Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Cite This: DOI: 10.1039/C4nr01600a Systems
Total Page:16
File Type:pdf, Size:1020Kb
Nanoscale View Article Online REVIEW View Journal Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid Cite this: DOI: 10.1039/c4nr01600a systems Andrea C. Ferrari,*a Francesco Bonaccorso,a,b Vladimir Fal’ko,c Konstantin S. Novoselov,d Stephan Roche,e,f Peter Bøggild,g Stefano Borini,h Frank H. L. Koppens,i Vincenzo Palermo,j Nicola Pugno,k,l,m José A. Garrido,n Roman Sordan,o Alberto Bianco,p Laura Ballerini,q Maurizio Prato,r Elefterios Lidorikis,s Jani Kivioja,h Claudio Marinelli,t Tapani Ryhänen,h Alberto Morpurgo,u Jonathan N. Coleman,v,w Valeria Nicolosi,v,w,x Luigi Colombo,y Albert Fert,z,aa Mar Garcia-Hernandez,ab Adrian Bachtold,i Grégory F. Schneider,ac Francisco Guinea,ab Cees Dekker,ad Matteo Barbone,a Zhipei Sun,a Costas Galiotis,ae,af Alexander N. Grigorenko,d Gerasimos Konstantatos,i Andras Kis,ag Mikhail Katsnelson,ah Lieven Vandersypen,ad Annick Loiseau,ai Vittorio Morandi,aj Creative Commons Attribution 3.0 Unported Licence. Daniel Neumaier,ak Emanuele Treossi,j Vittorio Pellegrini,b,al Marco Polini,al Alessandro Tredicucci,al Gareth M. Williams,am Byung Hee Hong,an Jong-Hyun Ahn,ao Jong Min Kim,ap Herbert Zirath,aq Bart J. van Wees,ar Herre van der Zant,ad Luigi Occhipinti,as Andrea Di Matteo,as Ian A. Kinloch,at Thomas Seyller,au Etienne Quesnel,av Xinliang Feng,aw Ken Teo,ax Nalin Rupesinghe,ax Pertti Hakonen,ay Simon R. T. Neil,az Quentin Tannock,az Tomas Löfwanderaq and Jari Kinaretba This article is licensed under a We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We Open Access Article. Published on 22 September 2014. Downloaded 02/03/2015 08:25:37. Received 24th March 2014, provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental Accepted 12th September 2014 research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary DOI: 10.1039/c4nr01600a to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We www.rsc.org/nanoscale also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field. aCambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK. mSchool of Engineering and Materials Science, Queen Mary University of London, E-mail: [email protected] London, E1 4NS, UK bIstituto Italiano di Tecnologia, Graphene Labs, Genova, 16163, Italy nWalter Schottky Institut, Technische Universität München, Garching, 85748, Germany cDepartment of Physics, Lancaster University, Lancaster, LA1 4YB, UK oL-NESS, Dipartimento di Fisica, Politecnico di Milano, Como, 22100, Italy dSchool of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, pCNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie UK Thérapeutique, 67000 Strasbourg, France eICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 qCentre for Neuroscience (BRAIN) and Dipartimento di Scienze della Vita, Università Bellaterra (Barcelona), Spain di Trieste, Trieste, 34127, Italy fInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, rDipartimento di Scienze Farmaceutiche, Università di Trieste, Trieste, 34127, Italy 08070, Spain sDepartment of Materials Science and Engineering, University of Ioannina, Ioannina, gCentre for Nanostructured Graphene (CNG), Department of Micro- and 45110, Greece Nanotechnology, Technical University of Denmark, Lyngby, 2800, Denmark tApplied Graphene Materials, The Wilton Centre, Redcar, Cleveland, TS10 4RF, UK hNokia Technologies, Broers Building, Cambridge, CB3 0FA, UK uDépartement de Physique de la Matière Condensée, Université de Genève, Geneva, iInstitut de Ciències Fotòniques (ICFO), Castelldefels (Barcelona), 08860, Spain 1205, Switzerland jCNR-Istituto per la Sintesi Organica e la Fotoreattività, Bologna, 40129, Italy vSchool of Physics, Trinity College, Dublin, D2 Dublin, Ireland kDipartimento di Ingegneria Civile, Ambientale e Meccanica, Università di Trento, wCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity Trento, 38123, Italy College, Dublin, D2 Dublin, Ireland lFondazione Bruno Kessler, Trento, 38122, Italy xSchool of Chemistry, Trinity College, Dublin, D2 Dublin, Ireland This journal is © The Royal Society of Chemistry 2014 Nanoscale View Article Online Review Nanoscale 1. Introduction 1.1. Graphene-based disruptive technologies: overview 1.1.1. Opportunities 1.1.1.1. New opportunities for electronics 1.1.1.2. New energy solutions 1.1.1.3. New technologies and materials: towards a novel technological platform 1.2. Scientific output 1.2.1. Intellectual property landscape analysis 1.2.2. Graphene IP landscape analysis 2. Fundamental research 2.1. Electronic transport 2.2. Spectroscopic characterization 2.3. Magnetism and spin transport 2.4. Polycrystalline graphene 2.5. Thermal and mechanical properties of graphene 2.6. Artificial graphene structures in condensed-matter systems 2.6.1. Honeycomb lattices in semiconductors 2.6.2. Honeycomb lattices with cold atoms 2.7. Atomic scale technology in graphene and patterned graphene 2.7.1. Graphene nanoribbons 2.7.2. Graphene quantum dots Creative Commons Attribution 3.0 Unported Licence. 2.7.3. Patterning- and proximity-induced properties in graphene 2.8. 2d crystals beyond graphene 2.8.1. Characterisation of new 2d crystals 2.8.2. Modelling of physical properties of new 2d crystals 2.9. Hybrids of graphene and other 2d crystals 2.9.1. Electronic transport in lateral and vertical hybrid superstructures 2.9.1.1. Tunnelling and resonant tunnelling devices 2.9.1.2. Light emission and photovoltaics 2.9.1.3. In situ characterization methods This article is licensed under a 2.9.1.4. Hybrid structures for active plasmonics 2.10. Multiscale modelling of graphene-based structures and new 2d crystals 2.10.1. Ab initio computations Open Access Article. Published on 22 September 2014. Downloaded 02/03/2015 08:25:37. 2.10.2. Mesoscale modelling 2.10.3. High performance computing yTexas Instruments Incorporated, Dallas, TX, USA anDepartment of Chemistry, Seoul National University, Seoul, 151-747, South Korea zUnité Mixte de Physique CNRS/Thales, Palaiseau, 91767, France aoSchool of Electrical & Electronic Engineering, Yonsei University, Seoul, 120-749, aaUniversité de Paris-Sud, Orsay, 91405, France South Korea abInstituto de Ciencia de Materiales de Madrid, CSIC, Madrid, 28049, Spain apDepartment of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK acLeiden University, Faculty of Science, Leiden Institute of Chemistry, Leiden 2333 aqDepartment of Microtechnology and Nanoscience, Chalmers University of CC, The Netherlands Technology, Gothenburg, 412 96, Sweden adKavli Institute of Nanoscience, Delft University of Technology, Delft, 2628 CJ, The arPhysics of Nanodevices, Zernike Institute for Advanced Materials, University of Netherlands Groningen, Groningen, 9747 AG, The Netherlands aeInstitute of Chemical Engineering Sciences (ICE-HT/FORTH), Rio, 26504, Greece asSTMicroelectronics, Arzano (Naples), 80022, Italy afDepartment of Chemical Engineering, University of Patras, Rio, 26504, Greece atMaterials Science Centre, School of Materials, University of Manchester, agElectrical Engineering Institute, Ecole Polytechique Fédérale de Lausanne, Manchester, M13 9PL, UK Lausanne, 1015, Switzerland auInstitut für Physik, Technische Universität Chemnitz, Chemnitz, 09126, Germany ahInstitute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, avInstitut LITEN, CEA LITEN, Grenoble Cedex 9, 38054 9, France 6525 AJ, The Netherlands awMax-Planck-Institut für Polymerforschung, Mainz, 55128, Germany aiLaboratoire d’Etude des Microstructures (LEM), ONERA-CNRS, Chatillon, 92322, axAixtron Ltd., Cambridge, UK France ayAalto University, FI-00076, Finland ajCNR-Istituto per la Microelettronica e i Microsistemi, Bologna, 40129, Italy azCambridgeIP, Cambridge, CB2 1SJ, UK akAdvanced Microelectronic Centre Aachen, AMO GmbH, Aachen, 52074, Germany baDepartment of Applied Physics, Chalmers University of Technology, Gothenburg, alNEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy 412 96, Sweden amAirbus UK Ltd, Broughton, CH4 0DR, UK Nanoscale This journal is © The Royal Society of Chemistry 2014 View Article Online Nanoscale Review 2.10.4. Further development of field-theory and kinetic theory methods 2.10.5. Correlations in multiple graphene layers 2.11. Graphene for high-end instrumentation 2.11.1. Graphene for high energy physics instrumentation, Tokamaks and Stellarators 2.11.2. Graphene for metrology 2.11.2.1. Quantum resistance 2.11.2.2. Quantum current standard 2.11.2.3. Standard for optical absorption coefficient 2.12. Perspectives 3. Health and environment 3.1. In vitro impact 3.2. Cytotoxicity effects on graphene-coated surfaces 3.3. In vivo impact, biodistribution and pharmacokinetics 3.4. Bacterial toxicity 3.5. Biodegradation 3.6. Environmental impact 3.7. 2d crystals and hybrids 3.8. Perspective 4. Production 4.1. Graphene production Creative Commons Attribution 3.0 Unported Licence. 4.1.1. Dry exfoliation 4.1.1.1. Mechanical exfoliation