Computer Models, Climate Data, and the Politics of Global Warming (Cambridge: MIT Press, 2010)

Total Page:16

File Type:pdf, Size:1020Kb

Computer Models, Climate Data, and the Politics of Global Warming (Cambridge: MIT Press, 2010) Complete bibliography of all items cited in A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Cambridge: MIT Press, 2010) Paul N. Edwards Caveat: this bibliography contains occasional typographical errors and incomplete citations. Abbate, Janet. Inventing the Internet. Inside Technology. Cambridge: MIT Press, 1999. Abbe, Cleveland. “The Weather Map on the Polar Projection.” Monthly Weather Review 42, no. 1 (1914): 36-38. Abelson, P. H. “Scientific Communication.” Science 209, no. 4452 (1980): 60-62. Aber, John D. “Terrestrial Ecosystems.” In Climate System Modeling, edited by Kevin E. Trenberth, 173- 200. Cambridge: Cambridge University Press, 1992. Ad Hoc Study Group on Carbon Dioxide and Climate. “Carbon Dioxide and Climate: A Scientific Assessment.” (1979): Air Force Data Control Unit. Machine Methods of Weather Statistics. New Orleans: Air Weather Service, 1948. Air Force Data Control Unit. Machine Methods of Weather Statistics. New Orleans: Air Weather Service, 1949. Alaka, MA, and RC Elvander. “Optimum Interpolation From Observations of Mixed Quality.” Monthly Weather Review 100, no. 8 (1972): 612-24. Edwards, A Vast Machine Bibliography 1 Alder, Ken. The Measure of All Things: The Seven-Year Odyssey and Hidden Error That Transformed the World. New York: Free Press, 2002. Allen, MR, and DJ Frame. “Call Off the Quest.” Science 318, no. 5850 (2007): 582. Alvarez, LW, W Alvarez, F Asaro, and HV Michel. “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction.” Science 208, no. 4448 (1980): 1095-108. American Meteorological Society. 2000. Glossary of Meteorology. http://amsglossary.allenpress.com/glossary/ Anderson, E. C., and W. F. Libby. “World-Wide Distribution of Natural Radiocarbon.” Physical Review 81, no. 1 (1951): 64-69. Anonymous. “The Challenge of the World Network Problem.” WMO Bulletin 12, no. 3 (1963): 144-48. Anthes, Richard A. 1999. President's Report for October 1999 Ucar Board of Trustees, Member Representatives and University Relations Committee Meetings. http://www.ucar.edu/governance/meetings/oct99/reports/anthes/index.html Antilla, L. “Climate of Scepticism: Us Newspaper Coverage of the Science of Climate Change.” Global Environmental Change 15, no. 4 (2005): 338-52. Arakawa, A. “The Cumulus Parameterization Problem: Past, Present, and Future.” Journal of Climate 17, no. 13 (2004): 2493-525. Arakawa, Akio. “Paul N. Edwards.” (1997): Arakawa, Akio. “A Personal Perspective on the Early Years of General Circulation Modeling At UCLA.” In General Circulation Model Development, edited by David A. Randall, 1-65. San Diego: Academic Press, 2000. Arakawa, Akio, and Wayne Howard Schubert. “Interaction of a Cumulus Cloud Ensemble With the Large- Scale Environment, Part I.” Journal of the Atmospheric Sciences 31, no. April (1974): 674-701. Arkin, Phillip, Eugenia Kalnay, James Laver, Siegfried D. Schubert, and Kevin Trenberth. “Ongoing Analysis of the Climate System: A Workshop Report.” Paper presented at the Ongoing Analysis of the Climate System, Boulder, 2003. Arrhenius, Svante. “On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground.” Philosophical Magazine and Journal of Science 41 (1896): 237-76. Aspray, William. John Von Neumann and the Origins of Modern Computing. Cambridge: MIT Press, 1990. Atlas, R., E. Kalnay, and M. Halem. “Impact of Satellite Temperature Sounding and Wind Data on Numerical Weather Prediction.” Optical Engineering 24, no. 2 (1985): 341-46. Edwards, A Vast Machine Bibliography 2 Auer, I., R. Bohm, H. Scheifinger, M. Ungersbock, A. Orlik, and A. Jurkovic. “Metadata and Their Role in Homogenising.” Paper presented at the Proceedings of the Fourth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, 2004. Ausubel, Jesse. “Federal Organization for Climate and Energy: A Brief History and Analysis.” (1989): Barron, Eric J., William H. Peterson, David Pollard, and Starley Thompson. “Past Climate and the Role of Ocean Heat Transport: Model Simulations for the Cretaceous.” Paleoceanography 8, no. 6 (1993): 785-98. Bartky, Ian R. One Time Fits All: The Campaigns for Global Uniformity. Stanford: Stanford University Press, 2007. Bartky, Ian R. “The Adoption of Standard Time.” Technology and Culture 30, no. 1 (1989): 25-56. Barton, Joe, Whitfield, Ed, and House Subcommittee on Oversight and Investigations. 2005. Letter to Michael Mann. http://republicans.energycommerce.house.gov/108/Letters/062305_Mann.pdf Bauer, K. G., and J. E. Kutzbach. “Evaluation Standards for Dynamical Prediction Models.” Journal of Applied Meteorology 13, no. 4 (1974): 505-06. Baum, Werner, Marjorie Courain, William Haggard, Roy Jenne, Kelly Redmond, and Thomas Vonder Haar. “Report of the Atmospheric Sciences Data Panel.” In Study on the Long-Term Retention of Selected Scientific and Technical Records of the Federal Government: Working Papers, edited by Commission on Physical Sciences, Mathematics, and Applications, Washington: National Academy Press, 1995. Beck, Harold L., and Burton G. Bennett. “Historical Overview of Atmospheric Nuclear Weapons Testing and Estimates of Fallout in the Continental United States.” Health Physics 82, no. 5 (2002): 591- 608. Bedient, H. A., and G. P. Cressman. “An Experiment in Automatic Data Processing.” Monthly Weather Review 85, no. 10 (1957): 333-40. Bellamy, John C. “Automatic Processing of Geophysical Data.” Advances in Geophysics 1 (1952): 1-43. Bengtsson, L., K. I. Hodges, and L. S. R. Froude. “Global Observations and Forecast Skill.” Tellus 57, no. 4 (2005): 515-27. Bengtsson, Lennart. Results of the Global Weather Experiment. Vol. WMO no. 610, Geneva: World Meteorological Organization, 1983. Bengtsson, Lennart, Phil Arkin, Paul Berrisford, Philippe Bougeault, Chris K. Folland, Chris Gordon, Keith Haines, Kevin I. Hodges, Phil Jones, Per Kallberg, Nick Rayner, Adrian J. Simmons, Detlef Stammer, Peter W. Thorne, Sakari Uppala, and Russell S. Vose. “The Need for a Dynamical Climate Reanalysis.” Bulletin of the American Meteorological Society 88, no. 4 (2007): 495-501. Bengtsson, Lennart, and Jagadish Shukla. “Integration of Space and in Situ Observations to Study Global Climate Change.” Bulletin of the American Meteorological Society 69, no. 10 (1988): 1130-43. Edwards, A Vast Machine Bibliography 3 Beniger, James R. The Control Revolution: Technological and Economic Origins of the Information Society. Cambridge: Harvard University Press, 1986. Bergengren, Jon C., and Starley L. Thompson. “Modeling the Effects of Global Climate Change on Natural Vegetation.” (1994): Bergengren, Jon C., Starley L. Thompson, David Pollard, and Robert M. Deconto. “Modeling Global Climate–Vegetation Interactions in a Doubled CO2 World.” Climatic Change 50, no. 1-2 (2001): 31- 75. Bergeron, Tor. “Methods in Scientific Weather Analysis and Forecasting: An Outline on the History of Ideas and Hints At the Program.” In The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, edited by Bert Bolin, 440-74. New York: Rockefeller Institute Press, 1959. Bergthorsson, P., and B. R. Döös. “Numerical Weather Map Analysis.” Tellus 7, no. 3 (1955): 329-40. Bergthorsson, P., B. R. Döös, S. Frylkund, O. Haug, and R. Lindquist. “Routine Forecasting With the Barotropic Model.” Tellus 7, no. 2 (1955): 272-76. Bijker, Wiebe, Thomas P. Hughes, and Trevor Pinch. The Social Construction of Technological Systems. Cambridge, MA: MIT Press, 1987. Bijker, Wiebe E., and John Law, (eds.) Shaping Technology/Building Society: Studies in Sociotechnical Change. Cambridge: MIT Press, 1992. Bjerknes, V. Fields of Force: Supplementary Lectures, Applications to Meteorology. New York: Columbia University Press, 1906. Bjerknes, V. Dynamic Meteorology and Hydrography, Part II. Kinematics. New York: Gibson Bros., Carnegie Institute, 1911. Bjerknes, V., Johan Wilhelm Sandström, Theodor Hesselberg, and Olak Martin Devik. Dynamic Meteorology and Hydrography. Washington: Carnegie Institution of Washington, 1910. Bjerknes, Vilhelm, Jakob Bjerknes, Halvor Skappel Solberg, and Tor Bergeron. Physikalische Hydrodynamik, MIT Anwendung Auf Die Dynamische Meteorologie. Berlin: J. Springer, 1933. Block, Ben. 2008. A Look Back At James Hansen's Seminal Testimony on Climate, Part Two. http://gristmill.grist.org/story/2008/6/17/235739/259 Blomkvisk, Pär, and Arne Kaijser, (eds.) Den Konstruerade Världen: Tekniska System I Historiskt Perspektiv. Stockholm: Brutus Östlings, 1998. Bloomfield, Brian P. Modelling the World: The Social Constructions of Systems Analysts. Oxford: Basil Blackwell, 1986. Board on Atmospheric Sciences and Climate. “The National Climate Program: Early Achievements and Future Directions.” (1986): Edwards, A Vast Machine Bibliography 4 Bodansky, Daniel. “The History of the Global Climate Change Regime.” In International Relations and Global Climate Change, edited by Urs Luterbacher, and Detlef F. Sprinz, 23–40. Cambridge: MIT Press, 2001. Boehm, R, I Auer, M Brunetti, M Maugeri, T Nanni, and W Schoener. “Regional Temperature Variability in the European Alps: 1760-1998 From Homogenized Instrumental Time Series.” International Journal of Climatology 21, no. 14 (2001): 1779-801. Bolin, B., E. M. Dobrishman, K. Hinkelmann, E. Knighting, and P. D. Thompson. “Numerical Methods of Weather Analysis and Forecasting.” (1962): Bornstein, R. F. “The Predictive Validity of Peer Review: A Neglected Issue.” Behavioral and Brain Science 14, no. 1 (1991): 138-39. Bourke, W., B. McAvaney, K. Puri, and R. Thurling. “Global Modeling
Recommended publications
  • Jule Charney's Influence on Meteorology'
    Jule Charney's Influence Norman A. Phillips National Weather Service, NOAA on Meteorology' Washington, D.C. 20233 The opportunity to address the Society on the contributions of Jule Charney to our science is an honor of the highest rank, and I thank you for this invitation. I will try to capture for you a meaningful impression of the extent to which our common undertaking has been influenced by this man (Fig. 1). Let me begin by recalling three historical contexts. The first of these is January 1,1917. Jule is born on this day in San Francisco, to Stella and Ely Charney. Five thousand miles away in Bergen, Norway, Vilhelm Bjerknes and his collabor- ators are developing the concepts of fronts and air masses. Some distance south of Bergen, Lewis Richardson is trans- porting wounded soldiers with the Friends Ambulance Corps. In spare moments, he is working on his monumental formulation of what is now called numerical weather prediction. My second context is around 1940. Jule had entered the University of California at Los Angeles in the mid-thirties, and is now a graduate student there in mathematics. UCLA is expanding, and Jacob Bjerknes and Jrirgen Holmboe ar- rive about this time. (A few years earlier, Bjerknes had pub- lished an important paper on long waves. In 1939, while he was at M.I.T., Carl Rossby published his well known model FIG. 1. A picture of Jule Charney (left), with E. Lorenz, taken in of long waves. These events are unknown to Jule.) Jule 1976 during a visit by Chinese meteorologists to the Massachusetts knows nothing of meteorology until one day he hears a talk Institute of Technology.
    [Show full text]
  • Roots of Ensemble Forecasting
    JULY 2005 L E W I S 1865 Roots of Ensemble Forecasting JOHN M. LEWIS National Severe Storms Laboratory, Norman, Oklahoma, and Desert Research Institute, Reno, Nevada (Manuscript received 19 August 2004, in final form 10 December 2004) ABSTRACT The generation of a probabilistic view of dynamical weather prediction is traced back to the early 1950s, to that point in time when deterministic short-range numerical weather prediction (NWP) achieved its earliest success. Eric Eady was the first meteorologist to voice concern over strict determinism—that is, a future determined by the initial state without account for uncertainties in that state. By the end of the decade, Philip Thompson and Edward Lorenz explored the predictability limits of deterministic forecasting and set the stage for an alternate view—a stochastic–dynamic view that was enunciated by Edward Epstein. The steps in both operational short-range NWP and extended-range forecasting that justified a coupling between probability and dynamical law are followed. A discussion of the bridge from theory to practice follows, and the study ends with a genealogy of ensemble forecasting as an outgrowth of traditions in the history of science. 1. Introduction assumption). And with guidance and institutional sup- port from John von Neumann at Princeton’s Institute Determinism was the basic tenet of physics from the for Advanced Study, Charney and his team of research- time of Newton (late 1600s) until the late 1800s. Simply ers used this principle to make two successful 24-h fore- stated, the future state of a system is completely deter- casts of the transient features of the large-scale flow mined by the present state of the system.
    [Show full text]
  • History of Frontal Concepts Tn Meteorology
    HISTORY OF FRONTAL CONCEPTS TN METEOROLOGY: THE ACCEPTANCE OF THE NORWEGIAN THEORY by Gardner Perry III Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1961 Signature of'Author . ~ . ........ Department of Humangties, May 17, 1959 Certified by . v/ .-- '-- -T * ~ . ..... Thesis Supervisor Accepted by Chairman0 0 e 0 o mmite0 0 Chairman, Departmental Committee on Theses II ACKNOWLEDGMENTS The research for and the development of this thesis could not have been nearly as complete as it is without the assistance of innumerable persons; to any that I may have momentarily forgotten, my sincerest apologies. Conversations with Professors Giorgio de Santilw lana and Huston Smith provided many helpful and stimulat- ing thoughts. Professor Frederick Sanders injected thought pro- voking and clarifying comments at precisely the correct moments. This contribution has proven invaluable. The personnel of the following libraries were most cooperative with my many requests for assistance: Human- ities Library (M.I.T.), Science Library (M.I.T.), Engineer- ing Library (M.I.T.), Gordon MacKay Library (Harvard), and the Weather Bureau Library (Suitland, Md.). Also, the American Meteorological Society and Mr. David Ludlum were helpful in suggesting sources of material. In getting through the myriad of minor technical details Professor Roy Lamson and Mrs. Blender were indis-. pensable. And finally, whatever typing that I could not find time to do my wife, Mary, has willingly done. ABSTRACT The frontal concept, as developed by the Norwegian Meteorologists, is the foundation of modern synoptic mete- orology. The Norwegian theory, when presented, was rapidly accepted by the world's meteorologists, even though its several precursors had been rejected or Ignored.
    [Show full text]
  • Prospects for Improving Forecasts of Weather and Short-Term Climate Variability on Subseasonal
    NASA/TM_2002-104606, Vol. 23 Techmcal Report Series• on Global Modehn_,• _J and Data Assimilation Volume 23 Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Time Scales S. Schubert, R. Dole, H. van den DooL MI Suarez, and D. Waliser Ptvceedings flvm a _fbrkshop Sponsored hy the Earth Sciences Directorate at NASA's Goddard Space Flight Centez Co-sponsored by 2v_dSA Seasonal-to-bm_rannual Prediction Project and NAS_d Data Assimilation OJfice April 16-18, 2002 Nc_vember__ 2002 The NASA STI Program Office ... m Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other hlf()rmation (STI) Program Office plays a key meetings sponsored or cosponsored by NASA. part in helping NASA maintain this important role. SPECIAL PUBLICATION. Scientific, techni- cal, or historical information from NASA The NASA STI Program Office is operated by programs, projects, and mission, often con- Langley Research Center, the lead center for cemed with subjects having substantial public NASA's scientific and technical information. interest. The NASA STI Program Office provides access to the NASA STI Database, the largest collection TECHNICAL TRANSLATION. of aeronautical and space science STI in the English-I angu age translations of foreign scien- world. The Program Office i s also NASA' s tific and technical material pertinent to NASA's institutional mechanism for disseminating the mission. results of its research and development activi- ties. These results are published by NASA in the Specialized services that complement the STI NASA STI Report Series, which includes the Program Office's diverse offerings include creat- following report types: ing custom thesauri, building customized data- bases, organizing and publishing research results..
    [Show full text]
  • (Highresmip V1.0) for CMIP6
    High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 1 2 3 5 Reindert J. Haarsma , Malcolm Roberts , Pier Luigi Vidale , Catherine A. Senior2, Alessio Bellucci4, Qing Bao5, Ping Chang6, Susanna Corti7, Neven S. Fučkar8, Virginie Guemas8, Jost von Hardenberg7, Wilco Hazeleger1,9,10, Chihiro Kodama11, Torben Koenigk12, Lai-Yung Ruby Leung13, Jian Lu13, Jing-Jia Luo14, Jiafu Mao15, Matthew S. Mizielinski2, Ryo Mizuta16, Paulo Nobre17, Masaki 18 4 19 20 10 Satoh , Enrico Scoccimarro , Tido Semmler , Justin Small , Jin-Song von Storch21 1Royal Netherlands Meteorological Institute, De Bilt, The Netherlands 2Met Office Hadley Centre, Exeter, UK 15 3University of Reading, Reading, UK 4 Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy 5LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing , China P.R. 6Texas A&M University, College Station, Texas, USA 7National Research Council – Institute of Atmospheric Sciences and Climate, Italy 20 8Barcelona Super Computer Center, Earth Sciences Department, Barcelona, Spain 9Netherlands eScience Center, Amsterdam, The Netherlands 10Wageningen University, The Netherlands 11Japan Agency for Marine-Earth Science and Technology, Japan 12Swedish Meteorological and Hydrological Institute, Norrköping, Sweden 25 13Pacific Northwest National Laboratory, Richland, USA 14Bureau of Meteorology, Australia 15Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA 16Meteorological Research Institute,
    [Show full text]
  • Orographic Effect on the Summer
    Orographic Effects on South China Sea Summer Climate Haiming Xu∗ Department of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China Shang-Ping Xie and Yuqing Wang International Pacific Research Center and Department of Meteorology, University of Hawaii, Hawaii, USA Wei Zhuang, and Dongxiao Wang LED,South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China Submitted to Meteorology and Atmospheric Physics April, 2007 ∗ Corresponding author address: Dr. Haiming Xu, Department of Atmospheric Sciences, Nanjing University of Information Science and Technology, 114 New Street, Pancheng, Pukou District, Nanjing 210044, China. E-mail: [email protected] Abstract New satellite observations reveal several distinct features of the South China Sea (SCS) summer climate: an intense low-level southwesterly wind jet off the coast of South Vietnam, a precipitation band on the western flank of the north-south running Annam mountain range, and a rainfall shadow to the east in the western SCS off the east coast of Vietnam. A high-resolution full-physics regional atmospheric model is used to investigate the mechanism for the formation of SCS summer climate. A comparison of the control model simulation with a sensitivity experiment with the mountain range artificially removed demonstrates that the aforementioned features form due to orographic effects of the Annam mountains. Under the prevailing southwesterly monsoon, the mountain range forces the ascending motion on the windward and subsidence on the lee side, giving rise to bands of active and suppressed convection, respectively. On the south edge of the mountain range, the southwesterlies are accelerated to form an offshore low-level wind jet.
    [Show full text]
  • 275 Tor Bergeron's Uber Die
    JULY,1931 MONTHLY WEATHER REVIEW 275 The aooperative stations are nearer the c.rops, being gage: These are read at about 4 p. m. or 8 a. m. and the mostly in small towns, or even on farms, in some in- maximum and niininiuin temperature, set maximum stances, but they measure only rainfall and temperature temperature, and total rainfall entered on forms. Where once a day and have no self-recording instruments that are the details? How much sunshine, what was soil keep a continuous record. Thus, for these which are temperature, when did rain occur, how long were tempera- more directly applicable, many weather phases are not tures above or below a significant value, what was the available. relative humidity, rate of evaporation, etc.? The crop statistics are even more hazy and generalized, Even if the above questions were satisfactorily answered in addition to being relatively inaccessible. We can find how can we be sure that, we have everything we need? easily the estimated yield per acre or total acreage, for the Maybe we need leaf temperature, intensity of solar radia- most available data give these figures on a State unit tion, plant transpiration, moisture of tlie soil at different basis, but yields often vary widely in different parts of a depths, and many other details too numerous to mention. State. Loc,al, even in most places county, temperature and rainfall data are available, but what about correspond- CONCLUSION ing yield figures? They are to be had in some individual Are we doing everything possible to facilitate the study State publications, but a complete file for one State is OI crop production in its relation to the weather on a difficult to find outside the issuing office and then the large scale, or even in local areas? There have been some series is rarely carried back far enough to be of material beginnings.
    [Show full text]
  • Aerosol-Orography-Precipitation – a Critical Assessment T Goutam Choudhurya, Bhishma Tyagia,*, Jyotsna Singhb, Chandan Sarangic, S.N
    Atmospheric Environment 214 (2019) 116831 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Review article Aerosol-orography-precipitation – A critical assessment T Goutam Choudhurya, Bhishma Tyagia,*, Jyotsna Singhb, Chandan Sarangic, S.N. Tripathid a Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India b Shanti Raj Bhawan, Paramhans Nagar, Kandwa, Varanasi, 221106, India c Pacific Northwest National Laboratory, Richland, United States d Department of Civil Engineering & Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: The increasing anthropogenic pollution and its interaction with precipitation received much attention from the Aerosols research community and have been explored extensively for understanding the aerosol-cloud interactions. The Aerosol-orography-precipitation interactions impacts of orography and aerosols on the precipitation processes have unveiled the Aerosol-Orography- Cloud microphysics Precipitation (AOP) interaction as an essential research area. The understanding of AOP interaction is critical for Spillover effect improving the extreme rainfall events prediction over mountainous regions. The phase of clouds (warm or Orographic enhancement factor mixed) along with orography has emerged as a significant factor for influencing the AOP relations. The present work reviews the modelling and observational based studies dealing with the relationship between orography and aerosols on the precipitation. The study reveals the principal role of aerosols in shifting the precipitation pattern for orographic regions. The environmental factors, especially ambient temperature, humidity and flow patterns are also identified to affect the orographic precipitation. The review also discovers that AOP studies exist only to limited areas of the world due to limited observations, and mostly with idealised cases in the modelling framework.
    [Show full text]
  • Global Weat Her Prediction and High-End Computing at NASA
    Global Weat her Prediction and High-End Computing at NASA Shian-Jiann Lin, Robert Atlas, and Kao-San Yeh* NASA Goddard Space Flight Center *Corresponding author address: Dr. Kao-San Yeh Code 900.3, NASA Goddard Space Flight Center, Greenbelt, MD 20771 E-mail: [email protected] August 18th, 2003 Abstract We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise. 1 1. Introduction NASA’s goal for an Earth modeling system is to unify the model development activities that cut across various disciplines within the Earth Science Enterprise. Applications of the Earth modeling system include, but are not limited to, weather and chemistry-climate change predictions, and atmospheric and oceanic data assimilation. Among these applications, high-resolution global weather prediction requires the highest temporal and spatial resolution, and hence demands the most capability of a high-end computing system. In the continuing quest to improve and perhaps push to the limit of the predictability of the weather (see the related side bar), we are adopting more physically based algorithms with much higher resolution than those in earlier models. We are also including additional physical and chemical components that have not been coupled to the modeling system previously. As a comprehensive high-resolution Earth modeling system will require enormous computing power, it is important to design all component models efficiently for modern parallel computers with distributed-memory platforms.
    [Show full text]
  • Ensemble Forecasting and Data Assimilation: Two Problems with the Same Solution?
    Ensemble forecasting and data assimilation: two problems with the same solution? Eugenia Kalnay(1,2), Brian Hunt(2), Edward Ott(2) and Istvan Szunyogh(1,2) (1)Department of Meteorology and (2)Chaos Group University of Maryland, College Park, MD, 20742 1. Introduction Until 1991, operational NWP centers used to run a single computer forecast started from initial conditions given by the analysis, which is the best available estimate of the state of the atmosphere at the initial time. In December 1992, both NCEP and ECMWF started running ensembles of forecasts from slightly perturbed initial conditions (Molteni and Palmer, 1993, Buizza et al, 1998, Buizza, 2005, Toth and Kalnay, 1993, Tracton and Kalnay, 1993, Toth and Kalnay, 1997). Ensemble forecasting provides human forecasters with a range of possible solutions, whose average is generally more accurate than the single deterministic forecast (e.g., Fig. 4), and whose spread gives information about the forecast errors. It also provides a quantitative basis for probabilistic forecasting. Schematic Fig. 1 shows the essential components of an ensemble: a control forecast started from the analysis, two additional forecasts started from two perturbations to the analysis (in this example the same perturbation is added and subtracted from the analysis so that the ensemble mean perturbation is zero), the ensemble average, and the “truth”, or forecast verification, which becomes available later. The first schematic shows an example of a “good ensemble” in which “truth” looks like a member of the ensemble. In this case, the ensemble average is closer to the truth than the control due to nonlinear filtering of errors, and the ensemble spread is related to the forecast error.
    [Show full text]
  • The Meteorological Magazine
    M.O. 514 AIR MINISTRY METEOROLOGICAL OFFICE THE METEOROLOGICAL MAGAZINE VOL. 78. NO. 922. APRIL 1949 ORGANIZATION OF RESEARCH IN THE METEOROLOGICAL OFFICE By A. H. R. GOLDIE, D.Sc., F.R.S.E. Early years.—The Meteorological Office has always had an interest in research; the selection or establishment of seven observatories in 1867 by the Meteorological Committee of the Royal Society was one of the early steps towards providing data for exact investigation of weather phenomena. But it was only from about 1906 that the governing body took definite action to offer a career in research to its own staff. In the Report of the Meteorological Committee for the year ending March 31, 1906, we read that two new appointments apart from the Directorship (then held by Mr. W. N., afterwards Sir Napier, Shaw) were created in the Meteorological Office, to be filled by men of " high scientific attainments ", namely the posts of Superintendent of Statistics and Superintendent of Instruments. Mr. R. G. K. Lempfert and Mr. E. Gold were appointed to these posts. In the same report we read also that the Commission had been fortunate in securing the services of Mr. W. H. Dines, F.R.S., for the organization and control of experiments for the investigation of the upper air1*. And later we read that Mr. G. G. Simpson (afterwards Sir George Simpson, Director of the Office 1920-1938) who was acting as volunteer assistant to the Director had made arrangements for kite ascents in Derbyshire. In these appointments we see the beginnings of meteorology as a recognised profession offering a career for men " of high scientific attainments ".
    [Show full text]
  • Rewards and Penalties of Monitoring the Earth
    rg o me 23 (c)1998 by Annual Reviews. u September 11, 1998P1: H 13:40 Annual Reviews AR064-00 AR64-FrontisP-II Annu. Rev. Energy. Environ. 1998.23:25-82. Downloaded from arjournals.annualreviews. Reprinted, with permission, from the Annual Review of Energy and the Environment, Vol Reprinted, with permission, from the Annual Review of Energy and Environment, P1: PSA/spd P2: PSA/plb QC: PSA/KKK/tkj T1: PSA September 29, 1998 10:3 Annual Reviews AR064-02 Annu. Rev. Energy Environ. 1998. 23:25–82 Copyright c 1998 by Annual Reviews. All rights reserved rg o REWARDS AND PENALTIES OF MONITORING THE EARTH Charles D. Keeling me 23 (c)1998 by Annual Reviews. u Scripps Institution of Oceanography, La Jolla, California 92093-0220 KEY WORDS: monitoring carbon dioxide, global warming ABSTRACT When I began my professional career, the pursuit of science was in a transition from a pursuit by individuals motivated by personal curiosity to a worldwide enterprise with powerful strategic and materialistic purposes. The studies of the Earth’s environment that I have engaged in for over forty years, and describe in this essay, could not have been realized by the old kind of science. Associated with the new kind of science, however, was a loss of ease to pursue, unfettered, one’s personal approaches to scientific discovery. Human society, embracing science for its tangible benefits, inevitably has grown dependent on scientific discoveries. It now seeks direct deliverable results, often on a timetable, as compensation for public sponsorship. Perhaps my experience in studying the Earth, initially with few restrictions and later with increasingly sophisticated interaction with government sponsors and various planning committees, will provide a perspective on this great transition from science being primarily an intellectual pastime of private persons to its present status as a major contributor to the quality of human life and the prosperity of nations.
    [Show full text]