Top Predators As Biodiversity Regulators: the Dingo Canis Lupus Dingo As a Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Top Predators As Biodiversity Regulators: the Dingo Canis Lupus Dingo As a Case Study Biol. Rev. (2012), 87, pp. 390–413. 390 doi: 10.1111/j.1469-185X.2011.00203.x Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study Mike Letnic1,2,∗, Euan G. Ritchie3 and Christopher R. Dickman2 1 Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, Australia, 2751 2 Institute of Wildlife Research, School of Biological Sciences, University of Sydney, NSW 2006, Australia 3 School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia ABSTRACT Top-order predators often have positive effects on biological diversity owing to their key functional roles in regulating trophic cascades and other ecological processes. Their loss has been identified as a major factor contributing to the decline of biodiversity in both aquatic and terrestrial systems. Consequently, restoring and maintaining the ecological function of top predators is a critical global imperative. Here we review studies of the ecological effects of the dingo Canis lupus dingo, Australia’s largest land predator, using this as a case study to explore the influence of a top predator on biodiversity at a continental scale. The dingo was introduced to Australia by people at least 3500 years ago and has an ambiguous status owing to its brief history on the continent, its adverse impacts on livestock production and its role as an ecosystem architect. A large body of research now indicates that dingoes regulate ecological cascades, particularly in arid Australia, and that the removal of dingoes results in an increase in the abundances and impacts of herbivores and invasive mesopredators, most notably the red fox Vulpes vulpes. The loss of dingoes has been linked to widespread losses of small and medium-sized native mammals, the depletion of plant biomass due to the effects of irrupting herbivore populations and increased predation rates by red foxes. We outline a suite of conceptual models to describe the effects of dingoes on vertebrate populations across different Australian environments. Finally, we discuss key issues that require consideration or warrant research before the ecological effects of dingoes can be incorporated formally into biodiversity conservation programs. Key words: biodiversity, conservation, dingo, Canis lupus dingo, intra-guild predation, trophic cascade, mesopredator, top predator, red fox, Vulpes vulpes, competition. CONTENTS I. Introduction ................................................................................................ 391 II. Natural history of the dingo ................................................................................ 392 (1) Taxonomic status ...................................................................................... 392 (2) Diet .................................................................................................... 392 III. Impacts of the dingo on other animals and plants .......................................................... 393 (1) Early impacts .......................................................................................... 393 (2) Effects of dingoes on large prey (>10 kg) ............................................................... 393 (3) Effects of dingoes on mesopredators (1–7 kg) .......................................................... 397 (4) Effects of dingoes on small and medium-sized prey (<10 kg) ........................................... 400 (5) Effects of dingoes on vegetation ........................................................................ 401 (6) Trophic effects of dingoes and the human economy ................................................... 401 (7) Experimental considerations ........................................................................... 402 IV. The ecological interactions of dingoes: a conceptual model ................................................ 402 (1) Element 1: the effects of dingoes on other species scale with body size ................................. 402 (2) Element 2: the influence of resource pulses and prey switching on dingo interactions .................. 403 (3) Element 3: large predators induce trophic cascades .................................................... 404 (4) Synthesis and application of the model ................................................................ 405 * Address for correspondence (E-mail: [email protected]). Biological Reviews 87 (2012) 390–413 © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society Top predators as biodiversity regulators 391 V. Dingo interactions: from conceptual model to a practical conservation tool ................................ 406 (1) Native species adversely affected by dingoes ........................................................... 406 (2) Functionally effective dingo populations ............................................................... 406 (3) The effects of dingoes on livestock production ......................................................... 407 (4) Hybridisation .......................................................................................... 407 (5) The role of artificial water ............................................................................. 408 (6) Simulation of the effects of dingoes .................................................................... 408 VI. Conclusions ................................................................................................ 408 VII. Acknowledgements ......................................................................................... 409 VIII. References .................................................................................................. 409 I. INTRODUCTION While these studies demonstrate that top predators can exert strong effects on ecosystems (Beyer et al., 2007; Ripple & The loss of top-order predators has been identified as a Beschta, 2007; Berger & Conner, 2008; Berger et al., 2008), key factor contributing to continuing species extinctions and we still have a poor understanding of the extent to which these the global biodiversity-loss crisis (Duffy, 2003; Ray, 2005). predators can structure ecosystems at larger spatial scales and Consequently, restoring and maintaining the ecological how their effects filter through trophic webs (Schmidt, 2003). function of top predators is a critical goal in many systems This is particularly true in human-modified systems, where (Heithaus et al., 2008; Hayward & Somers, 2009). Top the return of a top predator can threaten native species with predators typically exert top–down control on ecosystems which they coexisted in the pre-disturbance state (Lovari through their direct predatory and competitive interactions et al., 2009). Hence, understanding predator function is of with herbivores and smaller predators (Frank et al., 2005; fundamental importance for biodiversity conservation and Frank, 2008; Ritchie & Johnson, 2009). The disruption or pest control at regional, national and even continental scales cessation of these interactions can have cascading effects on as it considers the ecological role that top predators have in lower trophic groups, and result in declines in small species maintaining functional and biodiverse ecosystems. of animal prey (Crooks & Soule,´ 1999) and the depletion In Australia, the role and historical importance of top of plant species diversity and biomass (Estes & Duggins, terrestrial predators has been controversial. Flannery (1994) 1995; Terborgh et al., 2001). The dramatic reorganisation of proposed that large reptilian predators may have dominated ecosystems and losses of biodiversity that frequently follow terrestrial systems over much of the Quaternary, but there the loss of top predators have provided insight into the were also many species of large carnivorous marsupials pivotal role they can play in maintaining healthy ecosystems over this period (Wroe, Argot & Dickman, 2004). The in marine, aquatic and terrestrial environments (Soule´ largest carnivorous marsupial of recent times, the thylacine et al., 2003). Increasingly, ecologists are realising that top Thylacinus cynocephalus (∼30 kg), became extinct in Tasmania predators shape the ecosystems around them and that their in the early twentieth century (Paddle, 2000), leaving the effects have the potential to be harnessed to manipulate Tasmanian devil Sarcophilus harrisii (10 kg) as the largest living ecological processes and species abundances for the benefit predatory marsupial. On the Australian mainland the largest of biodiversity conservation (Soule´ et al., 2003). of the extant marsupial predators, the spotted-tailed quoll Due to the widespread loss of top-order predators, frequent Dasyurus maculatus, is smaller still and seldom achieves a mass opposition to their reintroduction and sometimes even of more than 5 kg. However, the continent’s largest, most indifference about maintaining existing populations (Coman widespread and important terrestrial predator is no longer a & Evans, 2007), there are relatively few opportunities to marsupial, but a canid—the dingo Canis lupus dingo.Asfor evaluate the role that true top predators have in structuring Canis spp. generally (Vanak & Gompper, 2009), the dingo ecosystems, particularly at large geographical scales. This is appears to be a strongly interactive species with pervasive especially so in terrestrial ecosystems where top predators effects on trophic cascades and other ecological processes can conflict strongly with livestock production
Recommended publications
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • <I>Morethia</I> (Lacertilia: Scincidae)
    A NEW SPECIES OF MORETHIA (LACERTILlA: SCINCIDAE) FROM NORTHERN AUSTRALIA, WITH COMMENTS ON THE BIOLOGY AND RELATIONSHIPS OF THE GENUS ALLEN E. GREER The Australian Museum, Sydney ABSTRACT Morethia is a genus of Iygosomine skinks endemic to Australia. This paper provides a description of a new species of Morethia from northern Australia, a diagonsis of the genus, and a discussion of its intra and intergeneric relationships. It also includes a key to the eight currently recognized species of Morethia and notes on their colour pattern, reproduction, behaviour, habitat and distribution. A NEW SPECIES OF MORETHIA In his revision of the Western Australian species of the endemic Australian genus Morethia, Storr (1972) noted that the form ruficauda was "replaced by an undescribed race" in the far north of the Northern Territory. A few years later while reviewing the genus, I "rediscovered" this undescribed form and interpreted it as a distinct species. Dr Storr has graciously allowed me to describe this species, and in appreciation of his original contribution to the taxonomy of the genus (Storr 1972), I take pleasure in naming it Marethia starri New Species Figs 1, 2 (top), and 9 HOLOTYPE: Northern Territory Museum R 1815 - 4.5 km. S. of Noonamah, Northern Territory (12°40' 5., 131°04' E.). Collected by Messrs G. F. Gow and R. W. Wells on 10 November 1975. PARATYPES: Unless speCifically mentioned otherwise, all localities are in the extreme northern part of the Northern Territory. Australian Museum: R 12384 - Yirrkala; R 17411 - Port Keats Mission; R 37225- Koongarra, Mt. Brockman Range; R 41960 - Maningrida Settlement; R 71991- Yirrkala; R 72862 - appox.
    [Show full text]
  • The Influence of Livestock Protection Dogs on Mesocarnivore
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&amp;M Repository THE INFLUENCE OF LIVESTOCK PROTECTION DOGS ON MESOCARNIVORE ACTIVITY IN THE EDWARDS PLATEAU OF TEXAS A Thesis by NICHOLAS A. BROMEN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee: John M. Tomeček Co-Chair of Committee: Nova J. Silvy Committee Member: Fred E. Smeins Head of Department: Michael P. Masser December 2017 Major Subject: Wildlife and Fisheries Sciences Copyright 2017 Nick Bromen ABSTRACT The use of livestock protection dogs (LPDs; Canis lupus familiaris) to deter predators from preying upon sheep and goat herds continues to increase across the United States. Most research regarding the efficacy of LPDs has been based on queries of rancher satisfaction with their performance, yet little is known regarding whether LPDs actually displace the predators they are commissioned to protect livestock from. Here, I examined whether the presence of LPDs amid livestock resulted in fewer observable detections of carnivores in pastures they occupied throughout 1 year on a ranch in central Texas. To detect and quantify the presence of carnivores across the ranch, a remote camera grid and scat transects were simultaneously surveyed to compare results produced between each method. Four LPDs were fitted with GPS collars to collect their positions and evaluate their occupancy across the ranch over time. These GPS collars also collected proximity data on a random sample of UHF collared sheep (n = 40) and goats (n = 20) to gauge the frequency to which the LPDs were near livestock.
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Management of the Terrestrial Small Mammal and Lizard Communities in the Dune System Of
    Management of the terrestrial small mammal and lizard communities in the dune system of Sturt National Park, Australia: Historic and contemporary effects of pastoralism and fox predation Ulrike Sabine Klöcker (Dipl. – Biol., Rheinische Friedrich-Wilhelms Universität Bonn, Germany) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences The University of New South Wales, Sydney, Australia 2009 Abstract This thesis addressed three issues related to the management and conservation of small terrestrial vertebrates in the arid zone. The study site was an amalgamation of pastoral properties forming the now protected area of Sturt National Park in far-western New South Wales, Australia. Thus firstly, it assessed recovery from disturbance accrued through more than a century of Sheep grazing. Vegetation parameters, Fox, Cat and Rabbit abundance, and the small vertebrate communities were compared, with distance to watering points used as a surrogate for grazing intensity. Secondly, the impacts of small-scale but intensive combined Fox and Rabbit control on small vertebrates were investigated. Thirdly, the ecology of the rare Dusky Hopping Mouse (Notomys fuscus) was used as an exemplar to illustrate and discuss some of the complexities related to the conservation of small terrestrial vertebrates, with a particular focus on desert rodents. Thirty-five years after the removal of livestock and the closure of watering points, areas that were historically heavily disturbed are now nearly indistinguishable from nearby relatively undisturbed areas, despite uncontrolled native herbivore (kangaroo) abundance. Rainfall patterns, rather than grazing history, were responsible for the observed variation between individual sites and may overlay potential residual grazing effects.
    [Show full text]
  • The Wily and Courageous Red Fox: Behavioural Analysis of a Mesopredator at Resource Points Shared by an Apex Predator
    animals Article The Wily and Courageous Red Fox: Behavioural Analysis of a Mesopredator at Resource Points Shared by an Apex Predator Eamonn Wooster *, Arian D. Wallach and Daniel Ramp Centre for Compassionate Conservation, University of Technology Sydney, P.O. Box 123, Ultimo, New South Wales 2007, Australia; [email protected] (A.D.W.); [email protected] (D.R.) * Correspondence: [email protected] Received: 21 September 2019; Accepted: 31 October 2019; Published: 4 November 2019 Simple Summary: The red fox is one of the Earth’s most widespread mammalian predators. Human globalisation has further expanded its range, so that today they are found on most continents. Despite their abundance, knowledge of fox behaviour remains limited. Most studies have observed foxes either in captivity or in their native range where both they and their predators are killed by humans. We conducted a behavioural study on foxes outside of their native range in Australia, at a unique location where all wildlife are protected. We developed an ethogram to explore fox behaviour at resource points shared with a potentially deadly apex predator, the dingo. We were surprised to find that foxes were in a confident state more often than in a cautious state, even leaving territorial markings over those of dingoes. One possible explanation for the confidence of foxes is that the social stability of both foxes and dingoes makes their world more predictable. Abstract: The red fox (Vulpes vulpes) is a widespread and ecologically significant terrestrial mesopredator, that has expanded its range with human globalisation. Despite this, we know relatively little about their behaviour under the wide range of ecological conditions they experience, particularly how they navigate the risk of encounters with apex predators.
    [Show full text]
  • Dingo [Western Australia]
    Farmnote 133/2000 : Dingo [Western Australia] Dingo Farmnote 133/2000 By Peter Thomson, Vertebrate Pest Research Section, Forrestfield The dingo or wild dog (Canis familiaris dingo) is found across most of Western Australia. It is subject to management programs in grazing areas because of its predation of livestock. Name 'Dingo' was the name recorded in the early days of European settlement in New South Wales for the 'dogs' belonging to the local Aborigines. 'Warrigal' is one of the central Australian Aboriginal names for the dingo. Although the dingo was classified in the same species as the domestic dog (Canis familiaris), it was probably never exposed to the processes of artificial selection that eventually produced the modern domestic dog. A suggested change in scientific name to Canis lupus dingo reflects the origin of dingoes from wolves (Canis lupus) and the separation of dingoes from domestic dogs. Farmnote 133/2000 : Dingo [Western Australia] Origin The dingo is a primitive dog that evolved from the Indian or Pallid wolf and became widespread throughout southern Asia between 6000 and 10,000 years ago. It is now believed that dingoes were introduced into Australia about 4000 years ago by Asian seafarers, rather than during an Aboriginal migration. Description Dingoes are anatomically very similar to domestic dogs with which they are able to interbreed. They are usually sandy red or ginger in colour, with white feet and a white tail tip. White dingoes and black and tan individuals are also found. Patchy colouration or brindling is a sign of hybridisation with domestic dogs. Occurrence Dingoes are found through much of the state.
    [Show full text]
  • Habitat Types
    Habitat Types The following section features ten predominant habitat types on the West Coast of the Eyre Peninsula, South Australia. It provides a description of each habitat type and the native plant and fauna species that commonly occur there. The fauna species lists in this section are not limited to the species included in this publication and include other coastal fauna species. Fauna species included in this publication are printed in bold. Information is also provided on specific threats and reference sites for each habitat type. The habitat types presented are generally either characteristic of high-energy exposed coastline or low-energy sheltered coastline. Open sandy beaches, non-vegetated dunefields, coastal cliffs and cliff tops are all typically found along high energy, exposed coastline, while mangroves, sand flats and saltmarsh/samphire are characteristic of low energy, sheltered coastline. Habitat Types Coastal Dune Shrublands NATURAL DISTRIBUTION shrublands of larger vegetation occur on more stable dunes and Found throughout the coastal environment, from low beachfront cliff-top dunes with deep stable sand. Most large dune shrublands locations to elevated clifftops, wherever sand can accumulate. will be composed of a mosaic of transitional vegetation patches ranging from bare sand to dense shrub cover. DESCRIPTION This habitat type is associated with sandy coastal dunes occurring The understory generally consists of moderate to high diversity of along exposed and sometimes more sheltered coastline. Dunes are low shrubs, sedges and groundcovers. Understory diversity is often created by the deposition of dry sand particles from the beach by driven by the position and aspect of the dune slope.
    [Show full text]
  • Spatio-Temporal Coexistence of Sympatric Mesocarnivores with a Single Apex Carnivore in a fine-Scale Landscape
    Global Ecology and Conservation 21 (2020) e00897 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: http://www.elsevier.com/locate/gecco Original Research Article Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape Guojing Zhao a, b, c, d, e, 1, Haitao Yang a, b, c, d, e, 1, Bing Xie a, b, c, d, e, * Yinan Gong a, b, c, d, e, Jianping Ge a, b, c, d, e, Limin Feng a, b, c, d, e, a Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing Normal University, Beijing, 100875, China b National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, 100875, China c National Forestry and Grassland Administration Amur Tiger and Amur Leopard Monitoring and Research Center, Beijing Normal University, Beijing, 100875, China d Ministry of Education Key Laboratory for Biodiversity Science and Engineering, Beijing Normal University, Beijing, 100875, China e College of Life Sciences, Beijing Normal University, Beijing, 100875, China article info abstract Article history: Mesocarnivores uniquely and profoundly impact ecosystem function, structure, and dy- Received 23 July 2019 namics. Sympatric species tend to spatially and temporally partition limited resources to Received in revised form 22 December 2019 facilitate coexistence. We investigated the seasonal spatial and temporal cooccurrences Accepted 22 December 2019 among six mesocarnivores, the leopard cat (Prionailurus bengalensis), red fox (Vulpes vulpes), Asian badger (Meles leucurus), Siberian weasel (Mustela sibirica), masked palm Keywords: civet (Paguma larvata) and yellow-throated marten (Martes flavigula), as well as a single Camera trap apex predator (Northern Chinese leopard, Panthera pardus japonensis).
    [Show full text]
  • Reintroducing the Dingo: the Risk of Dingo Predation to Threatened Vertebrates of Western New South Wales
    CSIRO PUBLISHING Wildlife Research http://dx.doi.org/10.1071/WR11128 Reintroducing the dingo: the risk of dingo predation to threatened vertebrates of western New South Wales B. L. Allen A,C and P. J. S. Fleming B AThe University of Queensland, School of Animal Studies, Gatton, Qld 4343, Australia. BVertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, Forest Road, Orange, NSW 2800, Australia. CCorresponding author. Present address: Vertebrate Pest Research Unit, NSW Department of Primary Industries, Sulfide Street, Broken Hill, NSW 2880, Australia. Email: [email protected] Abstract Context. The reintroduction of dingoes into sheep-grazing areas south-east of the dingo barrier fence has been suggested as a mechanism to suppress fox and feral-cat impacts. Using the Western Division of New South Wales as a case study, Dickman et al. (2009) recently assessed the risk of fox and cat predation to extant threatened species and concluded that reintroducing dingoes into the area would have positive effects for most of the threatened vertebrates there, aiding their recovery through trophic cascade effects. However, they did not formally assess the risk of dingo predation to the same threatened species. Aims. To assess the risk of dingo predation to the extant and locally extinct threatened vertebrates of western New South Wales using methods amenable to comparison with Dickman et al. (2009). Methods. The predation-risk assessment method used in Dickman et al. (2009) for foxes and cats was applied here to dingoes, with minor modification to accommodate the dietary differences of dingoes. This method is based on six independent biological attributes, primarily reflective of potential vulnerability characteristics of the prey.
    [Show full text]
  • This Is the Authors' Post-Print PDF Version
    This is the authors’ post-print PDF version of the paper ‘Wild dogs and village dogs in New Guinea: Were they different?’ which was published in Australian Mammalogy. Citation details for the published version are: Dwyer, P. D. and M. Minnegal (2016) Wild dogs and village dogs in New Guinea: Were they different? Australian Mammalogy 38(1): 1-11. DOI: 10.1071/AM15011 WILD DOGS AND VILLAGE DOGS IN NEW GUINEA: WERE THEY DIFFERENT? PETER D. DWYER and MONICA MINNEGAL Recent accounts of wild-living dogs in New Guinea argue that these animals qualify as an “evolutionarily significant unit” that is distinct from village dogs, have been and remain genetically isolated from village dogs and merit taxonomic recognition at, at least, subspecific level. These accounts have paid little attention to reports concerning village dogs. This paper reviews some of those reports, summarizes observations from the interior lowlands of Western Province and concludes that: (1) at the time of European colonization, wild- living dogs and most, if not all, village dogs of New Guinea comprised a single though heterogeneous gene pool; (2) eventual resolution of the phylogenetic relationships of New Guinea wild-living dogs will apply equally to all or most of the earliest New Guinea village-based dogs; and (3) there remain places where the local village-based population of domestic dogs continues to be dominated by individuals whose genetic inheritance can be traced to pre- colonization canid forebears. At this time, there is no firm basis from which to assign a unique Linnaean name to dogs that live as wild animals at high altitudes of New Guinea.
    [Show full text]
  • Frogs & Reptiles NE Vic 2018 Online
    Reptiles and Frogs of North East Victoria An Identication and Conservation Guide Victorian Conservation Status (DELWP Advisory List) cr critically endangered en endangered Reptiles & Frogs vu vulnerable nt near threatened dd data deficient L Listed under the Flora and Fauna Guarantee Act (FFG, 1988) Size: of North East Victoria Lizards, Dragons & Skinks: Snout-vent length (cm) Snakes, Goannas: Total length (cm) An Identification and Conservation Guide Lowland Copperhead Highland Copperhead Carpet Python Gray's Blind Snake Nobbi Dragon Bearded Dragon Ragged Snake-eyed Skink Large Striped Skink Frogs: Snout-vent length male - M (mm) Snout-vent length female - F (mm) Austrelaps superbus 170 (NC) Austrelaps ramsayi 115 (PR) Morelia spilota metcalfei – en L 240 (DM) Ramphotyphlops nigrescens 38 (PR) Diporiphora nobbi 8.4 (PR) Pogona barbata – vu 25 (DM) Cryptoblepharus pannosus Snout-Vent 3.5 (DM) Ctenotus robustus Snout-Vent 12 (DM) Guide to symbols Venomous Lifeform F Fossorial (burrows underground) T Terrestrial Reptiles & Frogs SA Semi Arboreal R Rock-dwelling Habitat Type Alpine Bog Montane Forests Alpine Grassland/Woodland Lowland Grassland/Woodland White-lipped Snake Tiger Snake Woodland Blind Snake Olive Legless Lizard Mountain Dragon Marbled Gecko Copper-tailed Skink Alpine She-oak Skink Drysdalia coronoides 40 (PR) Notechis scutatus 200 (NC) Ramphotyphlops proximus – nt 50 (DM) Delma inornata 13 (DM) Rankinia diemensis Snout-Vent 7.5 (NC) Christinus marmoratus Snout-Vent 7 (PR) Ctenotus taeniolatus Snout-Vent 8 (DM) Cyclodomorphus praealtus
    [Show full text]