1.1: Introduction When Asked “Do You Know What Engineering Is?”

Total Page:16

File Type:pdf, Size:1020Kb

1.1: Introduction When Asked “Do You Know What Engineering Is?” 1.1: Introduction When asked “Do you know what engineering is?” most people will emphatically reply that they do; however, when they’re then asked what does an engineer do? What is something you have used today that has been engineered?”, they struggle. WHAT IS ENGINEERING? Engineering can be defined as the application of practical and scientific knowledge to the solving of a problem through the use of a methodical process. More simply put, at its most fundamental level engineering is problem solving. The solutions to these problems can take many forms. Maybe the engineer is creating a physical thing to solve a problem, maybe they are creating or improving a process for doing something, or maybe they are determining why something happened the way it did. The many different types of problems are all related to engineering, especially if they are solved using a methodical process (more on this later.) The above definition mentions that engineers apply practical and scientific knowledge to their problem solving. Some would say that engineers take scientific knowledge and find a practical application for it to benefit humanity. To be successful, engineers must become familiar with a wide variety of fields, and experts in some specific fields. 1.1: Introduction WHAT IS DESIGN? Design is defined in the dictionary as follows: To conceive of fashion in the mind; invent, To formulate a plan for; devise, To plan out in a systematic, usually graphic form; To create or contrive for a particular purpose or effect; To create or execute in an artistic or highly skilled manner A simpler definition might be: Design is thinking of and creating something new, or adapting something old to solve a problem and/or satisfy a need. DISCIPLINES OF ENGINEERING: There are many different types of engineers, each specializing in a different field of knowledge, each with a specific set of problems they specialize in solving. There are almost as many fields of engineering as there are fields of scientific inquiry! Some examples are listed below. Keep in mind that this list is not all-inclusive. Acoustical Engineering Automotive Engineering Aeronautical Engineering Biological Engineering Aerospace Engineering Plastics Engineering Agricultural Engineering Power Engineering Architectural Engineering Process Engineering 1.1: Introduction Structural Engineering Industrial Engineering Systems Engineering Manufacturing Engineering Thermal Engineering Materials Engineering Transportation Engineering Mechanical Engineering Biomechanical Engineering Mechatronics Bio molecular Engineering Metallurgical Engineering Ceramic Engineering Mining Engineering Chemical Engineering Molecular Engineering Civil Engineering Nano Engineering Computer Engineering Naval / Ocean / Marine Engineering Control Engineering Nuclear Engineering Electrical Engineering Optical Engineering Electronic Engineering Paper Engineering Energy Engineering Petroleum Engineering Environmental Engineering Heating, Venting, Refrigerating & Air-Conditioning Engineering 1.1: Introduction This curriculum will discuss a few concepts which are relevant to ALL of these types of engineering, and touch on others more specifically related to the field of robotics including Robotics Engineering, Mechanical Engineering, Electrical Engineering, Computer Engineering, and others. So what happens if the problem being solved is so large and complicated that it involves more scientific and practical knowledge than any one engineer can understand? This happens all the time! This is why engineers commonly work together as part of a Design Team. 1.2: Engineering/Design Teams Most problems require more than one engineer to solve. Take for instance the design of an automobile. This is a hugely complex system that includes thousands of smaller problems that need to be solved. 1.2: Engineering/Design Teams Some examples of the engineering disciplines required can be seen in the list below. Acoustical Engineers might work on minimizing road noise within the car, or improve the design of the car’s stereo and speaker system, or even work to improve the sound of the cars engine. Aeronautical Engineers would be involved in improving the aerodynamics of the car to reduce drag and maximize gas mileage. • Automotive Engineers are a specialized type of engineers who utilize the skills of many of the other branches of engineering listed here, and would be involved in most aspects of the car design. • Ceramic Engineers work with inorganic, non-metal materials, and might develop special ceramic composites (combinations of multiple materials) for use in heat shielding, or bearings. Some high-end cars use specially engineered ceramic brakes. • Computer Engineers would be involved in creating the firmware (software embedded in the car’s microchips) of the car. • Control Engineers, Electrical Engineers, and Electronic Engineers would work on designing & integrating the car’s electrical system, software, and sensors. 1.2: Engineering/Design Teams • Environmental Engineers would be involved in making sure the car meets all emissions requirements. • Heating, Venting, Refrigerating & Air-Conditioning Engineers might be involved in creating the car’s heat and air conditioning systems. • Systems Engineers & Industrial Engineers would be involved in the management and supervision of the car creation process. • Manufacturing Engineers would determine how to make the individual components of the car. • Materials Engineers would help create new materials for use in the car construction. • Mechanical Engineers would work on the design of the mechanical aspects of the car; anything from the transmission to the engine to the suspension to the design of the snaps that hold the seats onto the frame. • Optical Engineers work on lenses and other optical instruments. They would design the car’s mirrors and windows. 1.2: Engineering/Design Teams Plastics Engineers would create plastic types for use in the car’s construction. Process Engineers would be required to determine the best way to make the car and to ensure it is built correctly. Structural Engineers might be involved in the creation of the car’s chassis and frame. Thermal Engineers would work on the complex heat transfer systems, such as the engine cooling and exhaust. That is only part of the huge team required! Diversity of knowledge isn’t the only reason for engineering teams. Even if there were one engineer out there who possessed all the knowledge listed above, more than one engineer would still need to be used. All individuals are shaped by their backgrounds and their experiences; these experiences serve to create their viewpoints. Multiple viewpoints are hugely beneficial when trying to find creative solutions to complex problems, as expressed by the cliché “two heads are better than one.” The more viewpoints looking at a problem, the more likely the problem will be solved. Of course the most obvious reason one would need multiple engineers working to design a car is that designing a car is a LOT of work for one person; the workload needs to be spread out among multiple people to get it done in a timely fashion! 1.2: Engineering/Design Teams WORKING ON A DESIGN TEAM: Every student involved in competitive robotics will have the opportunity to work on a design team at some point. There are a number of considerations they should keep in mind to achieve success: 1. One should always keep an open mind. 2. It is important to allow crazy ideas to develop. 3. The most likely time for a creative solution to be found is early in the design process when wild ideas are expressed. 4. No one should become overly attached to any single idea - especially one they created. 5. It is easy to become blinded to other ideas simply because “they aren’t mine.” 6. One should not become defensive regarding the opinions of others. 7. One should always stay positive, even when discussing negatives. 8. Engineering is based in logic. One should focus on factual arguments, not those based on opinions. 9. Emotion should not be allowed to interfere with the process.-It is important not to be offended if disagreements occur, even if things get heated and criticisms are overly harsh. Most engineers get passionate during design discussions and will often be very blunt. It is important not to take this personally. 10. An unjustified opinion is not useful. Team members must be able to describe WHY they like or dislike something. 1.2: Engineering/Design Teams This is NOT rhetoric, it is engineering. In rhetoric, the person who argues best will be most persuasive. In engineering, the person who has the best argument will be most persuasive. It is not the one who can speak the best but the one who can provide quantitative proof that will win an argument and prove their idea is better! It is important to be quantitative wherever possible. The term “quantitative” is used a lot when discussing engineering arguments or justifications, but what does this really mean? quan·ti·ta·tive (adj.) Expressed or expressible as a quantity. Of, relating to, or susceptible of measurement. Of, or relating, to number or quantity. Quantitative arguments are simply ones that can be measured! In a design discussion, these are extremely valuable. As stated above, it is important to be quantitative whenever possible. For instance, the statement “that option is heavier, so I don’t think the extra functionality it provides is worth it,” is not nearly as valuable as saying, “That option weighs 50% more based on my initial estimates. Do we want to accept this additional weight for the functionality it provides?” 1.3: What is the Engineering Design Process? Engineering was defined at the beginning of this unit as the application of practical and scientific knowledge to the solving of a problem through the use of a methodical process. Discussed above were some different types of knowledge that engineers apply to solving a problem, but the process itself has not been mentioned. What methodical process do engineers use to solve problems? The Engineering Design Process is a series of steps that engineers follow when they are trying to solve a problem and design a solution for something; it is a methodical approach to problem solving.
Recommended publications
  • Metallurgical Engineering
    ENSURING THE EXPERTISE TO GROW SOUTH AFRICA Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering R-05-MET-PE Revision No.: 2: 25 July 2019 ENGINEERING COUNCIL OF SOUTH AFRICA Tel: 011 6079500 | Fax: 011 6229295 Email: [email protected] | Website: www.ecsa.co.za ENSURING THE Document No.: Effective Date: Revision No.: 2 R-05-MET-PE 25/07/2019 Subject: Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering Compiler: Approving Officer: Next Review Date: Page 2 of 46 MB Mtshali EL Nxumalo 25/07/2023 TABLE OF CONTENTS DEFINITIONS ............................................................................................................................ 3 BACKGROUND ......................................................................................................................... 5 1. PURPOSE OF THIS DOCUMENT ......................................................................................... 5 2. AUDIENCE............................................................................................................................. 6 3. PERSONS NOT REGISTERED AS CANDIDATES OR NOT BEING TRAINED UNDER COMMITMENT AND UNDERTAKING (C&U) ..................................................... 7 4. ORGANISING FRAMEWORK FOR OCCUPATIONS ............................................................. 7 4.1 Extractive Metallurgical Engineering ..................................................................................... 8 4.2 Mineral Processing Engineering ..........................................................................................
    [Show full text]
  • Acoustical Engineering
    National Aeronautics and Space Administration Engineering is Out of This World! Acoustical Engineering NASA is developing a new rocket called the Space Launch System, or SLS. The SLS will be able to carry astronauts and materials, known as payloads. Acoustical engineers are helping to build the SLS. Sound is a vibration. A vibration is a rapid motion of an object back and forth. Hold a piece of paper up right in front of your lips. Talk or sing into the paper. What do you feel? What do you think is causing the vibration? If too much noise, or acoustical loading, is ! caused by air passing over the SLS rocket, the vehicle could be damaged by the vibration! NAME: (Continued from front) Typical Sound Levels in Decibels (dB) Experiment with the paper. 130 — Jet takeoff Does talking louder or softer change the vibration? 120 — Pain threshold 110 — Car horn 100 — Motorcycle Is the vibration affected by the pitch of your voice? (Hint: Pitch is how deep or 90 — Power lawn mower ! high the sound is.) 80 — Vacuum cleaner 70 — Street traffic —Working area on ISS (65 db) Change the angle of the paper. What 60 — Normal conversation happens? 50 — Rain 40 — Library noise Why do you think NASA hires acoustical 30 — Purring cat engineers? (Hint: Think about how loud 20 — Rustling leaves rockets are!) 10 — Breathing 0 — Hearing Threshold How do you think the noise on an airplane compares to the noise on a rocket? Hearing protection is recommended at ! 85 decibels. NASA is currently researching ways to reduce the noise made by airplanes.
    [Show full text]
  • 2014 Newsletter for the Robert Bradford Newman Student Award
    NEWSLETTER 2014 OBERT RADFORD EWMAN RS T U D EB N T A W A R DN F U N D 2014 AT A GLANCE Yiying Hao Adam Lawrence Paul Faculty Advisor: Jian Kang Faculty Advisor: Bob Celmer December 31, 2014 completed another University of Sheffield University of Hartford successful year for the Newman Fund. “Effects of urban morphology on urban “Acoustic evaluation of Austen Arts Center, Newman Medals were awarded to 19 stu- sound environment from the perspective of Trinity College for Smith Edwards McCoy dents, bringing the total to 290 at more masking effects” Architects” than 58 schools of architecture, engineer- ing, music and music technology since the Robert Healey Zhao Ellen Peng program began in 1985. Of particular note Faculty Advisor: Bob Coffeen Faculty Advisor: Lily Wang is the increased participation from schools University of Kansas University of Nebraska – Lincoln and programs outside North America. “Investigations into the sound absorbing “How room acoustics impacts speech com- properties of gypsum wall board” prehension from talkers and by listeners Five student teams received Wenger priz- with varying English proficiency levels” es in 2014 for their meritorious design Christina Higgins work juried and displayed at the ASA Faculty Advisor: Stephen Dance Ariana F. Sharma Student Design Competition held at the London South Bank University Faculty Advisor: David T. Bradley 167th meeting of the Acoustical Society “An investigation into the Helmholz Vassar College in Providence, RI. There were sixteen total resonators of the Queen Elizabeth Hall, “Effect of installed diffusers on sound field entries submitted to the SDC from a num- London” diffusivity in a real-world classroom” ber of different universities.
    [Show full text]
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • Download the Chemical Engineering Major Handbook
    2020 - 2021 Undergraduate Handbook DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING INFORMATION FOR MAJORS IN CHEMICAL ENGINEERING Fall 2020 Updated July 2020 Quick Reference Guide Chemical Engineering Curriculum - Prerequisite Flowchart *Sophomore year has two variants; ChE 210 may be taken in sophomore or freshman year. Total Requirements - 48 classes Basic Courses: A. Mathematics - 4 classes D. Design and Communication - 3 classes Chemical Engineering Curriculum - Prerequisite Flowchart q MATH 220-1 (220) q MATH 228-1 (230) q q ENGLISH & DSGN 106-1,2 q MATH 220-2 (224) q MATH 228-2 (234) q COMM ST (Speech) 102, or B. Engineering Analysis - 4 classes PERF ST (Performance) 103 or 203 q q q q GEN ENG 205-1,2,3,4 E. Basic Engineering - 5 classes C. Basic Sciences - 4 classes q CHEM ENG 210 q q PHYSICS 135-2,3 (plus labs) q CHEM ENG 211 q q CHEM 131,132, or 151,152, q MAT SCI 301 or 171,172 (plus labs) q CHEM ENG 312 or IEMS 303 q CHEM ENG 321 Distribution Requirements: F. q Social Sci/Humanities (Theme) - 7 classes G. q Unrestricted Electives - 5 classes Core Curriculum: H. Major Program – 11 required classes + 5 technical electives q CHEM 210-1: Organic Chemistry q CHEM ENG 322: Heat Transfer q CHEM 210-2: Organic Chemistry (plus lab) q CHEM ENG 323: Mass Transfer q CHEM ENG 212: Phase Equilibrium and q CHEM ENG 341: Dynamics and Control Staged Separations of Chemical and Biological Processes q CHEM ENG 275: Cell & Molecular Biology q CHEM ENG 342: Chemical Engineering Lab for Engineers or BIOL SCI 215 or 291 or q CHEM ENG 351: Process Economics, 201 or 202 Design & Evaluation q CHEM ENG 307: Kinetics & Reactor q CHEM ENG 352: Chemical Engineering Engineering Design Projects q Technical Electives - 5 classes You may choose an area of specialization: (OR follow technical elective guidelines - Section IIIB) Bioengineering, Chemical Process Engineering, Design, Environmental Engineering and Sustainability, Nanotechnology and Molecular Engineering, or Polymer Science and Engineering Table of Contents I.
    [Show full text]
  • View of Examinations
    OFFICE OF THE SECRETARY OF STATE ARCHIVES DIVISION BEV CLARNO STEPHANIE CLARK SECRETARY OF STATE DIRECTOR A. RICHARD VIAL 800 SUMMER STREET NE DEPUTY SECRETARY OF STATE SALEM, OR 97310 503-373-0701 NOTICE OF PROPOSED RULEMAKING INCLUDING STATEMENT OF NEED & FISCAL IMPACT FILED 10/07/2019 2:19 PM CHAPTER 820 ARCHIVES DIVISION BOARD OF EXAMINERS FOR ENGINEERING AND LAND SURVEYING SECRETARY OF STATE FILING CAPTION: Amend rule related to the administration of the Oregon Specific Acoustical Examination LAST DAY AND TIME TO OFFER COMMENT TO AGENCY: 11/21/2019 5:00 PM The Agency requests public comment on whether other options should be considered for achieving the rule's substantive goals while reducing negative economic impact of the rule on business. A public rulemaking hearing may be requested in writing by 10 or more people, or by a group with 10 or more members, within 21 days following the publication of the Notice of Proposed Rulemaking in the Oregon Bulletin or 28 days from the date the Notice was sent to people on the agency mailing list, whichever is later. If sufficient hearing requests are received, the notice of the date and time of the rulemaking hearing must be published in the Oregon Bulletin at least 14 days before the hearing. CONTACT: Jenn Gilbert 670 Hawthorne Avenue, SE Filed By: 503-934-2107 Salem,OR 97301 Jenn Gilbert [email protected] Rules Coordinator NEED FOR THE RULE(S): To remove the Acoustical Engineering examination from those administered by the Board. The Board does not have an approved examination to test qualifications for licensure specifically to the the Acoustical branch.
    [Show full text]
  • Chemical & Biological Engineering Department History (PDF)
    Chemical & Biological Engineering The University of Alabama A Century of Excellence and Quality A Legacy of Leadership 1910 – 2010 By Gary C. April University Research Professor & Head (Emeritus) A Century of Excellence and Quality A Legacy of Leadership 1910-2010 Gary C. April University Research Professor & Head Emeritus Chemical & Biological Engineering The University of Alabama October 2010 ii Dedication The author would like to dedicate this brief history of the Chemical Engineering Department at The University of Alabama to Lynne, his wife, partner and soul mate of 48 years, to his children, Andrew, Brian and Elizabeth, who lived most of their lives while he was a professor there, and to his granddaughters, Andrea, Abigail, Caroline and Olivia who continue to provide him with encouragement by sharing a vision for the future that is filled with hope and opportunities. iii Table of Contents Preface ..................................................................................................................... v 1. The Beginning of Engineering Education at The University of Alabama 1 ................................................................................................................. 1 2. The Emergence of the Chemical Engineering Profession ........................... 7 3. Chemical Engineering at the University of Alabama – A Century of Excellence and Quality – A Legacy of Leadership 5 ....................................... 11 4. The Significance of Who We Are .................................................................
    [Show full text]
  • Bottom-Up Nano-Technology: Molecular Engineering at Surfaces
    BESSY – Highlights 2003 – Scientific Highligths 1 Max-Planck-Institut für Bottom-up nano-technology: Festkörperforschung, Stuttgart, 2 molecular engineering at surfaces Lehrstuhl für 1 1 1 1 2 Physikalische Chemie I, S. Stepanow , M. Lingenfelder , A. Dmitriev , N. Lin , Th. Strunskus , Ruhr-Universität Bochum, Ch. Wöll2, J.V. Barth3,4, K. Kern1,3 3 Institut de Physique des Nanostructures, A key issue in nanotech- acid (terephthalic acid - Ecole Polytechnique Fédérale de nology is the development tpa) and 1,2,4-benzenetri- Lausanne, Schweiz of conceptually simple carboxylic acid (trimellitic 4 construction techniques acid - tmla) on the Advanced Materials and Process for the mass fabrication Cu(100) surface. Mol- Engineering Laboratory, of identical nanoscale ecules of this type are University of British Columbia, structures. Conventional frequently employed in Vancouver, Canada top down fabrication 3-D crystal engineering techniques are both top [3] and have proven to be down fabrication techniques are both energy useful for the fabrication of nanoporous intensive and wasteful, because many supramolecular layers [4-7]. The molecules production steps involve depositing unstruc- tpa and tmla with their respective twofold tured layers and then patterning them by and threefold exodentate functionality are removing most of the deposited films. shown in Fig. 1. While the formation of Furthermore, increasingly expensive fabrica- organic layers and nano-structures can be tion facilities are required as the feature size nicely monitored by STM, X-ray photoelectron decreases. The natural alternative to the top- spectroscopy (XPS) and near-edge X-ray down construction is the bottom-up ap- absorption fine structure (NEXAFS) resolve proach, in which nanoscale structures are conclusively the deprotonation of carboxylic obtained from their atomic and molecular acid group and molecular orientation.
    [Show full text]
  • Business Process Engineering Release 3.0 E20216-03
    Oracle® Practitioner Guide Business Process Engineering Release 3.0 E20216-03 December 2010 Business Process Engineering, Release 3.0 E20216-03 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. Primary Author: Mark Wilkins Contributing Author: Dave Chappelle, Bob Hensle, Stephen Bennett, Anbu Krishnaswamy, Cliff Booth, Jeff McDaniel Contributor: Meera Srinivasan, Barry O’Reilly Warranty Disclaimer THIS DOCUMENT AND ALL INFORMATION PROVIDED HEREIN (THE "INFORMATION") IS PROVIDED ON AN "AS IS" BASIS AND FOR GENERAL INFORMATION PURPOSES ONLY. ORACLE EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. ORACLE MAKES NO WARRANTY THAT THE INFORMATION IS ERROR-FREE, ACCURATE OR RELIABLE. ORACLE RESERVES THE RIGHT TO MAKE CHANGES OR UPDATES AT ANY TIME WITHOUT NOTICE. As individual requirements are dependent upon a number of factors and may vary significantly, you should perform your own tests and evaluations when making technology infrastructure decisions. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle Corporation or its affiliates. If you find any errors, please report them to us in writing. Third Party Content, Products, and Services Disclaimer This document may provide information on content, products, and services from third parties. Oracle is not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
    [Show full text]
  • Nanotechnology: a Slightly Different History Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected]
    Nanotechnology: a slightly different history Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected] Originally published in Portuguese as a diffusion of Science article Nanotecnologia - uma história um pouco diferente Ciência Hoje 308, October 2013, p.26-29 Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative? Introduction: plenty of room beyond the bottom Nanotechnology is based on the investigation and manipulation of matter at the scale of billionths of a meter, i.e., nanometers; borrowing approaches from academic disciplines, which until recently were perceived more or less as isolated from each other: Biology, Physics, Chemistry and Material Sciences. Different groups, ranging from the scientific community to the general public, when asked about the history of nanotechnology seem to be satisfied with a tiny set of information spread out from site to site in the web. Within the most disseminated allegedly origins of nanotechnology, we can find the so called grandfather and launching act of nanotechnology, namely the famous physicist Richard Feynman (1918 - 1988) and his 1959 talk There is plenty of room at the bottom1.
    [Show full text]
  • Chemical Engineering - CHEN 1
    Chemical Engineering - CHEN 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030 or CHEM 1033) and (MATH 1610 or MATH 1613 or MATH 1617) and (P/C CHEM 1120 or P/C CHEM 1127 or P/C CHEM 1040 or P/ C CHEM 1043) and (P/C MATH 1620 or MATH 1623 or P/C MATH 1627) and (P/C PHYS 1600 or P/C PHYS 1607). Application of multicomponent material and energy balances to chemical processes involving phase changes and chemical reactions. CHEN 2110 CHEMICAL ENGINEERING THERMODYNAMICS (3) LEC. 3. Pr. (CHEM 1030 or CHEM 1033 or CHEM 1110 or CHEM 1117) and (MATH 1620 or MATH 1623 or MATH 1627) and (CHEN 2100) and (P/C PHYS 1600 or P/C PHYS 1607) and (P/C CHEN 2650). This course is intended to comprehensively introduce the thermodynamics of single- and multi-phase, pure systems, including the first and second laws of thermodynamics, equations of state, simple processes and cycles, and their applications in chemical engineering. CHEN 2610 TRANSPORT I (3) LEC. 3. Pr. (PHYS 1600 or PHYS 1607) and CHEN 2100 and (P/C MATH 2630 or P/C MATH 2637) and (P/C ENGR 2010 or P/C CHEN 2110). CHEN 2100 requires a grade of C or better. Introduction to fluid statics and dynamics; dimensional analysis; compressible and incompressible flows; design of flow systems, introduction to fluid solids transport including fluidization, flow through process media and multiphase flows. CHEN 2650 CHEMICAL ENGINEERING APPLICATIONS OF MATHEMATICAL TECHNIQUES (3) LEC.
    [Show full text]
  • Qualifications Acoustical, Technology, and Lighting
    HORBURN ASSOCIATES ACOUSTICAL, TECHNOLOGY, AND LIGHTING DESIGN Qualifications Acoustical, Technology, and Lighting Thorburn Associates (TA) specializes in the design and consulting of acoustics, technology, and lighting systems. We are involved with multiple market sectors which help to facilitate cross pollination of solutions between markets. With experience on over 2600 projects, one of TA’s strengths is our ability to provide an integrated solution for these technical aspects of the design. TA is a Woman‐owned Small Business Enterprise (WSBE) with offices located throughout the U.S. to serve your needs. Acoustical design combines art and science to modify noise to achieve a desired auditory environment. TA creates acoustical environments tailored to the occupants of each space. We combine our expertise with extensive laboratory and electronic testing equipment to meet the unique sound ACOUSTICAL sensitivities of each project. Room Acoustics – Sound Isolation – Mechanical Noise – Vibration Isolation – Environmental Noise Technology systems design is an ever‐growing industry bolstered by the constant demand for multimedia communications. TA works with our clients to develop the system that will best meet their needs while planning for and understanding maintenance, upgrade, and expansion needs. TECHNOLOGY Audiovisual Systems – Telepresence – Sound Masking/Paging – Structured Cabling – Security We specialize in illumination design, a term that describes aspects much broader than the standard overhead electric lighting system; illumination
    [Show full text]