Antagonistic Confrontation of Trichoderma Spp Against Fruit Rot Pathogens on Sapodilla (Manilkara Zapota L.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mini-Paper – the Use of Microbial Biocontrol Agents Against Soil-Borne Diseases
Focus Group SOIL-BORNE DISEASES Mini-paper – The use of microbial biocontrol agents against soil-borne diseases Ilaria Pertot; Claude Alabouvette; Estefanía Hinarejos Esteve; Soraya Franca INTRODUCTION The value of the global biopesticide market is expected to reach $4,556.37 Million by 2019, at a compound annual growth rate of 15.30% from 2014 to 2019 (source: Marketsandmarkets.com, 2014; last access 31/03/2015). The reasons for such growth can be found in: the increasing concerns on the impact of residues and overuse of synthetic chemical pesticides and the increasing relevance of pests and pathogens due to growth in food demand, the withdrawal of several chemical pesticides including soil fumigants, the appearance of new invasive species and pesticide resistant strains of pests, the effect of climate change and the specialised monoculture. The decrease of the cost of several biopesticides, the introduction of technologically advanced products, the increase knowledge of farmers and the strict thresholds in pesticides residues set by many food retailers are also promoting the switch form chemical to biopesticides. In addition in EU the Directive on the Sustainable Use of Pesticides (2009/128/EC) is also expected to stimulate the biopesticide market positively. Some active ingredients have been included in Annex 1 according Regulation EC 1107/2009 and several new others are most probably under development by multinational agrochemical companies following recent acquisitions. According the present regulation if a microorganism has fungicide activity should be registered in order to be applied for such use. The high cost of registration prevents a large number of potential biocontrol agents to reach the market. -
Biodiversity of Trichoderma in Neotropics
13 Biodiversity of Trichoderma in Neotropics Lilliana Hoyos-Carvajal1 and John Bissett2 1Universidad Nacional de Colombia, Sede Bogotá 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa 1Colombia 2Canada 1. Introduction Trichoderma species frequently are predominant over wide geographic regions in all climatic zones, where they are significant decomposers of woody and herbaceous materials. They are characterized by rapid growth, an ability to assimilate a diverse array of substrates, and by their production of an range of antimicrobials. Strains have been exploited for production of enzymes and antibiotics, bioremediation of xenobiotic substances, and as biological control agents against plant pathogenic fungi and nematodes. The main use of Trichoderma in global trade is derived from its high production of enzymes. Trichoderma reesei (teleomorph: Hypocrea jecorina) is the most widely employed cellulolytic organism in the world, although high levels of cellulase production are also seen in other species of this genus (Baig et al., 2003, Watanabe et al., 2006). Worldwide sales of enzymes had reached the figure of $ 1.6 billion by the year 2000 (Demain 2000, cited by Karmakar and Ray, 2011), with an annual growth of 6.5 to 10% not including pharmaceutical enzymes (Stagehands, 2008). Of these, cellulases comprise approximately 20% of the enzymes marketed worldwide (Tramoy et al., 2009). Cellulases of microbial origin are used to process food and animal feed, biofuel production, baking, textiles, detergents, paper pulp, agriculture and research areas at all levels (Karmakar and Ray, 2011). Most cellulases are derived from Trichoderma (section Longibrachiatum in particular) and Aspergillus (Begum et al., 2009). -
Two New Species and a New Chinese Record of Hypocreaceae As Evidenced by Morphological and Molecular Data
MYCOBIOLOGY 2019, VOL. 47, NO. 3, 280–291 https://doi.org/10.1080/12298093.2019.1641062 RESEARCH ARTICLE Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data Zhao Qing Zeng and Wen Ying Zhuang State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China ABSTRACT ARTICLE HISTORY To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet Received 13 February 2019 of China were examined and two new species and a new Chinese record were discovered. Revised 27 June 2019 Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1a, and RPB2 Accepted 4 July 2019 regions support their placements in Hypocreaceae and the establishments of the new spe- Hypomyces hubeiensis Agaricus KEYWORDS cies. sp. nov. is characterized by occurrence on fruitbody of Hypomyces hubeiensis; sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phia- morphology; phylogeny; lides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stro- mata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium- like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China. 1. Introduction Members of the genus are mainly distributed in temperate and tropical regions and economically The family Hypocreaceae typified by Hypocrea Fr. -
Hypocrea Stilbohypoxyli and Its Trichoderma Koningii-Like Anamorph: a New Species from Puerto Rico on Stilbohypoxylon Moelleri
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2003 Band/Volume: 55 Autor(en)/Author(s): Lu Bingsheng, Samuels Gary J. Artikel/Article: Hypocrea stilbohypoxyli and its Trichoderma koningii-like anamorph: a new species from Puerto Rico on Stilbohypoxylon moelleri. 255-266 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Hypocrea stilbohypoxyli and its Trichoderma koningii-like anamorph: a new species from Puerto Rico on Stilbohypoxylon moelleri Bingsheng Lu1* & Gary J. Samuels2 1 Department of Plant Pathology, Agronomy College, Shanxi Agricultural University, Taigu, Shanxi 030801, China 2 USDA-ARS, Systematic Botany and Mycology Laboratory, Rm.304, B-011A, BARC-West, Beltsville, Maryland 20705-2350, USA Lu, B. S. & G. J. Samuels (2003). Hypocrea stilbohypoxyli and its Tricho- derma koningii-like anamorph: a new species from Puerto Rico on Stilbohypoxylon moelleri. - Sydowia 55 (2): 255-266. The new species Hypocrea stilbohypoxyli and its Trichoderma anamorph are described. The species is known only from Puerto Rico where it grows on stromata of Stilbohypoxylon moelleri (Xylariales, Xylariaceae). Hypocrea stilbohypoxyli is readily distinguished from the morphologically most similar H. koningii/T. koningii by its substratum and slower growth rate, which is especially evident on SNA. Stromata are morphologically very similar to those of H. koningii and H. rufa. The anamorph is morphologically close to T. koningii, differing from T! koningii in having somewhat shorter and wider conidia. Hypocrea stilbohypoxyli differs from H. koningii/T. koningii in 3 bp in ITS-1 and 2 bp in ITS-2 sequences. -
Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. -
Microorganisms
microorganisms Review Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi Raja Asad Ali Khan 1 , Saba Najeeb 1, Shaukat Hussain 2, Bingyan Xie 1,* and Yan Li 1,* 1 Institute of Vegetables and Flowers (Plant Pathology Lab), Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (R.A.A.K.); [email protected] (S.N.) 2 Department of Plant Pathology, The University of Agriculture Peshawar, Peshawar 25130, Pakistan; [email protected] * Correspondence: [email protected] (B.X.); [email protected] (Y.L.) Received: 2 April 2020; Accepted: 28 May 2020; Published: 29 May 2020 Abstract: Phytopathogenic fungi, causing significant economic and production losses, are becoming a serious threat to global food security. Due to an increase in fungal resistance and the hazardous effects of chemical fungicides to human and environmental health, scientists are now engaged to explore alternate non-chemical and ecofriendly management strategies. The use of biocontrol agents and their secondary metabolites (SMs) is one of the potential approaches used today. Trichoderma spp. are well known biocontrol agents used globally. Many Trichoderma species are the most prominent producers of SMs with antimicrobial activity against phytopathogenic fungi. Detailed information about these secondary metabolites, when grouped together, enhances the understanding of their efficient utilization and further exploration of new bioactive compounds for the management of plant pathogenic fungi. The current literature provides the information about SMs of Trichoderma spp. in a different context. In this review, we summarize and group different antifungal SMs of Trichoderma spp. against phytopathogenic fungi along with a comprehensive overview of some aspects related to their chemistry and biosynthesis. -
Indoor Fungal Infestations and Mycotoxicity: Guidance for Public Health Professionals and Industrial Hygienists
Indoor fungal infestations and mycotoxicity: guidance for public health professionals and industrial hygienists Robert Thiboldeaux, Ph.D., Toxicologist, Wisconsin Bureau of Environmental and Occupational Health, Department of Health and Family Services Introduction and scope. “Mold spores are omnipresent, and a constantly elevated humidity in given building containing organic components will inevitably lead to [fungal] growth and subsequent damage to the materials” (Gravensen, 1999). In recent years indoor fungal growth and airborne particles have gained the reputation of a serious health threat. The extent to which this perception is justified is controversial. We know that mold dust and spores can be allergenic, and that excessive exposure to fungal materials can cause infectious respiratory ailments. We also know that some mold species may produce toxic secondary metabolites. Less clear is the extent to which the presence of fungal material represents an imminent threat to human heath. Health experts agree that visible mold growth should be discouraged in the indoor environment, and that management of the indoor environment should take the form of controlling indoor humidity, disinfecting surfaces with visible mold growth, and discarding moldy articles. These are recommendations for general indoor sanitation and do not necessarily recognize indoor mold as an acute health threat. However, in recent years it has become common to confront visible indoor mold with professional assessments and drastic, costly remedies. Such measures may not be beneficial, and may cause unneeded economic stress and disruption. The purpose of this review is to provide guidance on indoor mold and mycotoxicity to the public health community. This review, while focusing on mycotoxicity, will argue that the health effects claimed to follow from inhalational exposure to fungal particles in residential, school, and office settings are poorly documented and probably multifactorial. -
Best Management Practices for Log-Based Shiitake Cultivation in the Northeastern United States
BEST MANAGEMENT PRACTICES for Log-Based Shiitake Cultivation IN THE NORTHEASTERN UNITED STATES 1 <No data from link> (<No data from link>) Cover Photo Credit: Steve and Julie Rockcastle; Green Heron Growers Funded by a Northeast SARE Research and Education Grant Project Coordinators Contributing Farm Advisors Ken Mudge Steve Sierigk Associate Professor Hawk Meadow Farm The College of Agriculture and Life Sciences, Department of Horticulture Trumansburg, N.Y. is a unit of the State University of New York, Cornell University, Ithaca, N.Y. Cornell Univer- Cornell University sity is an equal opportunity, affirmative ac- Ithaca, N.Y. Nick Laskovski tion educator and employer. Dana Forest Farm Allen Matthews Waitsfield, Vt. Director and Instructor of Sustainable Agriculture Steve and Julie Rockcastle Chatham University Green Heron Growers Pittsburgh, Pa. Panama, N.Y. Copyright © 2013, UVM Center for Sustain- able Agriculture, University of Vermont Ben Waterman Steve Gabriel Extension. All rights reserved. No part of Wellspring Forest Farm, this work may be reproduced without Beginning Farmer Coordinator the prior permission of the UVM Exten- Center for Sustainable Agriculture Mecklenburg N.Y. sion Center for Sustainable Agriculture Burlington, Vt. (http://www.uvm.edu/~susagctr). Issued in furtherance of Cooperative Exten- sion work, Acts of May 8 and June 30, 1914, in Project Manager cooperation with the United States Depart- ment of Agriculture. University of Vermont Bridgett (Jamison) Hilshey Extension, Burlington, Vermont. University of Vermont Extension, and U.S. Department Graduate Student of Agriculture, cooperating, offer education University of Vermont and employment to everyone without re- gard to race, color, national origin, gender, Burlington, Vt. -
Pathogenic Fungi and Bio-Control Agents: Competitive Bio-Assay Research
th RAHMANN G & AKSOY U (Eds.) (2014) Proceedings of the 4 ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13-15 Oct., Istanbul, Turkey (eprint ID 23872) Pathogenic fungi and Bio-control agents: Competitive bio-assay research 1* 2 2 TIMOTHY IPOOLA OLABIYI , MICHELINA RUOCCO , S. LANZUISE Key words: Trichoderma, bio-control, pathogens, fungi Abstract Fungi of the genus Trichoderma have a track record of being antagonist to quite of a number of agricultural important pathogens. Trichoderma have some unique characteristics that make it scientifically proven and suitable bio-control agents against varieties of pathogenic organism infecting economic food crops. Trichoderma has the advantage of being environment friendly and not hazardous to the health of human beings, livestock, soil and environment. Competitive bio-assay experiment was carried out in the laboratory on the effects of Trichoderma species (T. atroviride P1 isolates, T. harzianum T22 isolates, T. viride) on some crop pathogens (Phytophthora cinnanerium, Botrytis cinaria and Rhizoctonia solani). Pure culture of Trichoderma and pathogenic fungi were replicated four times and arranged in a complete block design. The result of the experiment shows that Trichoderma species are strong competitor of P. cinnanerium, B. cinaria and R.solani. Within 72 hours, the Trichoderma species were able to grow and completely overlap the P. cinnanerium, B. cinaria and R. solani. This strong competitiveness indicated that Trichoderma species would effectively inhibit the growth of P. cinnanerium, B. cinaria and R. solani on the infected crop; thus the application of Trichoderma species in the control of P. cinnanerium, B. cinaria and R. -
Biocontrol Efficacy of Trichoderma Koningii Against Some Plant Pathogenic Fungi
Volume : 2 | Issue : 3 | March 2013 ISSN - 2250-1991 Research Paper Botany Biocontrol Efficacy of Trichoderma Koningii Against some Plant Pathogenic fungi * Shaikh Farah T ** Sahera Nasreen * Department of Botany, Govt. Institute of Science, Nipat Niranjan Nagar, Caves Road, Aurangabad (M.S.) – 431004. ** Department of Botany, Govt. Institute of Science, Nipat Niranjan Nagar, Caves Road, Aurangabad (M.S.) – 431004. ABSTRACT In the present investigation, Trichoderma koningii was evaluated in vitro for its antagonistic activity against four fungal pathogen viz., Fusarium oxysporum, Fusarium solani, Alternari solani and Rhizoctonia solani causing vegetable diseases. T. koningii strongly antagonized with all pathogenic fungi in dual culture assay and gave maximum inhibition of mycelia growth (91.09%). Volatile metabolites produced by T. koningii exhibited highest growth inhibition rate (54.67%). The Metabolites released from T. koningii were tested in culture medium against all pathogens. Cell free metabolites of T. koningii inhibited the growth of all four pathogens and appeared to be fungicidal in its activity. Keywords : T. koningii, fungal pathogens, Antagonistic activity. INTRODUCTION: fungal pathogens were placed on each plate. In control Different species of Alternaria, Fusarium, Curvularia, plates, a sterile disc whatman No.1 filter paper of mm 6 Rhizoctonia, Colletotrichum are most common associates of fruit diameter was placed at opposite side of targeted fungal vegetables all over the world, causing pre and post infections pathogens in complete aseptic condition. Three replications and considerable quality losses. Fungicidal application as were maintained for each T. koningii and targeted fungal seed or soil treatment, however, has been found to be pathogens seperataly. All the plates were incubated at ineffective against these pathogens as the propagules are 25±1˚C for about 7 days after inoculation. -
Biocontrol Efficacy and Other Characteristics of Protoplast Fusants
Mycol. Res. 106 (3): 321–328 (March 2002). # The British Mycological Society 321 DOI: 10.1017\S0953756202005592 Printed in the United Kingdom. Biocontrol efficacy and other characteristics of protoplast fusants between Trichoderma koningii and T. virens Linda E. HANSON1* and Charles R. HOWELL2 " USDA-ARS Sugar Beet Research Unit, Crops Research Laboratory, 1701 Centre Avenue, Fort Collins, CO 80526, USA. # USDA-ARS SPARC, Cotton Pathology Research Unit, 2765 F&B Road, College Station, TX 77845, USA. E-mail: lehanson!lamar.colostate.edu Received 8 February 2001; accepted 29 October 2001. Several Trichoderma virens (syn. Gliocladium virens) strains have good biocontrol activity against Rhizoctonia solani on cotton but lack some of the commercially desirable characteristics found in other Trichoderma species. In an attempt to combine these desirable characteristics, we used a highly effective biocontrol strain of T. virens in protoplast fusions with a strain of T. koningii, which had good storage qualities, but little biocontrol efficacy. All fusants were morphologically similar to one of the parental species. However, when compared to the morphologically similar T. koningii parent, two fusants showed significantly better biocontrol activity against R. solani on cotton. In addition, one T. virens-like fusant gave significantly less control than the T. virens parent. Fusants also differed from the morphologically similar parent in the production of secondary metabolites. One fusant was obtained which maintained biocontrol activity during storage for up to a year. INTRODUCTION between organisms that cannot undergo sexual re- combination (Pe’er & Chet 1990). Protoplast fusions Biocontrol of plant diseases offers many benefits in have been performed with Trichoderma species for disease management. -
Chemotaxonomy of Trichoderma Spp. Using Mass Spectrometry-Based Metabolite Profiling
J. Microbiol. Biotechnol. (2011), 21(1), 5–13 doi: 10.4014/jmb.1008.08018 First published online 19 November 2010 Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling Kang, Daejung1, Jiyoung Kim1, Jung Nam Choi1, Kwang-Hyeon Liu2, and Choong Hwan Lee1* 1Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea 2Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea Received: August 17, 2010 / Revised: September 20, 2010 / Accepted: September 28, 2010 In this study, seven Trichoderma species (33 strains) were Members of Trichoderma are the most common saprophytic classified using secondary metabolite profile-based fungi and are found in almost all agriculture soils chemotaxonomy. Secondary metabolites were analyzed by worldwide. The genus was identified 200 years ago by liquid chromatography-electrospray ionization tandem Persoon (1794), and approximately 130 species have been mass spectrometry (LC-ESI-MS-MS) and multivariate classified [4]. Certain species of Trichoderma have been statistical methods. T. longibrachiatum and T. virens were known to produce important secondary metabolites such independently clustered based on both internal transcribed as antibiotics, plant growth regulators, and mycotoxins, spacer (ITS) sequence and secondary metabolite analyses. which are mainly used to protect plants from pathogens T. harzianum formed three subclusters in the ITS-based [21, 22, 26]. In fact, T. harzianum and T. atroviride are phylogenetic tree and two subclusters in the metabolite- commercially used as biocontrol agents [27]. The compounds based dendrogram. In contrast, T. koningii and T. atroviride produced by some Trichoderma species are harmful to strains were mixed in one cluster in the phylogenetic tree, animals.