio Fungicide and Alternative Source Against Notable Phytopathogens: a Review
Vol. 11(5), pp. 310-316, 4 February, 2016 DOI: 10.5897/AJAR2015.9568 Article Number: E2C4DE057019 African Journal of Agricultural ISSN 1991-637X Copyright ©2016 Research Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Review Trichoderma- a potential and effective bio fungicide and alternative source against notable phytopathogens: A review Mukesh Srivastava, Vipul Kumar, Mohammad Shahid, Sonika Pandey and Anuradha Singh Biocontrol Laboratory, Department of Plant Pathology, CSA University of Agriculture and Technology, Kanpur-208002, Uttar Pradesh, India. Received 31 January, 2015; Accepted 20 August, 2015 Trichoderma, is a useful, filamentous fungi and they are cosmopolitan in nature which have attracted the attention because of their multi prong action against various plant pathogens. There are several biocontrol mechanism employed by Trichoderma against plant pathogens, these include release of hydrolytic enzymes that degrade cell wall of phytopathogenic fungi, competition for nutrients, parasitism, and antibiotics. Trichoderma spp. generally grows in its natural habitat on plant root surface and therefore it controls root diseases in particular. Key words: Trichoderma, anatagonism, phytopathogens. INTRODUCTION Modern agricultural practices are getting affected by limits exceeds. As a result, there is a need for some eco- various problems such as disease, pest, drought, friendly biocontrol agents that help in resolving problems. decreased soil fertility due to use of hazardous chemical Hence, there is a need to look forwarded to develop pesticides, bio-magnification and various environmental practices and eco-friendly bio-control in order to reduce problem. The fungal disease is one of the major the dependence on synthetic agrochemicals. Therefore, constraints for agriculture productivity in India losses is recent trends favor the use of alternative substances about 22 to 25% of its crops due to fungal diseases each derived from natural plant extracts, biological control and year. -
Best Management Practices for Log-Based Shiitake Cultivation in the Northeastern United States
BEST MANAGEMENT PRACTICES for Log-Based Shiitake Cultivation IN THE NORTHEASTERN UNITED STATES 1 <No data from link> (<No data from link>) Cover Photo Credit: Steve and Julie Rockcastle; Green Heron Growers Funded by a Northeast SARE Research and Education Grant Project Coordinators Contributing Farm Advisors Ken Mudge Steve Sierigk Associate Professor Hawk Meadow Farm The College of Agriculture and Life Sciences, Department of Horticulture Trumansburg, N.Y. is a unit of the State University of New York, Cornell University, Ithaca, N.Y. Cornell Univer- Cornell University sity is an equal opportunity, affirmative ac- Ithaca, N.Y. Nick Laskovski tion educator and employer. Dana Forest Farm Allen Matthews Waitsfield, Vt. Director and Instructor of Sustainable Agriculture Steve and Julie Rockcastle Chatham University Green Heron Growers Pittsburgh, Pa. Panama, N.Y. Copyright © 2013, UVM Center for Sustain- able Agriculture, University of Vermont Ben Waterman Steve Gabriel Extension. All rights reserved. No part of Wellspring Forest Farm, this work may be reproduced without Beginning Farmer Coordinator the prior permission of the UVM Exten- Center for Sustainable Agriculture Mecklenburg N.Y. sion Center for Sustainable Agriculture Burlington, Vt. (http://www.uvm.edu/~susagctr). Issued in furtherance of Cooperative Exten- sion work, Acts of May 8 and June 30, 1914, in Project Manager cooperation with the United States Depart- ment of Agriculture. University of Vermont Bridgett (Jamison) Hilshey Extension, Burlington, Vermont. University of Vermont Extension, and U.S. Department Graduate Student of Agriculture, cooperating, offer education University of Vermont and employment to everyone without re- gard to race, color, national origin, gender, Burlington, Vt. -
Pathogenic Fungi and Bio-Control Agents: Competitive Bio-Assay Research
th RAHMANN G & AKSOY U (Eds.) (2014) Proceedings of the 4 ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13-15 Oct., Istanbul, Turkey (eprint ID 23872) Pathogenic fungi and Bio-control agents: Competitive bio-assay research 1* 2 2 TIMOTHY IPOOLA OLABIYI , MICHELINA RUOCCO , S. LANZUISE Key words: Trichoderma, bio-control, pathogens, fungi Abstract Fungi of the genus Trichoderma have a track record of being antagonist to quite of a number of agricultural important pathogens. Trichoderma have some unique characteristics that make it scientifically proven and suitable bio-control agents against varieties of pathogenic organism infecting economic food crops. Trichoderma has the advantage of being environment friendly and not hazardous to the health of human beings, livestock, soil and environment. Competitive bio-assay experiment was carried out in the laboratory on the effects of Trichoderma species (T. atroviride P1 isolates, T. harzianum T22 isolates, T. viride) on some crop pathogens (Phytophthora cinnanerium, Botrytis cinaria and Rhizoctonia solani). Pure culture of Trichoderma and pathogenic fungi were replicated four times and arranged in a complete block design. The result of the experiment shows that Trichoderma species are strong competitor of P. cinnanerium, B. cinaria and R.solani. Within 72 hours, the Trichoderma species were able to grow and completely overlap the P. cinnanerium, B. cinaria and R. solani. This strong competitiveness indicated that Trichoderma species would effectively inhibit the growth of P. cinnanerium, B. cinaria and R. solani on the infected crop; thus the application of Trichoderma species in the control of P. cinnanerium, B. cinaria and R.