Gdch-Fachgruppe Geschichte Der Chemie, 4 (1990), S.46-47

Total Page:16

File Type:pdf, Size:1020Kb

Gdch-Fachgruppe Geschichte Der Chemie, 4 (1990), S.46-47 Mitteilungen Nr. 23 (2013) Beiträge G. Lattermann Vor- und frühgeschichtliche biopolymere (Werk-)Stoffe .................. 3 G. Görmar Jacob Waitz und Basilius Valentinus im Kloster Walkenried: Legende und Wirklichkeit ................................................................ 31 K.D. Röker Die „Jedermann-Chemie“ des Friedlieb Ferdinand Runge .............. 52 G. Schwedt C. R. Fresenius’ Mineralwasseranalytik am Beispiel der historischen „Mineralquelle zu Niederselters“ ................................. 71 H. Andreas Reinhold Hoffmann und sein Kommilitone August Kekulé ............ 86 D. Braun Marcelin Berthelot als erster Polymerforscher des neunzehnten Jahrhunderts ...................................................................................... 96 A. Martin Döbereiner und das Platin ............................................................... 107 S. Niese Die Entdeckung des Actiniums ...................................................... 129 R. Kießling Die Chemische Gesellschaft der DDR: Teil I ................................ 145 P. Hallpap Die Chemie an der Universität Jena in der Wende ......................... 176 Dokumentation und Information A. Kraft Alles aus Plaste – eine Ausstellung zum Kunststoffzeitalter ......... 198 Aus dem Fachgebiet ................................................................................................... 201 Stipendien und Preise ................................................................................................. 202 Eingesandte Neuerscheinungen .. ................................................................................ 204 Mitteilungen, Gesellschaft Deutscher Chemiker / Fachgruppe Geschichte der Chemie (Frankfurt/Main), Bd 23 (2013) ISSN 0934-8506 Mitteilungen Nr. 23 (2013) Herausgegeben von der Fachgruppe „Geschichte der Chemie“ in der Gesellschaft Deutscher Chemiker ISSN 0934-8506 Varrentrappstraße 40-42, D-60486 Frankfurt am Main Postfach 900440, D-60444 Frankfurt am Main <http://www.gdch.de/geschichte> Vorstand: Prof. Dr. Christoph Meinel (Regensburg), Vorsitzender Prof. Dr. Dietmar Linke (Berlin), stellv. Vorsitzender Ralf Hahn, M.A. (Berlin) Priv.-Doz. Dr. Peter Hallpap (Jena) Dipl.-Ing. Renate Kießling (Liederbach) Christine Nawa, M.A. (Tübingen) Dr. Heinrich Schönemann (Neukirchen-Vluyn) Schriftleitung: Prof. Dr. Christoph Meinel, Universität Regensburg, Lehrstuhl für Wissenschaftsgeschichte, D-93040 Regensburg Tel. (0941) 943-3661/3659, Fax (0941) 943-1985 E-Mail: [email protected] unter Mitarbeit von Dr. Tanja Schedlbauer (Regensburg) Die Mitteilungen der Fachgruppe „Geschichte der Chemie“ erscheinen in loser Folge etwa einmal im Jahr. Fachgruppenmitglieder erhalten die Mitteilungen im Rahmen ihres Mitgliedsbeitrags, Nichtmitglieder und Institutionen können sie gegen eine Unkostenbeteiligung (€ 10 für GDCh-Mitglieder, sonst € 20) von der Geschäftsstelle anfordern. Autoren der Mitteilungen erhalten Belegexemplare des jeweiligen Heftes, jedoch keine Sonderdrucke. Sie haben das Recht, ihren Beitrag für eigene Zwecke zu vervielfältigen, sofern dies unter Nennung der Quelle geschieht. Die Beiträge der Mitteilungen werden regelmäßig in Chemical Abstracts, der Isis Current Bibliography on the History of Science und der bibliographischen Datenbank History of Science, Technology & Medicine (EBSCO) referiert. Mitteilungen, Gesellschaft Deutscher Chemiker / Fachgruppe Geschichte der Chemie (Frankfurt/Main), Bd 23 (2013) ISSN 0934-8506 Vor- und frühgeschichtliche biopolymere (Werk)-Stoffe Dr. Dr. h.c. Günter Lattermann, Grüner Baum 32, 95448 Bayreuth <[email protected]> / Deutsche Gesellschaft für Kunststoff- geschichte dgkg <www.dg-kunststoffgeschichte.de> Die ältesten Zweige frühester ‚Chemie‘ sind verbunden mit Ledergerbung, Tex- tilherstellung und -färberei, Töpferei, Metallgewinnung und -verarbeitung, Glasherstellung und Bier- bzw. Weinbereitung. Die Anfänge weisen weit in die vorgeschichtliche Zeit hinein. Dasselbe gilt auch für die hierbei vielfach auftre- tenden polymeren Stoffe, die bis vor gut hundert Jahren alle natürlichen Ur- sprungs, also Biopolymere waren. Ohne solche frühen Polymere ist die Mensch- heitsentwicklung und ihre Materialgeschichte nicht denkbar. Hier werden zu- nächst biopolymere Stoffe besprochen, die auf natürliche Weise vor Millionen von Jahren entstanden, zwar nicht direkt als Werkstoffe dem Menschen dienten, aber als „Urahnen“ moderner Polymere gelten können. Danach wird eine Serie biopolymerer Werkstoffe beschrieben, ohne allerdings die große Gruppe der Tex- tilfasern zu berücksichtigen. Das „Affenhaar“: fossiles cis-1,4-Polyisopren Das sogenannte „Affenhaar“, ein fossiler Kautschuk, zählt hinsichtlich seiner Entstehungszeit zu den ältesten polymeren Materialen, die bislang bekannt wur- den (s. Abb. 1). Seit langem fand man in Schichten der älteren Braunkohle (Eo- zän, ca. 55-35 Mio. Jahre v.h.) des mitteldeutschen Braunkohlereviers um Köthen, Nachterstedt, Geiseltal und Oberröbling des Öfteren eine Art Fladen von gelblich-hellbraunem, fein-faserigem Material, dem die Bergleute den Namen „Affenhaar“ gegeben hatten.1 1848 wurde diese „Faserkohle“ erstmals von T. Hartig erwähnt und als Fäden fossiler Milchsaftgefäße beschrieben.2 Später wur- den sie aber als Bastfasern aus Pflanzenstängeln eingeordnet und als „Fascikuli- tenkohle“ (Bastbündelkohle) bezeichnet.3 Dieser neuen Einordnung widersprach aber zunächst schon die Farbe der Fasern. Als Bastfasern müssten sie aus Zellu- lose und verholzender Substanz bestehen und eine dunkelbraune bis schwarze Farbe angenommen haben. Erste analytische Untersuchungen wurden 1924 vor- – 3 – Mitteilungen, Gesellschaft Deutscher Chemiker / Fachgruppe Geschichte der Chemie (Frankfurt/Main), Bd 23 (2013) ISSN 0934-8506 JHQRPPHQ =XQlFKVW]HLJWHQHLQIDFKH%UHQQSUREHQGDVVGLH)DVHUQ±LP*H JHQVDW]]X=HOOXORVH±VHKUVFKQHOOXQGPLWDURPDWLVFKHP*HUXFKDEEUHQQHQLP *HUXFKHULQQHUQGDQ+DU]XQGYHUEUDQQWHV*XPPL&KHPLVFKH8QWHUVXFKXQJHQ GXUFK([WUDNWLRQHQPLW$FHWRQDONRKROLVFKHU1DWURQODXJHXQG%HQ]ROHUJDEHQ GDVV GLH HLQ]HOQHQ HQWKDU]WHQ )lGHQ VLFK QLFKW DXIJHO|VW KDWWHQ VRQGHUQ QDFK 7URFNQXQJHODVWLVFKJHZRUGHQZDUHQXQGVRPLWGQQHQ*XPPLIlGHQJOLFKHQ 'LH (OHPHQWDUDQDO\VH ]HLJWH GLH $QZHVHQKHLW YRQ NQDSS 6FKZHIHO DQ 'HU 1DFKZHLV DOV .DXWVFKXN ZXUGH GXUFK HLQH 8QWHUVXFKXQJ YRQ 5 :HLO YRP /DERU GHU &RQWLQHQWDO .DXWVFKXN XQG *XWWDSHUFKD .RPSDJQLH +DQ QRYHU GXUFKJHIKUW $QDORJ +DU ULHV VHW]WH HU GDV 0DWHULDO]X.DX WVFKXN2]RQLG XP $OOHUGLQJV ZXUGHGLHWDWVlFKOLFKH.RQVWLWXWLRQ GLHVHU9HUELQGXQJDOVKRFKPROHNX ODUHV 2]RQLG HUVW HLQ -DKU VSlWHU GXUFK6WDXGLQJHUEHZLHVHQ 'LH 8QWHUVXFKXQJHQ DP Ä$IIHQ KDDU³ZDUHQGDPDOVDOVRKRFKDNWX HOO XQG ILHOHQ JHQDX LQ GHQ =HLW UDXPGHU(UVWHOOXQJGHV.RQ]HSWHV E]Z 1DFKZHLVHV GHU 0DNURPROH NOH8QWHUVXFKXQJHQGLH-DKUH VSlWHUDQ3UREHQHEHQIDOOVDXVGHP PLWWHOGHXWVFKHQ %UDXQNRKOHQJHELHW YRUJHQRPPHQ ZXUGHQ EHVWlWLJWHQ GXUFK &105GDV9RUOLHJHQYRQ $EE Ä$IIHQKDDU³ 9XONDQLVLHUWHU .DXWVFKXN FLV3RO\LVRSUHQ6WUXNWXUHQ DOV ,QKDOW YRQ /DWH[IKUHQGHQ 5|KUHQ IRVVLOHU .DXWVFKXNElXPH (R]lQ FD 0LR -DKUH DQDORJ VROFKHQ LP .DXWVFKXNEDXP YK )RWR'/LQNH%HUOLQ +HYHD EUDVLOLHQVLV 5DVWHUHOHNWUR QHQ0LNURVNRSLH 6(0 HUJDEHLQH 'LFNHGHU(LQ]HOIlGHQYRQFDȝPEHLHLQHU/lQJHYRQYLHOHQ=HQWLPHWHUQ 'HU6FKZHIHOJHKDOWYDULLHUWHEHLGLHVHQ3UREHQ]ZLVFKHQELV,QVJHVDPW ZXUGHVRGLH$QQDKPHGDVVHVVLFKEHLÄ$IIHQKDDU³XPGLH5HVWHIRVVLOHU0LOFK U|KUHQGKYHU]ZHLJWHUPLOFKVDIWIKUHQGHU*HIlV\VWHPHYRQ%HGHFNWVDPHUQ $QJLRVSHUPHQ KDQGHOWJHVLFKHUW'LH3IODQ]HQDUWVHOEVWNRQQWHQLFKWEHVWLPPW ZHUGHQ(LQH9HUZHQGXQJLVWQLFKWEHNDQQW ±± Mitteilungen, Gesellschaft Deutscher Chemiker / Fachgruppe Geschichte der Chemie (Frankfurt/Main), Bd 23 (2013) ISSN 0934-8506 Siegburgit, Beckerit, Krantzit: fossiles, biopolymeres Polystyrol Dieser fossile Harztyp stammt ebenfalls aus dem Eozän (ca. 55-35 Mio Jahre v.h.).9 Über Siegburgit wurde erstmals 1875 von Arnold von Lasaulx berichtet.10 In den Sanden über den eigentlichen Flözen der Siegburger und Troisdorfer Braunkohle fanden sich knollige, grauweiße Klumpen (s. Abb. 2). Sie waren den Arbeitern schon seit langem dadurch aufgefallen, dass sie beim Anzünden einen stark aromatischen Geruch abgaben. Als „Mergelmännchen“ und „brennbare Steine“ wurden sie zum profanen Kartoffelrösten und Kaffeewärmen gebraucht, aber auch zu heiligeren Zwecken in den Weihrauchkesseln benachbarter Kirchen verbrannt. Siegburgit fand sich weiterhin im Braunkohletagebau des Bitterfelder Raumes.11 1884 wurden in ersten chemischen Untersuchun- gen des Siegburgits nach trockener Destillation Sty- rol und Zimtsäure nach- gewiesen,12 Produkte, die z.B. im Baltischen Bern- stein nicht auftreten. Neue Untersuchungen, zusam- men mit Referenzproben von rezentem Storaxharz (Styrax) von liquidamber orientalis und einem ana- logen, fossilen, nordame- Abb. 2: Siegburgit, fossiles Polystyrol, Eozän (ca. 55-35 Mio rikanischen Harz (Squan- Jahre v.h.) (Foto: Naturkundliches Museum Mauritianum, kum) mit Gaschromato- Altenburg). graphie/Massenspektrome- trie (GC/MS, Py/GC/MS) und Gelchromatographie (SEC) ergaben, dass in Siegburgit noch ein gewisser Gehalt an niedermolekularen triterpenoiden Verbindung vorhanden ist. Die THF- lösliche Fraktion weist Polystyrole mit Molmassen von mindestens 1.000.000 Da auf. Ansonsten besteht das Material zu ca. 80% aus ataktischem, über verschie- dene Gruppen vernetztem Polystyrol.13 Der aus dem Tagebau Goitzsche stammende Beckerit14 wurde später ebenfalls als Siegburgit eingestuft.9 Das als Krantzit bezeichnete fossile Harz aus dem Braun- kohleabbau von Latorf bei Nienburg (Saale)15 ist gleichfalls dem Siegburgit in der Struktur
Recommended publications
  • Religion, Politics, and Sugar: the Mormon Church, the Federal Government, and the Utah-Idaho Sugar Company, 1907 to 1921
    Utah State University DigitalCommons@USU All USU Press Publications USU Press 2007 Religion, Politics, and Sugar: The Mormon Church, the Federal Government, and the Utah-Idaho Sugar Company, 1907 to 1921 Matthew C. Godfrey Follow this and additional works at: https://digitalcommons.usu.edu/usupress_pubs Part of the American Politics Commons, and the History of Religion Commons Recommended Citation Godfrey, M. C. (2007). Religion, politics, and sugar: The Mormon Church, the federal government, and the Utah-Idaho Sugar Company, 1907-1921. Logan, Utah: Utah State University Press. This Book is brought to you for free and open access by the USU Press at DigitalCommons@USU. It has been accepted for inclusion in All USU Press Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Religion, Politics, and Sugar The Mormon Church, the Federal Government, and the Utah-Idaho Sugar Company, 1907–1921 Matthew C. Godfrey Religion, Politics, and Sugar The Mormon Church, the Federal Government, and the Utah-Idaho Sugar Company 1907–1921 Religion, Politics, and Sugar The Mormon Church, the Federal Government, and the Utah-Idaho Sugar Company 1907–1921 Matthew C. Godfrey Utah State University Press Logan, Utah Copyright © 2007 Utah State University Press All rights reserved. An earlier version of chapter 5 was fi rst published as “The Utah-Idaho Sugar Company: Political and Legal Troubles in the Aftermath of the First World War,” Agricultural History 75 (Spring 2001). Portions of chapter 6 were fi rst published as “The Shadow of Mormon Cooperation, The Businesss Policies of Charles Nibley, Western Sugar Magnate in the Early 1900s,” Pacifi c Northwest Quarterly 94 (Summer 2003).
    [Show full text]
  • The Informal German Radium Research Center Brunswick- Wolfenbüttel at the Beginning of the 20 Th Century
    The informal German Radium Research Center Brunswick- Wolfenbüttel at the beginning of the 20 th century Siegfried Niese, Wilsdruff, Germany Summary After discovery of radio-active elements by Henry Becquerel, Pierre and Marie Curie German scientists started with investigations, which resulted in the discovery of new radioactive elements and the character and the effects of radioactivity. Very productive have been a circle of friends with Justus Elster, Hans Geitel and Friedrich Giesel in Brunswick and Wolfenbüttel, who have mostly done the scientific work beside their professional duties. This interdisciplinary center was successful working before institutional governmental radium institutes in Vienna, Paris, and other places are founded. They delivered other researcher all over the world with radioactive preparations that they could start their research about radioactivity as well as instruments and glassware. Introduction In this paper the important achievements in radium research in the first decade after the discovering of radioactivity of a circle of friends in Brunswick and Wolfenbüttel, which are working as grammar teachers, chemist in a factory, doctors in their own praxis or founders of mechanical or glassware factories is presented. In some cases they had done their research work beside the duties in their appointments. They started their work immediately after the discovery of radioactivity by Henry Becquerel. This group represents all branches of nuclear research which we can find as departments of a nuclear research center in the second half of the 20 th century. The scientists and the workshops were in close contact with most of the colleagues all over the world and their achievement were appreciated and cited in the literature.
    [Show full text]
  • RBRC-32 BNL-6835.4 PARITY ODD BUBBLES in HOT QCD D. KHARZEEV in This ~A~Er We Give a Pedawwicalintroduction~0 Recent Work Of
    RBRC-32 BNL-6835.4 PARITY ODD BUBBLES IN HOT QCD D. KHARZEEV RIKEN BNL Research Center, Br$ookhauenNational Laboratory, . Upton, New York 11973-5000, USA R.D. PISARSKI Department of Physics, Brookhaven National Laboratoy, Upton, New York 11973-5000, USA M.H.G. TYTGAT Seruice de Physique Th&orique, (7P 225, Uniuersitc4Libre de Bruzelles, B[ud. du !t%iomphe, 1050 Bruxelles, Belgium We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N + m. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the reconfining phrrse transition. The meet interesting possibility is if the reconfining transition, at T = Td, is of second order. Then we argue that Witten’s relation implies that the topological suscepti~lfity vanishes in a calculable fdion at Td. Ae noted by Witten, this implies that for sufficiently light quark messes, metaetable etates which act like regions of nonzero O — parity odd bubbles — can arise at temperatures just below Td. Experimentally, parity odd bubbles have dramatic signature% the rI’ meson, and especially the q meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as q + rr”ro, are allowed. The most direct way to detect parity violation is by measuring a parity odd global seymmetry for charged pions, which we define. 1 Introduction In this .-~a~er we give a Pedawwicalintroduction~0 recent work of ours? We I consider an SU(IV) gau”ge t~e~ry in the limit of a large number of colors, N + co, This is, of course, a familiar limit? We use the large N expansion I to investigate the behavior of the theory at nonzero temperature, especially for the topological susceptibility.
    [Show full text]
  • Humic Substances in Ecosystems HSE9
    Humic substances in ecosystems HSE9 Polish Chapter of the IHSS (Polskie Towarzystwo Substancji Humusowych) Wroclaw 2012 1 Edited by Jerzy Drozd, Jerzy Weber, Elzbieta Jamroz and Jakub Bekier Polish Humic Substances Society© Monograph co financed by Ministry of Science and Higher Education Republic of Poland Wroclaw, Poland 2012 2 Contents Gudrun Abbt-Braun 4 30 Years of IHSS Yona Chen, Jorge Tarchitzky 26 Humic Substances and Soil Structure: Dispersing Agents or Stabilizers? Fritz H. Frimmel, Gudrun Abbt-Braun 43 Catching the Functionality of Refractory Organic Matter (ROM) Stephen Nortcliff 59 The Importance of Humic Substances in the European Soil Protection Strategy Claire Richard, Sabrina Halladja, Christian Coelho, Ghislain Guyot, Alexandra ter 72 Halle, Abdelaziz Boulkamh Environmental Impact of Humic Substances through their Interaction with Solar Light 3 30 Years of IHSS Gudrun Abbt-Braun Secretary of IHSS, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institute, Chair of Waterchemistr; E-mail: [email protected] The International Humic Substances Society (IHSS) was founded on September 11, 1981 in Denver, Colorado, and was officially incepted on January 1, 1982 (Fig. 1). This thirteenth anniversary marks a period of remarkable achievements. The contribution will focus on the period of the foundation, on the scientists involved and on the ongoing and current activities of today and of the future . International Humic Substances Society Figure 1. The official logo of the International Humic Substances Society. HISTORY, 16 TH TO 20 TH CENTURY The roots of the society are found at least more than two centuries ago. The beginning of the industrial revolution early in the 18th century is marked by a tremendous increase in science and technology.
    [Show full text]
  • Mitteilungen, Gesellschaft Deutscher Chemiker / Fachgruppe Geschichte Der Chemie (Frankfurt/Main), Bd 23 (2013) ISSN 0934-8506 Die Anfangsjahre Der Radiochemie
    Die Entdeckung des Actiniums Prof. Dr. habil. Siegfried Niese, Am Silberblick 9, 01723 Wilsdruff <[email protected]> In einer 2012 erschienenen Übersicht der Isotope der Elemente vom Actinium bis zum Uranium und deren Entdeckung lesen wir, dass Friedrich Oskar Giesel (1852-1927) im Jahr 1902 in Uranmineralen eine radioaktive Substanz beobach- tet hat, die er zwei Jahre später als ein neues Element mit dem Namen Emanium bezeichnet und die sich später als 227Ac herausgestellt hat.1 So schreibt auch Ad- loff, dass wahrscheinlich Giesel der tatsächliche Entdecker des Actiniums ist.2 Bis heute wird noch häufig der französischen Chemiker André-Louis Debierne (1874-1949) als Entdecker des Actiniums angesehen. Er beschrieb im Jahre 1899 die Entdeckung eines neuen radioaktiven Körpers, den er zusammen mit den Hy- droxiden von Eisen und Aluminium mit Ammoniaklösung aus einer Lösung der Pechblende gefällt und ihm Ähnlichkeiten mit dem Titan zugeschrieben hatte.3 Ein Jahr später schrieb er diesem radioaktiven Körper eine Ähnlichkeit mit dem Thorium zu und bezeichnet ihn als ein neues radioaktives Element, das er Actini- um nannte. Actinium ist wegen seiner hohen Radiotoxizität, Allgegenwart als Zerfallspro- dukt des Urans, hohen Mobilität bei chemischen Prozessen, besonders im Zu- sammenhang mit der Gewinnung von Uran, relativ guten Aufnahme in die Nahrungskette und chemischen Ähnlichkeit mit dem sehr langlebigen, bei der Kernenergiegewinnung in den Brennstoffen entstehendem Americium, wieder mehr in den Blickpunkt der Radiochemiker gerückt. Deshalb wird hier etwas ein- gehender auf die Geschichte der Entdeckung mit dem Ziel eingegangen, Giesel mehr als bisher als Entdecker des Actiniums zu würdigen, so wie es auch auf sei- nem Grabstein in Braunschweig steht, wofür sich besonders Rudolf Fricke aus Wolfenbüttel eingesetzt hat.4 Das fällt uns umso leichter, wenn wir die entspre- chenden, vor mehr als 100 Jahren erschienenen, Publikationen lesen, woraus in den folgenden Abschnitten Auszüge vorgestellt und kommentiert werden.
    [Show full text]
  • Sugar and the Edge of France, 1800-1860
    Droits and Frontières: Sugar and the Edge of France, 1800-1860 Item Type text; Electronic Thesis Authors Yarrington, Jonna M. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 23:07:45 Link to Item http://hdl.handle.net/10150/316894 DROITS AND FRONTIÈRES: SUGAR AND THE EDGE OF FRANCE, 1800-1860 by Jonna M. Yarrington ____________________________ A Thesis Submitted to the Faculty of the SCHOOL OF ANTHROPOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF ARTS In the Graduate College THE UNIVERSITY OF ARIZONA 2014 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Nobel Prize Awards in Radiochemistry
    Radiochim. Acta 100, 509–521 (2012) / DOI 10.1524/ract.2012.1953 © by Oldenbourg Wissenschaftsverlag, München Nobel Prize awards in Radiochemistry By J.-P. Adloff∗ University of Strasbourg, 63 Rue Saint Urbain, 67100 Strasbourg, France Dedicated to the memory of late Karl H. Lieser, Gerhard L. Stöcklin and Alfred P. Wolf with whom the author shared the editorial work of Radiochimica Acta from 1977 to 1995 (Received October 10, 2011; accepted in revised form January 19, 2012) (Published online March 26, 2012) Nobel Prize / Chemistry / Physics Summary. In 1996 the Editors of Radiochimica Acta brought out a special volume of the journal to celebrate the hundredth anniversary of the discovery of radioactivity [1]. On the occasion of the 50th anniversary of Radiochimica Acta, which follows closely upon the centenary of Marie Curie’s second Nobel Prize in 1911, the author has the privilege to informally review “Radiochemistry and Nobel Prize Awards”, including discoveries of radioelements and new fields in chemistry based on radiochemical methods. 1. The beginning The Nobel Prizes in Physics and Chemistry were estab- lished in 1901, six years after the discovery of radioactivity and three years after the discoveries of the elements polo- Fig. 1. Antoine Henri Becquerel (1852–1908). nium and radium. They are awarded by Kungliga Veten- skapakademien (the Royal Swedish Academy of Sciences) on the basis of proposals made by respective Committees rays when he thought the subject was exhausted. By the end on Physics and Chemistry, which receive recommendations of 1897 radioactivity was something of a dead horse: it was from Swedish and foreign scientists [2].
    [Show full text]
  • Greenhouse Method of Screening for Resistance of Sugar Beet Cultivars to Root Rot Caused By
    Greenhouse Method of Screening for Resistance of Sugar Beet Cultivars to Root Rot caused by Aphanomyces cochlioides Dmitriy Lis, MS in Agriculture Non-Thesis Research Report 11/8/2016 Table of Contents 1. Literature review …………………………………………………………………………………………………………………. 2 1.1. Sugar beet (Beta vulgaris) and sugar beet seed production………………………….……...... 2 1.2. Root rots of sugar beet ………………………….................................................................. 4 1.2.1 Aphanomyces root rot ……………………………..………………………….….…............... 4 1.2.1.1. History, geographic distribution, and importance ........................ 4 1.2.1.2. Host range and symptoms ........................................................... 5 1.2.1.3. Causal agent and epidemiology .................................................... 6 1.2.1.4. Management .............................................................................. 6 1.2.1.4.1. Cultural control ............................................................. 6 1.2.1.4.2. Chemical control ........................................................... 7 1.2.1.4.3. Resistant cultivars ......................................................... 8 2. Greenhouse resistance screening for Aphanomyces root rot ……..……………....…………………....... 9 2.1. Objectives ………………………………..………………………………………………………………….………… 9 2.2. Materials and methods ……………………………………………………………….………………………. 10 2.2.1. Treatment and experimental designs ……………………………….…................... 10 2.2.2. Pathogen isolates and greenhouse conditions …..………………….…………..….. 11 2.2.3.
    [Show full text]
  • Sugar-Beet Industry in Kansas
    1 THE SUQAR-BEET 1NDUSTKX Hi KANSAS by TIBUiiOlO JOE BiiRBKR a. S., Kansas State College of Agriculture and Applied Science, 1947 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER Or SCIENCE Department of History and Oovernment KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE 1940 11 c. i TABUS OF CONTENTS PREFACE Ill CHAPTER I - A HISTORY OP THE SUGAR-BEET 1 CHAPTER II - THE SOQAR-BEET IN KANSAS 11 CHAPTER III - THE GARDEN CITY COMPANY 24 CHAPTER IV - SOME FEATURES OF SUGAR-BEET PRODUCTION 43 ACKNOWLEDGMENT. 67 BIBLIOGRAPHY 58 ill PREPACK The United States Is the greatest sugar consuming nation In the world. It la estimated that the average individual consumes 65 pounds of sugar per year. The manufacture of sugar from sugar- beets is an industry that is very much an Infant in the United States. Kansas, with its rolling plains well-suited for agricul- ture, is one of the several states that produces and manufactures beet sugar. Yet, one of the least known, but most important industries in the State is the sugar-beet industry. Hardly anyone outside the Arkansas River Valley near Garden City knows that Kansas has one of the largest beet sugar refineries in the country, and that sugar-beet farming supports thousands of Kanaans. This study presents some significant aspects of one of Kansas' greatest in- dustries. The major emphasis is placed on the evolutionary de- velopment of the sugar-beet industry in Kansas. The final con- centration of sugar-beet production came to be in the Arkansas Valley around Garden City.
    [Show full text]
  • Crossroads of Enlightenment 1685-1850: Exploring Education, Science, and Industry Across the Delessert Network
    CROSSROADS OF ENLIGHTENMENT 1685-1850: EXPLORING EDUCATION, SCIENCE, AND INDUSTRY ACROSS THE DELESSERT NETWORK A Dissertation Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of History University of Saskatchewan Saskatoon By J. Marc MacDonald © Copyright J. Marc MacDonald, March 2015. All rights reserved PERMISSION TO USE I agree, in presenting this dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, that this University’s Libraries may make the dissertation freely available for consultation. Furthermore, I agree that permission for copying material from this dissertation in any form, in part or in its entirety, for scholarly purposes may be granted by the professors who supervised my dissertation work or, in their absence, by the Head of the History Department or the Dean of the College of Arts, in which I completed this dissertation. It is understood that any copying or publication or use of this dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use that may be made of any material in my dissertation. Request for permission to copy or to make other uses of materials in this dissertation in whole or part should be addressed to: Head of the Department of History University of Saskatchewan 9 Campus Drive, Room 522 Arts Building Saskatoon, SK S7N 5N5 Canada OR Dean College of Graduate Studies and Research University of Saskatchewan, Room C180 105 Administration Place Saskatoon, SK S7N 5A2 Canada i ABSTRACT The Enlightenment did not end with the French Revolution but extended into the nineteenth century, effecting a transformation to modernity.
    [Show full text]
  • First Sugar Factory in the Kingdom of Poland Opened Its Doors
    Sugar industry in Poland Dr Marek Dereziński Krajowa Spółka Cukrowa S.A. „Polski Cukier” / Association of Sugar Producers in Poland IFMA Congress Warsaw, Toruń, 24dnia July ….. 2013 2013 r. 1. The history of sugar industry on Polish soil 2. Sugar industry in Poland after 1989 3. Sugar quota system in the EU with regard to the market protection mechanisms 4. Sugar production worldwide 2 The history of sugar industry on Polish soil 3 The history of sugar industry on Polish soil (I) 1801 The world’s first factory to produce sugar from sugar beet was established on Polish soil in Konary (Lower Silesia). It was founded by a German chemist, Franz Karl Achard. 1826 The first sugar factory in the Kingdom of Poland opened its doors. It was built in Częstocice by count Henryk Łubieński. Sugar factory in Konary, photo of 1914 Franz Carl Achard in a postcard of 1939 4 The history of sugar industry on Polish soil (II) 1826-1914 Gradually, as technology developed, small primitive sugar factories started to evolve into large industrial sugar plants. Before the outbreak of World War I there were 101 factories producing sugar on Polish soil. 1918-1939 Some sugar factories were closed, but new ones were established in their place (there were 61 active plants in total). Sugar industry was one of the most ’Częstocice’ sugar factory in a pre-war photo vibrant branches of agro-industry. 1945-1989 After World War II, during which the industry had suffered heavy losses, attempts were made to restitute its power under planned economy, centrally managed by the communist government.
    [Show full text]
  • Francium (Atomic Number 87), the Last Discovered Natural Element
    Chem. Educator 2005, 10, 387–394 387 Francium (Atomic Number 87), the Last Discovered Natural Element Jean-Pierre Adloff†and George B. Kauffman* Université Louis Pasteur,63 Rue Saint Urbain, Strasbourg, France F-67100, [email protected] and Department of Chemistry, California State University, Fresno, Fresno, CA 93740-8034,[email protected] Abstract: In 1935 the three natural radioactive series (238U, 235U, and 232Th) were coherent and complete, but the elements with atomic numbers 85 and 87 were still missing in the periodic table. It was anticipated that an isotope of element 87 could be formed by α-decay of actinium. In 1939 a young technician, Marguerite Perey (1909–1975), the 30th anniversary of whose death we celebrate this year, was recruited at the Institut du Radium in Paris as the personal laboratory assistant of Marie Curie (1867–1934). For many years Perey worked on actinium and in 1939 discovered the first isotope of element 87, Dmitrii Ivanovich Mendeleev’s eka-cesium, the heaviest alkali metal, for which she proposed the name “francium.” The events leading up to Perey’s discovery, her work, and its consequences are recounted. Introduction controversy lasted for several years, even after the actual discovery of eka-Cs [7]. One of the most impressive successes of the new science of radiochemistry was the discovery within 15 years of five The Search for Radioactive Eka-Cesium elements with atomic numbers between 84 and 91 for which Dmitrii Ivanovich Mendeleev (1834–1907) had allotted places During the mid-1930s no major discovery in the field of in his periodic chart—polonium (84), radon (86), radium (88), natural radioelements was anticipated as much as that of actinium (89), and protactinium (91).
    [Show full text]