Nervous System and Eye Dissection

Total Page:16

File Type:pdf, Size:1020Kb

Nervous System and Eye Dissection Nervous System and Eye Dissection • Monday 10th Thursday 13th • Take notes on Slides 3 - 8 • Take notes on Slides 12-16 • Introduction to Nervous System • Notes for lab on Monday • Brain Metaphor Activity • Mechanoreceptors and • Quiz Each other on notes Thermoreceptors • Tuesday 11th Friday 14th • Guest Speaker • Finish notes • Take Quizziz on Nervous System th • Wednesday 12 • Take Quizziz on Senses and Eyes • Take notes on slides 9-11 and Eye • Study Word Parts and Eye Dissection Dissection PowerPoint (Online) Terms • Nervous System • Senses 1. Draw neuron , label parts, and functions 2. Quiz Self of Nervous Cell and Functions 3. http://myclass.theinspiredinstructor.com/science/health_diagrams/ Neuron_Label.htm The Nervous System is divided into two parts: 1. Central NS a. Brain and spinal cord b. Processes info 2. Peripheral NS a. Mainly of nerves, sense organs b. Connect the CNS to every other part of the body c. Receives/sends info to and from the body 3. Nerves that transmit signals from the brain are called motor or efferent nerves 4. Nerves that transmit information from the body to the CNS are called sensory or afferent. Central Nervous System •Cerebrum •Frontal •Parietal •Occipital •Temporal •Cerebellum •Brain Stem Peripheral Nervous System Divided into three parts: 1. Somatic Nervous System (SNS) 1. Voluntary Movement (consciously control) 2. Example: Skeletal muscles 2. Autonomic Nervous system (ANS) 1. Functions involuntarily (Do not consciously control) 2. Example: Smooth and cardiac muscles 3. ANS - divides into Sympathetic and Parasympathetic Nervous System 1. Sympathetic – activated in cases of emergencies to mobilize energy 2. Parasympathetic – Normal , resting , relaxed state (breathing , digestion) 3. Enteric Nervous System (ENS) 1. Controls the gastrointestinal system 2. Functions involuntarily Autonomic Nervous System Wednesday 12 •Take notes on Slide •Go to Eye Dissection PowerPoint on website and take notes on eye •Quiz partner on words to know for the eye The Iris • Regulates the amount of light entering the eye so that there is enough light to stimulate the cones, but not enough to damage them • By contracting and relaxing these muscles the pupil can be constricted and dilated In bright light the muscles In dim light muscles relax, contract, pupil constricts, and pupils dilate, and more light less light enters eye enters. Thursday 14th •Read and take notes on slides - Information will be in Monday’s lab •Study word parts and eye terms for quiz Tuesday • Must be able to define majority of eye terms to participate in dissection Wednesday Mechanoreceptors and Thermoreceptors The skin has numerous mechanoreceptors that respond to pressure and vibration and thermoreceptors that respond to temperature. When adequately stimulated, the receptors convert the mechanical or heat stimuli into electrical signals that travel along axons to the brain or spinal cord for interpretation. Some areas of the skin are more sensitive to touch than others. The level of sensitivity depends on receptor density and the size of the receptive field. The receptive field is the area where a stimulus will cause a neuron to fire. For example, the receptive field of a mechanoreceptor in the skin is the patch of skin that particular neuron responds to. Large receptive fields allow a neuron (receptor) to sense changes over a large area but without much precision. In the most sensitive areas of the body, there is a high density of mechanoreceptors with small receptive fields. Desensitization and Thermoreceptors • Our hands—especially our fingertips—are well equipped to collect sensory information from the environment surrounding them. They contain an immense number of sensory receptors. External circumstances, such as temperature, texture and touch prompt these receptors to produce electrical signals. The signals travel via a sensory nerve along the arm to the brain where they are processed, compared to past experiences and finally labeled. • Each receptor is triggered by a specific stimulus. Thermoreceptors detect temperature changes. We are equipped with some thermoreceptors that are activated by cold conditions and others that are activated by heat. Warm receptors will turn up their signal rate when they feel warmth— or heat transfer into the body. Cooling—or heat transfer out of the body—results in a decreased signal rate. Cold receptors, on the other hand, increase their firing rate during cooling and decrease it during warming. • Something interesting happens when your expose receptors to a specific sensation such as heat for a long time: they start to tire out and decrease their activity, thereby you will no longer notice the sensation as much. This desensitization could also alter our sensitivity to what we feel next. Two Point Discrimination: • The two-point discrimination test reveals the ability of the somatosensory system to determine if the skin is being touched in one or two points. If the two points are in an area of skin that has a low touch receptor density and large receptive fields, only one point may be perceived. If the two points are in an area of skin that has a high touch receptor density and small receptive fields, the subject may perceive those two points. That is, two stimuli are perceived as separate if they are stimulating the receptive fields of two different mechanoreceptors. .
Recommended publications
  • On the Existence of Mechanoreceptors Within the Neurovascular Unit of the Rodent and Rabbit Brain
    bioRxiv preprint doi: https://doi.org/10.1101/480921; this version posted November 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. On the existence of mechanoreceptors within the neurovascular unit of the rodent and rabbit brain Jorge Larriva-Sahd, Martha León-Olea (*), Víctor Vargas-Barroso (**), Alfredo Varela-Echavarría and Luis Concha Departments of Developmental Biology and Physiology, Instituto de Neurobiología. Campus Juriquilla. Universidad Nacional Autónoma de México. Boulevard Universitario 3001, Juriquilla, Querétaro, CP 76230, México. (*) Department of Functional Neuromorphology, Instituto Mexicano de Psiquiatría “Ramón de la Fuente Muñiz” Av México Xochimilco 101, Delegación Tlalpan CP14370, México DF, México. (**) Present address: Institute of Science and Technology Austria (IST), Am Campus 1, 3400, Klosterneuburg, Austria.Correspondence: Correspondence: Jorge Larriva-Sahd e-mail: [email protected] Telephone: 5256-234030 Orcid ID: 0000-0002-7254-0773 bioRxiv preprint doi: https://doi.org/10.1101/480921; this version posted November 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract. We describe a set of perivascular interneurons (PINs) originating a series of fibro-vesicular complexes (FVCs) throughout the gray matter of the adult rabbit and rat brain. PINs-FVCs are ubiquitous throughout the brain vasculature as defined in Golgi-impregnated specimens.
    [Show full text]
  • Chemoreception
    Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath.
    [Show full text]
  • The Roles and Functions of Cutaneous Mechanoreceptors Kenneth O Johnson
    455 The roles and functions of cutaneous mechanoreceptors Kenneth O Johnson Combined psychophysical and neurophysiological research has nerve ending that is sensitive to deformation in the resulted in a relatively complete picture of the neural mechanisms nanometer range. The layers function as a series of of tactile perception. The results support the idea that each of the mechanical filters to protect the extremely sensitive recep- four mechanoreceptive afferent systems innervating the hand tor from the very large, low-frequency stresses and strains serves a distinctly different perceptual function, and that tactile of ordinary manual labor. The Ruffini corpuscle, which is perception can be understood as the sum of these functions. located in the connective tissue of the dermis, is a rela- Furthermore, the receptors in each of those systems seem to be tively large spindle shaped structure tied into the local specialized for their assigned perceptual function. collagen matrix. It is, in this way, similar to the Golgi ten- don organ in muscle. Its association with connective tissue Addresses makes it selectively sensitive to skin stretch. Each of these Zanvyl Krieger Mind/Brain Institute, 338 Krieger Hall, receptor types and its role in perception is discussed below. The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2689, USA; e-mail: [email protected] During three decades of neurophysiological and combined Current Opinion in Neurobiology 2001, 11:455–461 psychophysical and neurophysiological studies, evidence has accumulated that links each of these afferent types to 0959-4388/01/$ — see front matter © 2001 Elsevier Science Ltd. All rights reserved. a distinctly different perceptual function and, furthermore, that shows that the receptors innervated by these afferents Abbreviations are specialized for their assigned functions.
    [Show full text]
  • Sensory Receptors
    Laboratory Worksheet Exercise: Sensory Receptors Sense Organs - Sensory Receptors A sensory receptor is a specialized ending of a sensory neuron that detects a specific stimulus. Receptors can range from simple nerve endings of a sensory neuron (e.g., pain, touch), to a complex combination of nervous, epithelial, connective and muscular tissue (e.g., the eyes). Axon Synaptic info. Sensory end bulbs Receptors Figure 1. Diagram of a sensory neuron with sensory information being detected by sensory receptors located at the incoming end of the neuron. This information travels along the axon and delivers its signal to the central nervous system (CNS) via the synaptic end bulbs with the release of neurotransmitters. The function of a sensory receptor is to act as a transducer. Transducers convert one form of energy into another. In the human body, sensory receptors convert stimulus energy into electrical impulses called action potentials. The frequency and duration of action potential firing gives meaning to the information coming in from a specific receptor. The nervous system helps to maintain homeostasis in the body by monitoring the internal and external environments of the body using receptors to achieve this. Sensations are things in our environment that we detect with our 5 senses. The 5 basic senses are: Sight Hearing Touch Taste Smell An adequate stimulus is a particular form of energy to which a receptor is most responsive. For example, thermoreceptors are more sensitive to temperature than to pressure. The threshold of a receptor is the minimum stimulus required to activate that receptor. Information about Receptor Transmission Sensory receptors transmit four kinds of information - modality, location, intensity and duration.
    [Show full text]
  • The Influence of Pupil Responses on Subjective Brightness Perception
    1 The influence of pupil responses on subjective brightness perception I. K. Wardhania, b, C. N. Boehlera, and S. Mathôtb, ∗ aDepartment of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium bDepartment of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, the Netherlands Abstract When the pupil dilates, the amount of light that falls onto the retina increases as well. However, in daily life, this does not make the world look brighter. Here we asked whether pupil size (resulting from active pupil movement) influences subjective brightness in the absence of indirect cues that, in daily life, support brightness constancy. We measured the subjective brightness of a tester stimulus relative to a referent as a function of pupil size during tester presentation. In Ex- periment 1, we manipulated pupil size through a secondary working-memory task (larger pupils with higher load and after errors). We found some evidence that the tester was perceived as darker, rather than brighter, when pupils were lar- ger. In Experiment 2, we presented a red or blue display (larger pupils following red displays). We again found that the tester was perceived as darker when pu- pils were larger. We speculate that the visual system takes pupil size into account when making brightness judgments. Finally, we highlight the challenges associ- ated with manipulating pupil size. In summary, the current study (as well as a recent pharmacological study on the same topic) are intriguing first steps towards understanding the role of pupil size in brightness perception. Keywords: pupillometry, pupil light reflex, psychosensory pupil reflex, pupil size, luminance, subjective brightness perception ∗Corresponding author.
    [Show full text]
  • An Intracameral Pupil-Dilating Technique
    AN INTRACAMERAL PUPIL-DILATING TECHNIQUE No devices are needed with this reversible method. BY MOHAMMAD IDREES, FRCS(EDIN) CATARACT SURGERY CATARACT In cataract surgery, a sufficiently dilated associated with glare. Moreover, chances of damage to pupil is necessary to allow the surgeon to the capsular margin are increased due to poor visibility. safely remove the cataract and replace it Emulsification risks damage to the posterior lens capsule, with an appropriate IOL. When the pupil which opens the door to other complications later. is not sufficiently dilated, it obstructs the It is difficult to get a sufficient red fundus reflex with a surgeon’s view and makes each step more poorly dilating pupil. Implanting the IOL poses its own set difficult, increasing the risk of complications of potential complications, such as decentration and subse- during surgery and unfavorable outcomes quent malpositioning of the IOL. postoperatively. Operating through a small pupil can result in iris bleeding, These increased risks can be avoided if the pupil is dilated iris prolapse into the wound, or incomplete evacuation of well before starting surgery. This article describes a reversible cortical material. Additionally, iris chafing can contribute to method that I call the Idrees intracameral pupil-dilating technique increased postoperative inflammation and iris defects that and presents the rationale for its use. can create cosmesis concerns. SURGICAL RISKS WITH SMALL PUPILS PUPIL DILATION: MECHANISM AND TECHNIQUE Among the most prominent challenges with a narrow In order to achieve a satisfactorily dilated pupil in every case, pupil, performing capsulorrhexis or anterior capsulotomy of you must have a number of approaches at your disposal; some sufficient diameter is not possible.
    [Show full text]
  • 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS
    Chapter 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS Figure 36.1 This shark uses its senses of sight, vibration (lateral-line system), and smell to hunt, but it also relies on its ability to sense the electric fields of prey, a sense not present in most land animals. (credit: modification of work by Hermanus Backpackers Hostel, South Africa) Chapter Outline 36.1: Sensory Processes 36.2: Somatosensation 36.3: Taste and Smell 36.4: Hearing and Vestibular Sensation 36.5: Vision Introduction In more advanced animals, the senses are constantly at work, making the animal aware of stimuli—such as light, or sound, or the presence of a chemical substance in the external environment—and monitoring information about the organism’s internal environment. All bilaterally symmetric animals have a sensory system, and the development of any species’ sensory system has been driven by natural selection; thus, sensory systems differ among species according to the demands of their environments. The shark, unlike most fish predators, is electrosensitive—that is, sensitive to electrical fields produced by other animals in its environment. While it is helpful to this underwater predator, electrosensitivity is a sense not found in most land animals. 36.1 | Sensory Processes By the end of this section, you will be able to do the following: • Identify the general and special senses in humans • Describe three important steps in sensory perception • Explain the concept of just-noticeable difference in sensory perception Senses provide information about the body and its environment. Humans have five special senses: olfaction (smell), gustation (taste), equilibrium (balance and body position), vision, and hearing.
    [Show full text]
  • Mechanoreceptor Synapses in the Brainstem Shape the Central Representation of Touch
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429463; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mechanoreceptor synapses in the brainstem shape the central representation of touch Brendan P. Lehnert1,2#, Celine Santiago1,2#, Erica L. Huey1,2, Alan J. Emanuel1,2, Sophia Renauld1,2, Nusrat Africawala1,2, Ilayda Alkislar1,2, Yang Zheng1,2, Ling Bai1,2, Charalampia Koutsioumpa1,2, Jennifer T. Hong1,2, Alexandra R. Magee1,2, Christopher D. Harvey1, David D. Ginty1,2* 1Department of Neurobiology, 2Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115 # Co-first author. *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429463; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, potentially reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem.
    [Show full text]
  • A Computational Model for Pain Processing in the Dorsal Horn Following Axonal Damage to Receptor Fibers
    brain sciences Article A Computational Model for Pain Processing in the Dorsal Horn Following Axonal Damage to Receptor Fibers Jennifer Crodelle 1,*,† and Pedro D. Maia 2,† 1 Department of Mathematics, Middlebury College, Middlebury, VT 05753, USA 2 Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Computational modeling of the neural activity in the human spinal cord may help elucidate the underlying mechanisms involved in the complex processing of painful stimuli. In this study, we use a biologically-plausible model of the dorsal horn circuitry as a platform to simulate pain processing under healthy and pathological conditions. Specifically, we distort signals in the receptor fibers akin to what is observed in axonal damage and monitor the corresponding changes in five quantitative markers associated with the pain response. Axonal damage may lead to spike-train delays, evoked potentials, an increase in the refractoriness of the system, and intermittent blockage of spikes. We demonstrate how such effects applied to mechanoreceptor and nociceptor fibers in the pain processing circuit can give rise to dramatically distinct responses at the network/population level. The computational modeling of damaged neuronal assemblies may help unravel the myriad of responses observed in painful neuropathies and improve diagnostics and treatment protocols. Citation: Crodelle, J.; Maia, P.D. A Computational Model for Pain Keywords: pain processing; dorsal horn; neuronal dynamics; computational model; axonal damage; Processing in the Dorsal Horn painful neuropathies Following Axonal Damage to Receptor Fibers. Brain Sci. 2021, 11, 505.
    [Show full text]
  • Quantification of Oral Roughness Perception and Comparison with Mechanism of Astringency Perception
    Quantification of oral roughness perception and comparison with mechanism of astringency perception THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Brianne Linne Graduate Program in Food Science and Technology The Ohio State University 2016 Master's Examination Committee: Dr. Christopher Simons, Advisor Dr. Monica Giusti Dr. Lynn Knipe Copyrighted by Brianne Linne 2016 Abstract Texture plays a vital role in food preference and acceptance, but oral tactile texture perception is incompletely understood. A wide body of information currently exists on tactile perception of the hands and fingertips. Tactile perception in the hands and finger tips is mediated by nerve fibers, both slowly adapting and fast adapting, which terminate in four different types of mechanoreceptors; Merkel cells, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles. These same mechanoreceptors are present in the tongue, with the exception of Pacinian corpuscles. It therefore, should be possible to use the knowledge of tactile perception in the skin and translate this to a better understanding of tactile perception of the tongue and other oral surfaces. In this study, individual sensitivities to oral tactile roughness are quantified, and the factors that may drive potential differences in sensitivity are examined. Additionally, a relationship between astringency and oral mechanisms of tactile roughness perception is investigated. If the sensation of astringency is purely the result of friction between oral surfaces due to decreased lubricity following astringent- protein complex precipitation, then an individual’s sensitivity to tactile roughness, perceived by activation of oral mechanoreceptors, should be indicative of how sensitive they are to astringent stimuli.
    [Show full text]
  • Anatomy & Physiology of The
    Anatomy & Physiology of The Eye 2017-2018 Done By: 433 Team Abdullah M. Khattab Important Doctor’s Notes Extra Abdullah AlOmair Resources: Team 433, Doctors Notes, Vaughan & Asbury’s General ophthalmology. Editing File Embryology of The Eye ............................................................................................. 2 ● Defects: ........................................................................................................................... 2 Development of The Eye After Birth .......................................................................... 3 ● Refractive power depends on two factors: ...................................................................... 3 The Orbit ................................................................................................................... 4 ● Seven bones contribute the bony orbit and surrounded by nasal sinuses. .................... 4 ● The orbital wall, pear-like shaped, formed by: ................................................................ 4 ● Structures Passing Through the Optic Openings: ........................................................... 4 Extraocular Muscles .................................................................................................. 1 ● Anatomy .......................................................................................................................... 1 ● Notes: .............................................................................................................................. 1 ● Field of action:
    [Show full text]
  • Download Our Coloboma Factsheet In
    Coloboma Factsheet Contents 3 What is Coloboma? 3 How do we see with our eyes? 3 Which parts of the eye can coloboma affect? 3 Iris 4 Lens zonules 4 Retina and choroid (chorioretinal) 4 Optic disc 4 Eyelids 4 What causes coloboma to form inside the eye? 5 Does coloboma affect vision? 5 Iris coloboma 5 Lens coloboma 5 Chorioretinal coloboma 6 How is coloboma diagnosed? 7 What is the treatment for coloboma? 7 Can coloboma lead to other eye health problems? 7 Glaucoma 8 Retinal detachment 8 Choroidal neovascularisation (new blood vessels) 8 Cataract 9 What other health problems can affect some children with coloboma? 9 Coping with sight problems relating to coloboma 10 Further help and support 10 Sources of support 11 Other useful organisations 12 We value your feedback 2 What is Coloboma? Coloboma means that part of one or more structures Choroid inside an unborn baby’s eye does not fully develop Iris during pregnancy. This underdeveloped tissue is Optic nerve normally in the lower part of the eye and it can be Optic Cornea small or large in size. A coloboma occurs in about 1 in disc 10,000 births and by the eighth week of pregnancy. Macula Lens Coloboma can affect one eye (unilateral) or both eyes zonules Pupil (bilateral) and it can affect different parts of the eye. As coloboma forms during the initial development of Choroid the eye, it is present from birth and into adulthood. Lens Retina How do we see with our eyes? Iris Light enters our eyes by passing through our cornea, our pupil, (the hole in the middle of the iris), and Diagram of cross section of eye (labels cornea, lens, iris, our lens so that it is sharply focused onto the retina vitreous humour, macula, retina, choroid, optic nerve) lining the back of our eye.
    [Show full text]