Psychotropic Medications Consent Drug List (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Psychotropic Medications Consent Drug List (PDF) Classes of Medications Frequently Used for Psychiatric Indications Consent is required for any medication that is used in the treatment of a psychiatric diagnosis or symptom, whether or not the medication is included in this list. Refer to physician order for determination of indication for use. The classification of psychotropic medication is fairly standard but medications can be used for treatment of illnesses that would be considered listed under a different classification. For example, some medications listed under antipsychotics maybe used as a mood stabilizer. The Executive Formulary Committee does not endorse the use of nonformulary drugs Antidepressants Antipsychotics amitriptyline (Elavil) aripiprazole (Abilify, Abilify Discmelt) amoxapine (Asendin) nonformulary aripiprazole (Abilify Maintena) bupropion (Wellbutrin, Wellbutrin SR, Wellbutrin aripiprazole lauroxil (Aristada) XL) aripiprazole lauroxil (Aristada Initio) Reserve citalopram (Celexa) asenapine (Saphris) desipramine (Norpramin) asenapine (Secuado) nonformulary desvenlafaxine (Pristiq, Khedezla) nonformulary brexpiprazole (Rexulti) doxepin (Sinequan) cariprazine (Vraylar) duloxetine (Cymbalta) chlorpromazine (Thorazine) escitalopram (Lexapro) clozapine (Clozaril, Fazaclo, Versacloz) esketamine (Spravato) Reserve Reserve fluoxetine (Prozac) droperidol (Inapsine) nonformulary imipramine (Tofranil) fluphenazine (Prolixin) ketamine (Ketalar) Reserve fluphenazine decanoate (Prolixin D) levomilnacipran (Fetzima) nonformulary haloperidol (Haldol) maprotiline (Ludiomil) nonformulary haloperidol decanoate (Haldol D) mirtazapine (Remeron, Remeron SolTab) iloperidone (Fanapt) Reserve nefazodone (Serzone) nonformulary loxapine (Loxitane) nortriptyline (Pamelor, Aventyl) loxapine inhalant (Adasuve) nonformulary paroxetine (Paxil, Paxil CR) lumateperone (Caplyta) protriptyline (Vivactil) nonformulary lurasidone (Latuda) sertraline (Zoloft) olanzapine (Zyprexa, Zyprexa Zydis) trazodone (Desyrel) olanzapine pamoate (Zyprexa Relprevv) trimipramine (Surmontil) nonformulary Reserve venlafaxine (Effexor, Effexor XR) paliperidone (Invega) vilazodone (Viibryd) nonformulary paliperidone palmitate (Invega Sustenna) vortioxetine (Trintellix) nonformulary paliperidone palmitate (Invega Trinza) nonformulary perphenazine (Trilafon) pimozide (Orap) nonformulary quetiapine (Seroquel) quetiapine (Seroquel XR) nonformulary risperidone (Risperdal, Risperdal M-Tab) risperidone (Risperdal Consta) risperidone (Perseris) nonformulary thioridazine (Mellaril) Reserve thiothixene (Navane) trifluoperazine (Stelazine) ziprasidone (Geodon) Monoamine Oxidase Inhibitors Substance Use Treatments isocarboxazid (Marplan) nonformulary acamprosate (Campral) phenelzine (Nardil) buprenorphine (Subutex) Reserve selegiline (Emsam) nonformulary buprenorphine/naloxone (Suboxone) Reserve tranylcypromine (Parnate) disulfiram (Antabuse) naltrexone (ReVia) naltrexone (Vivitrol) Reserve topiramate (Topamax) Anxiolytics/Sedatives/Hypnotics Miscellaneous Drugs alprazolam (Xanax, Xanax XR) atomoxetine (Strattera) buspirone (BuSpar) atenolol (Tenormin) chlordiazepoxide (Librium) clomipramine (Anafranil) clonazepam (Klonopin) clonidine (Catapres) clorazepate (Tranxene) clonidine ER (Kapvay) nonformulary diazepam (Valium) fluvoxamine (Luvox) diphenhydramine (Benadryl) gabapentin (Neurontin) eszopiclone (Lunesta) guanfacine (Tenex, Intuniv) flurazepam (Dalmane) nonformulary metoprolol (Lopressor) hydroxyzine (Atarax, Vistaril) nadolol (Corgard) nonformulary lorazepam (Ativan) propranolol (Inderal) midazolam (Versed) naltrexone (ReVia) oxazepam (Serax) olanzapine/fluoxetine (Symbyax) nonformulary pentobarbital (Nembutal) nonformulary pindolol (Visken) nonformulary ramelteon (Rozerem) nonformulary pimavanserin (Nuplazid) nonformulary suvorexant (Belsomra) nonformulary prazosin (Minipress) temazepam (Restoril) triazolam (Halcion) zaleplon (Sonata) nonformulary zolpidem (Ambien) zolpidem (Ambien CR) nonformulary Mood Stabilizers Stimulants carbamazepine (Tegretol, Tegretol XR, Carbatrol, amphetamine/dextroamphetamine mixture Equetro) (Adderall, Adderall XR) divalproex sodium (Depakote, Depakote ER, dexmethylphenidate ER (Focalin XR) Depakote Sprinkles) dexmethylphenidate (Focalin) nonformulary lamotrigine (Lamictal) dextroamphetamine (Dexedrine, Dexedrine, lithium (Eskalith, Eskalith CR, Lithobid) Zenzedi) oxcarbazepine (Trileptal) lisdexamfetamine (Vyvanse) Reserve topiramate (Topamax) methamphetamine (Desoxyn) nonformulary valproic acid (Depakene) methylphenidate (Ritalin, Ritalin SR, Concerta, Metadate, Metadate CD, Jornay PM) methylphenidate patch (Daytrana) nonformulary methylphenidate soln (Quillivant XR) nonformulary Other This category must be approved prior to inclusion in this Instrument Updated Jan 2021 .
Recommended publications
  • Pindolol of the Activation of Postsynaptic 5-HT1A Receptors
    Potentiation by (-)Pindolol of the Activation of Postsynaptic 5-HT1A Receptors Induced by Venlafaxine Jean-Claude Béïque, Ph.D., Pierre Blier, M.D., Ph.D., Claude de Montigny, M.D., Ph.D., and Guy Debonnel, M.D. The increase of extracellular 5-HT in brain terminal regions antagonist WAY 100635 (100 ␮g/kg, i.v.). A short-term produced by the acute administration of 5-HT reuptake treatment with VLX (20 mg/kg/day ϫ 2 days) resulted in a inhibitors (SSRI’s) is hampered by the activation of ca. 90% suppression of the firing activity of 5-HT neurons somatodendritic 5-HT1A autoreceptors in the raphe nuclei. in the dorsal raphe nucleus. This was prevented by the The present in vivo electrophysiological studies were coadministration of (-)pindolol (15 mg/kg/day ϫ 2 days). undertaken, in the rat, to assess the effects of the Taken together, these results indicate that (-)pindolol coadministration of venlafaxine, a dual 5-HT/NE reuptake potentiated the activation of postsynaptic 5-HT1A receptors inhibitor, and (-)pindolol on pre- and postsynaptic 5-HT1A resulting from 5-HT reuptake inhibition probably by receptor function. The acute administration of venlafaxine blocking the somatodendritic 5-HT1A autoreceptor, but not and of the SSRI paroxetine (5 mg/kg, i.v.) induced a its postsynaptic congener. These results support and extend suppression of the firing activity of dorsal hippocampus CA3 previous findings providing a biological substratum for the pyramidal neurons. This effect of venlafaxine was markedly efficacy of pindolol as an accelerating strategy in major potentiated by a pretreatment with (-)pindolol (15 mg/kg, depression.
    [Show full text]
  • Drug Class Review Beta Adrenergic Blockers
    Drug Class Review Beta Adrenergic Blockers Final Report Update 4 July 2009 Update 3: September 2007 Update 2: May 2005 Update 1: September 2004 Original Report: September 2003 The literature on this topic is scanned periodically. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Mark Helfand, MD, MPH Kim Peterson, MS Vivian Christensen, PhD Tracy Dana, MLS Sujata Thakurta, MPA:HA Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Oregon Health & Science University Copyright © 2009 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 4 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 6 Purpose and Limitations of Evidence Reports........................................................................................ 8 Scope and Key Questions .................................................................................................................... 10 METHODS.................................................................................................................................
    [Show full text]
  • NH Healthy Families Preferred Drug List (PDL) Is the List of Covered Drugs
    Pharmacy Program NH Healthy Families is committed to providing appropriate, high quality, and cost effective drug therapy to all NH Healthy Families members. NH Healthy Families works with providers and pharmacists to ensure that medications used to treat a variety of conditions and diseases are covered. NH Healthy Families covers prescription medications and certain over-the-counter (OTC) medications when ordered by a practitioner. The pharmacy program does not cover all medications. Some medications require prior authorization (PA) or have limitations on age, dosage, and maximum quantities. Preferred Drug List The NH Healthy Families Preferred Drug List (PDL) is the list of covered drugs. The PDL applies to drugs members can receive at retail pharmacies. The NH Healthy Families PDL is continually evaluated by the NH Healthy Families Pharmacy and Therapeutics (P&T) Committee to promote the appropriate and cost- effective use of medications. The Committee is composed of the NH Healthy Families Medical Director, NH Healthy Families Pharmacy Director, and several New Hampshire physicians, pharmacists, and other healthcare professionals. Pharmacy Benefit Manager NH Healthy Families works with Envolve Pharmacy Solutions to process pharmacy claims for prescribed drugs. Some drugs on the NH Healthy Families PDL may require PA, and Envolve Pharmacy Solutions is responsible for administering this process. Envolve Pharmacy Solutions is our Pharmacy Benefit Manager (PBM). Specialty Drugs NH Healthy Families contracts with a number of specialty pharmacies, such as AcariaHealth Specialty Pharmacy, to ensure members have adequate access to the specialty drugs they require. Specialty drugs, such as biopharmaceuticals and injectables, may require PA to be approved for payment by NH Healthy Families.
    [Show full text]
  • ADHD Parents Medication Guide Revised July 2013
    ADHD Parents Medication Guide Revised July 2013 Attention-Deficit/Hyperactivity Disorder Prepared by: American Academy of Child & Adolescent Psychiatry and American Psychiatric Association Supported by the Elaine Schlosser Lewis Fund Physician: ___________________________________________________ Address: ___________________________________________________ ___________________________________________________ ___________________________________________________ Phone: ___________________________________________________ Email: ___________________________________________________ ADHD Parents Medication Guide – July 2013 2 Introduction Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterized by difficulty paying attention, excessive activity, and impulsivity (acting before you think). ADHD is usually identified when children are in grade school but can be diagnosed at any time from preschool to adulthood. Recent studies indicate that almost 10 percent of children between the ages of 4 to 17 are reported by their parents as being diagnosed with ADHD. So in a classroom of 30 children, two to three children may have ADHD.1,2,3,4,5 Short attention spans and high levels of activity are a normal part of childhood. For children with ADHD, these behaviors are excessive, inappropriate for their age, and interfere with daily functioning at home, school, and with peers. Some children with ADHD only have problems with attention; other children only have issues with hyperactivity and impulsivity; most children with ADHD have problems with all three. As they grow into adolescence and young adulthood, children with ADHD may become less hyperactive yet continue to have significant problems with distraction, disorganization, and poor impulse control. ADHD can interfere with a child’s ability to perform in school, do homework, follow rules, and develop and maintain peer relationships. When children become adolescents, ADHD can increase their risk of dropping out of school or having disciplinary problems.
    [Show full text]
  • Lumateperone Monograph
    Lumateperone (Caplyta®) Classification Atypical antipsychotic Pharmacology The mechanism of action of lumateperone tosylate (Caplyta, ITI-007) in the treatment of schizophrenia is unknown but it’s thought to simultaneously modulate serotonin, dopamine, and glutamate neurotransmission. Specifically, lumateperone acts as a potent 5-HT2A receptor antagonist, a D2 receptor presynaptic partial agonist and postsynaptic antagonist, a D1 receptor-dependent modulator of glutamate, and a serotonin reuptake inhibitor. Indication Treatment of schizophrenia in adults Boxed Warning Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. Caplyta is not approved for the treatment of patients with dementia-related psychosis. Pharmacokinetics Pharmacokinetic Parameter Details Absorption Rapidly absorbed. Absolute bioavailability is about 4.4%. Cmax reached approximately 1 (fasting) to 2 h (food) post dosing. Ingestion of high fat meal lowers mean Cmax by 33% and increases mean AUC by 9% Distribution Protein binding = 97.4%. Volume of distribution (IV) = 4.1 L/kg Metabolism Extensively metabolized. T1/2 = 13-21 hours for lumateperone and metabolites Excretion Less than 1% excreted unchanged in urine 1 Texas Health and Human Services ● hhs.texas.gov Dosage/Administration 42 mg by mouth once daily with food. Dose titration is not required. Use in Special Population Pregnancy Neonates exposed to antipsychotic drugs during the third trimester are at risk for extrapyramidal and/or withdrawal symptoms following delivery. Available data from Caplyta use in pregnant women are insufficient to establish any drug associated risks for birth defects, miscarriage, or adverse maternal or fetal outcomes. There are risks to the mother associated with untreated schizophrenia and with exposure to antipsychotics, including Caplyta, during pregnancy.
    [Show full text]
  • Serotonin 2A Activation and a Novel Therapeutic Drug
    Psychopharmacology (2018) 235:3083–3091 https://doi.org/10.1007/s00213-018-5042-1 THEORETICAL AND METHODOLOGICAL PERSPECTIVE The neuropharmacology of sleep paralysis hallucinations: serotonin 2A activation and a novel therapeutic drug Baland Jalal1 Received: 23 April 2018 /Accepted: 17 September 2018 /Published online: 5 October 2018 # The Author(s) 2018 Abstract Sleep paralysis is a state of involuntary immobility occurring at sleep onset or offset, often accompanied by uncanny Bghost-like^ hallucinations and extreme fear reactions. I provide here a neuropharmacological account for these hallucinatory experiences by evoking the role of the serotonin 2A receptor (5-HT2AR). Research has shown that 5-HT2AR activation can induce visual hallucinations, Bmystical^ subjective states, and out-of-body experiences (OBEs), and modulate fear circuits. Hallucinatory experiences triggered by serotonin—serotonergic (Bpseudo^) hallucinations, induced by hallucinogenic drugs—tend to be Bdream-like^ with the experiencer having insight (Bmeta-awareness^) that he is hallucinating, unlike dopaminergic (Bpsychotic^ and Blife-like^) hallucinations where such insight is lost. Indeed, hallucinatory experiences during sleep paralysis have the classic features of serotonergic hallucinations, and are strikingly similar to perceptual and subjective states induced by hallucinogenic drugs (e.g., lysergic acid diethylamide [LSD] and psilocybin), i.e., they entail visual hallucinations, mystical experiences, OBEs, and extreme fear reactions. I propose a possible mechanism whereby serotonin could be functionally implicated in generating sleep paralysis hallucinations and fear reactions through 5-HT2AR activity. Moreover, I speculate on the role of 5-HT2C receptors vis-à-vis anxiety and panic during sleep paralysis, and the orbitofrontal cortex—rich with 5-HT2A receptors—in influencing visual pathways during sleep paralysis, and, in effect, hallucinations.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Atypical Antipsychotics TCO 02.2018
    Therapeutic Class Overview Atypical Antipsychotics INTRODUCTION • Antipsychotic medications have been used for over 50 years to treat schizophrenia and a variety of other psychiatric disorders (Miyamato et al 2005). • Antipsychotic medications generally exert their effect in part by blocking dopamine (D)-2 receptors (Jibson et al 2017). • Antipsychotics are divided into 2 distinct classes based on their affinity for D2 and other neuroreceptors: typical antipsychotics, also called first-generation antipsychotics (FGAs), and atypical antipsychotics, also called second- generation antipsychotics (SGAs) (Miyamato et al 2005). • Atypical antipsychotics do not have a uniform pharmacology or mechanism of action; these differences likely account for the different safety and tolerability profiles of these agents (Clinical Pharmacology 2020, Jibson et al 2017). The atypical antipsychotics differ from the early antipsychotics in that they have affinity for the serotonin 5-HT2 receptor in addition to D2. Clozapine is an antagonist at all dopamine receptors (D1-5), with lower affinity for D1 and D2 receptors and high affinity for D4 receptors. Aripiprazole and brexpiprazole act as partial agonists at the D2 receptor, functioning as an ○ agonist when synaptic dopamine levels are low and as an antagonist when they are high. Cariprazine is a partial agonist at D2 and D3. Pimavanserin does not have dopamine blocking activity and is primarily an inverse agonist at 5-HT2A receptors. The remaining atypical antipsychotics share the similarity of D2 and 5-HT2A
    [Show full text]
  • M2021: Pharmacogenetic Testing
    Pharmacogenetic Testing Policy Number: AHS – M2021 – Pharmacogenetic Prior Policy Name and Number, as applicable: Testing • M2021 – Cytochrome P450 Initial Presentation Date: 06/16/2021 Revision Date: N/A I. Policy Description Pharmacogenetics is defined as the study of variability in drug response due to heredity (Nebert, 1999). Cytochrome (CYP) P450 enzymes are a class of enzymes essential in the synthesis and breakdown metabolism of various molecules and chemicals. Found primarily in the liver, these enzymes are also essential for the metabolism of many medications. CYP P450 are essential to produce many biochemical building blocks, such as cholesterol, fatty acids, and bile acids. Additional cytochrome P450 are involved in the metabolism of drugs, carcinogens, and internal substances, such as toxins formed within cells. Mutations in CYP P450 genes can result in the inability to properly metabolize medications and other substances, leading to increased levels of toxic substances in the body. Approximately 58 CYP genes are in humans (Bains, 2013; Tantisira & Weiss, 2019). Thiopurine methyltransferase (TPMT) is an enzyme that methylates azathioprine, mercaptopurine and thioguanine into active thioguanine nucleotide metabolites. Azathioprine and mercaptopurine are used for treatment of nonmalignant immunologic disorders; mercaptopurine is used for treatment of lymphoid malignancies; and thioguanine is used for treatment of myeloid leukemias (Relling et al., 2011). Dihydropyrimidine dehydrogenase (DPD), encoded by the gene DPYD, is a rate-limiting enzyme responsible for fluoropyrimidine catabolism. The fluoropyrimidines (5-fluorouracil and capecitabine) are drugs used in the treatment of solid tumors, such as colorectal, breast, and aerodigestive tract tumors (Amstutz et al., 2018). A variety of cell surface proteins, such as antigen-presenting molecules and other proteins, are encoded by the human leukocyte antigen genes (HLAs).
    [Show full text]
  • Schizophrenia Care Guide
    August 2015 CCHCS/DHCS Care Guide: Schizophrenia SUMMARY DECISION SUPPORT PATIENT EDUCATION/SELF MANAGEMENT GOALS ALERTS Minimize frequency and severity of psychotic episodes Suicidal ideation or gestures Encourage medication adherence Abnormal movements Manage medication side effects Delusions Monitor as clinically appropriate Neuroleptic Malignant Syndrome Danger to self or others DIAGNOSTIC CRITERIA/EVALUATION (PER DSM V) 1. Rule out delirium or other medical illnesses mimicking schizophrenia (see page 5), medications or drugs of abuse causing psychosis (see page 6), other mental illness causes of psychosis, e.g., Bipolar Mania or Depression, Major Depression, PTSD, borderline personality disorder (see page 4). Ideas in patients (even odd ideas) that we disagree with can be learned and are therefore not necessarily signs of schizophrenia. Schizophrenia is a world-wide phenomenon that can occur in cultures with widely differing ideas. 2. Diagnosis is made based on the following: (Criteria A and B must be met) A. Two of the following symptoms/signs must be present over much of at least one month (unless treated), with a significant impact on social or occupational functioning, over at least a 6-month period of time: Delusions, Hallucinations, Disorganized Speech, Negative symptoms (social withdrawal, poverty of thought, etc.), severely disorganized or catatonic behavior. B. At least one of the symptoms/signs should be Delusions, Hallucinations, or Disorganized Speech. TREATMENT OPTIONS MEDICATIONS Informed consent for psychotropic
    [Show full text]
  • Medicines That Affect Fluid Balance in the Body
    the bulk of stools by getting them to retain liquid, which encourages the Medicines that affect fluid bowels to push them out. balance in the body Osmotic laxatives e.g. Lactulose, Macrogol - these soften stools by increasing the amount of water released into the bowels, making them easier to pass. Older people are at higher risk of dehydration due to body changes in the ageing process. The risk of dehydration can be increased further when Stimulant laxatives e.g. Senna, Bisacodyl - these stimulate the bowels elderly patients are prescribed medicines for chronic conditions due to old speeding up bowel movements and so less water is absorbed from the age. stool as it passes through the bowels. Some medicines can affect fluid balance in the body and this may result in more water being lost through the kidneys as urine. Stool softener laxatives e.g. Docusate - These can cause more water to The medicines that can increase risk of dehydration are be reabsorbed from the bowel, making the stools softer. listed below. ANTACIDS Antacids are also known to cause dehydration because of the moisture DIURETICS they require when being absorbed by your body. Drinking plenty of water Diuretics are sometimes called 'water tablets' because they can cause you can reduce the dry mouth, stomach cramps and dry skin that is sometimes to pass more urine than usual. They work on the kidneys by increasing the associated with antacids. amount of salt and water that comes out through the urine. Diuretics are often prescribed for heart failure patients and sometimes for patients with The major side effect of antacids containing magnesium is diarrhoea and high blood pressure.
    [Show full text]
  • Does Curcumin Or Pindolol Potentiate Fluoxetine's Antidepressant Effect
    Research Paper Does Curcumin or Pindolol Potentiate Fluoxetine’s Antidepressant Effect by a Pharmacokinetic or Pharmacodynamic Interaction? H. A. S. MURAD*, M. I. SULIAMAN1, H. ABDALLAH2 AND MAY ABDULSATTAR1 Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah-21589, Saudi Arabia (SA) and Faculty of Medicine, Ain Shams University, Cairo-11541, Egypt. 1Department of Pharmacology, Faculty of Medicine, KAU, Jeddah-21589, SA. 2Department of Natural Products, Faculty of Pharmacy, KAU, Jeddah-21589, SA and Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo-11541, Egypt Murad, et al.: Potentiation of Fluoxetine by Curcumin This study was designed to study potentiation of fluoxetine’s antidepressant effect by curcumin or pindolol. Twenty eight groups of mice (n=8) were used in three sets of experiments. In the first set, 9 groups were subjected to the forced swimming test after being treated intraperitoneally with three vehicles, fluoxetine (5 and 20 mg/kg), curcumin (20 mg/kg), pindolol (32 mg/kg), curcumin+fluoxetine (5 mg/kg) and pindolol+fluoxetine (5 mg/kg). One hour after the test, serum and brain fluoxetine and norfluoxetine levels were measured in mice receiving fluoxetine (5 and 20 mg/kg), curcumin+fluoxetine (5 mg/kg) and pindolol+fluoxetine (5 mg/kg). In the second set, the test was done after pretreatment with p-chlorophenylalanine. In the third set, the locomotor activity was measured. The immobility duration was significantly decreased in fluoxetine (20 mg/kg), curcumin (20 mg/kg), curcumin+fluoxetine (5 mg/kg) and pindolol+fluoxetine (5 mg/kg) groups. These decreases were reversed with p-chlorophenylalanine.
    [Show full text]