Estimation De La Fraction Binaire De Nébuleuses Planétaires

Total Page:16

File Type:pdf, Size:1020Kb

Estimation De La Fraction Binaire De Nébuleuses Planétaires Délivrée par l'Université Montpellier II en Cotutelle avec Macquarie University Préparée au sein de l'école doctorale I2S∗ Et de l'unité de recherche UMR 5024 Spécialité: Astrophysique Stellaire Présentée par Dimitri Douchin Estimation de la Fraction Binaire de Nébuleuses Planétaires Soutenue le 26/09/2014 devant le jury composé de : Mme Orsola De Marco Professeur Ass. Macquarie Univ. Directeur de thèse M. Gérard Jasniewicz Astronome Univ. Montpellier II Directeur de thèse Mme Griet Van De Steene Astronome Royal Observatory Rapporteur M. Ryszard Szczerba Professeur Copernicus Astron. Institute Rapporteur Mme Agnès Lèbre Astronome Univ. Montpellier II Examinateur M. Quentin Parker Professeur Macquarie Univ. Examinateur La vaste majorité des nébuleuses planétaires présente des formes non- sphériques inattendues. Nous testons si la présence d'un compagnon orbitant leurs noyaux, une explication possible pour les morpholo- gies observées, constitue un canal privilégié pour la formation de ces nébuleuses. ∗ I2S : École doctorale Information Structures Systèmes Estimating the Binary Fraction of Central Stars of Planetary Nebulae By Dimitri Douchin A phd thesis submitted to Macquarie University in Cotutelle with Universite´ de Montpellier 2 Department of Physics And Astronomy November 2014 Examiner's Copy ii c Dimitri Douchin, 2014. Typeset in LATEX 2". iii Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for a degree in any university. Dimitri Douchin iv Crossing a sea \When I speak of crossing a sea I am talking of both a body of water and various situations in your life. Be it a hundred miles of choppy water or a turbulent time in your life, the spirit of the conqueror is the same. There come many times in life when a person must set sail and chart out his own path, even if his companions remain safely ashore. At this time you should learn your route, know your vessel, and watch for the best season. Learn the dangers and face the fears. Ride the wind as long as you can, but if the wind stops and conditions become unfavorable, be ready to take the oar in hand and force your way to the port. To be successful in life one must have the same spirit. Many obstacles will arise and many opponents will come against you, but do not be detoured. Make up your mind, be decisive, trust your intuition and follow your spirit. Trust the experience of others, but do not let them cause you to doubt your intuition. In martial arts and in strategy, this analogy is important. Know your opponent like a sea captain knows the ford. Learn his strengths and weaknesses. Know the best plan of attack and never relent. Do not be distracted. Do not be dissuaded. Have a resolute spirit in everything you do. Attack the opponent's weak points. Always seek the position of advantage and never stop until you win. Once you have achieved your goal you may rest." { Miyamoto Musachi, The Book Of Five Rings Acknowledgements I would like to thank my supervisor Orsola De Marco for the time and energy she has dedicated to this project, first on her own and then with me at her side. I am grateful for the constant support you have given me all along this project. Thank you also for being the friend you are. I thank my Cotutelle supervisor G´erard Jasniewicz with all my heart for his kind supervision and his expertise. I look forward to our future adventures on Maya territory. I would also like thank my secondary supervisor Quentin Parker for his support and more generally for leading the MQAAASTRO Research Centre the way he does to make it what it is today: a well-renown, creative, dynamic pole for research in PN science. I wish to the MQAAASTRO Centre that it continues to prosper the way I have seen it grow in my little lifespan here. I would like to address special thanks to David Frew without whom this project could not have been completed. His amazing knowledge of the local sample of PNe has been an example. Thank you for your support and directions, and for having shared with me your sense of scientific integrity as well as your sense of humanity. I would like to thank the MQAAASTRO PhD & post-doc team: Christina Mar- tina Baldwin, Rozenne Boissay, Tiffany Day, Danica Dravskovic, Elaina Hyde, Sophia Id Salah, Rajika Kuruwita, Geraline Marien, Corinne McDonnell, Stacey Rouge Newbolt-Bright, Isabella Isu´ska Spaleniak, Carlos Bacigalupo, Joao Bento, Pandey Birendra, Ivan Bojiciˇ c´, Nick Cvetojevic, Ashkbiz Danehkar, v vi Acknowledgements Kyle DePew, Tobias Feger, Pablo Galaviz, Brint Jones Gardner, Greg Gold- stein, Roberto the Billhook Iaconi, Andrew Lehmann, Daniel Maccer MacDon- ald, Niyas MC Madappattu, Arik Jones Mitschang, Colin Navin, Nem Ne- manovic, Glenn Rees, Aaron Rizzutto, Jan Staff, Travis Stenborg, James Tocknell and Shane Vickers, and academics Mike Ireland, Richard McDermid, Lee Spitler, Mark Wardle and Daniel Zucker. I also thank the LUPM PhD & post-doc team: Rana Ezzeddine, Johanna Itam, Louis Amard, Nicolas Fabas, Pierre Ghesquiere` , Anthony Herve´, Julien Lam- bert, and academics: Agn`es Lebre` , Ana Palacios, Dahbia Talbi, Eric´ Josselin, Fabrice Martins, Nicolas Mauron, Bertrand Plez, Denis Puy, Henri Reboul, Olivier Richard and Yohann Scribano. I thank the administrative staff of both universities, in particular Carol McNaught and Carole Prevot´ . Thank you to all the colleagues I have had the chance to meet during my multiple travels to observatories and conferences: Liz Guzman, Di Harmer, Shazrene Mo- hamed, Carolina Moura Carneiro, Adrien Pa'pondieu Guerou´ , Jeff Clayton, Todd Hillwig, George Jacoby, Dave Jones, Eric Lagadec, Brent Miszalski and Noam Soker. A star shines for Olivier Chesneau. Thank you to my eternal inspirations in astronomy Herv´e Dole, Mathieu Langer and Phil Yock. I thank my examiners for taking the time to assess this thesis. Thank you to Sa Bom Nim Anne Mouland-Claassens, Kwang Jang Nim Ron Claassens and all the team of the Empower Dojang, Sensei Dean Whittle and all the team of Ninjutsu Sydney, Jean-Yves Cassan and all the team of Montpellier Dojo and Celsinho Lopes Dos Santos and all the team of Renascer De Minas. Thank you Caroline Pany Boulom for making every day of my life extraordinary. Abstract Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of spherical expansion of their atmospheres at the end of their lives. Obser- vationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebula, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photom- etry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around centrals star of planetary nebula using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously- published data. I conclude that if the detected red and NIR flux excess is indicative of vii viii Abstract a stellar companion then the binary fraction is larger than what we may expect based on the main-sequence progenitor population binary fraction and therefore conclude that binarity is a preferential channel for the formation of planetary nebula. I finish by underlining the need for a sample size of 150 objects to decrease the uncertainty on ∼ the planetary nebula population binary fraction and increase the statistical significance of this result. R´esum´e Les n´ebuleusesplan´etaires(NP) sont le produit de l'´evolution d'´etoilesde masses in- term´ediairesapr`esl'expansion sph´erique`ala fin de leurs vies. Il a ´et´eestim´eobserva- tionnellement que 80% des NP ont des formes non-sph´eriques. Une fraction si ´elev´ee est d´eroutante et a mobilis´ela communaut´ede recherche sur les NP pendant plus de trente ans. Un sc´enarioqui permettrait de justifier les formes observ´eesserait que les ´etoilesprog´enitricesde noyaux de NP (NNP) ne sont pas simples, mais poss`edent un compagnon. Les formes des n´ebuleusesseraient ainsi le r´esultatde l'interaction avec le compagnon. La fraction si ´elev´eede NP non-sph´eriquesimpliquerait donc une fraction ´elev´eede NNP binaires, faisant de la parit´estellaire un canal de formation privil´egi´epour les NP. Apr`esavoir pr´esent´el'´etat de connaissance actuelle concernant la formation et la mise en forme des NP, je pr´esente mes travaux visant `ad´etecter un exc`esinfrarouge qui serait la signature de la pr´esenced'un compagnon orbitant le NNP.
Recommended publications
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Planetary Nebulae
    Southern Planetaries 6/27/04 9:20 PM Observatory Tents Nebula Filters by Andover Ngc 60 Meade NGC60 Premier online astronomy For viewing emission and Find, compare and buy Refractor Telescope $181 shop has a selection of planetary nebulae. Telescopes! Simply Fast Free Shipping. Affiliate. observatory dome tents Narrowband and O-III types Savings www.amazon.com www.telescopes.net www.andcorp.com www.Shopping.com Observing Down Under: Part II - Planetary Nebulae by Steve Gottlieb Shapley 1 - AAO This is the second part in a series based on my trip to Australia last summer, covering observations of a few southern showpiece objects. The other parts in the series are: Southern Globular Clusters Southern Galaxies Two Southern Galaxy Groups During the stay at the Magellan Observatory I had full access to an 18" f/4.5 JMI NGT-18, an innovative split-ring truss- tube equatorial with a rotating upper cage assembly. The scope was housed in a 4.5 meter dome (which came in very handy on windy nights) and outfitted with DSC's and it could be converted to use with a bino-viewer. Because I was trying to survey the full gamut of DSO's mostly below -50° (I easily could have spent the entire time just on the Large Magellanic Cloud!), I generally stuck to eye-candy -- and there was plenty to feast on! - and was really loafing it with an 18" on these brighter planetaries (everything below was immediately visible once in the field). Some of these were reobservations for me but from northern California I never had a really good look.
    [Show full text]
  • Stats2010 E Final.Pdf
    Imprint Publisher: Max-Planck-Institut für extraterrestrische Physik Editors and Layout: W. Collmar und J. Zanker-Smith Personnel 1 PERSONNEL 2010 Directors Min. Dir. J. Meyer, Section Head, Federal Ministry of Prof. Dr. R. Bender, Optical and Interpretative Astronomy, Economics and Technology also Professorship for Astronomy/Astrophysics at the Prof. Dr. E. Rohkamm, Thyssen Krupp AG, Düsseldorf Ludwig-Maximilians-University Munich Prof. Dr. R. Genzel, Infrared- and Submillimeter- Scientifi c Advisory Board Astronomy, also Prof. of Physics, University of California, Prof. Dr. R. Davies, Oxford University (UK) Berkeley (USA) (Managing Director) Prof. Dr. R. Ellis, CALTECH (USA) Prof. Dr. Kirpal Nandra, High-Energy Astrophysics Dr. N. Gehrels, NASA/GSFC (USA) Prof. Dr. G. Morfi ll, Theory, Non-linear Dynamics, Complex Prof. Dr. F. Harrison, CALTECH (USA) Plasmas Prof. Dr. O. Havnes, University of Tromsø (Norway) Prof. Dr. G. Haerendel (emeritus) Prof. Dr. P. Léna, Université Paris VII (France) Prof. Dr. R. Lüst (emeritus) Prof. Dr. R. McCray, University of Colorado (USA), Prof. Dr. K. Pinkau (emeritus) Chair of Board Prof. Dr. J. Trümper (emeritus) Prof. Dr. M. Salvati, Osservatorio Astrofi sico di Arcetri (Italy) Junior Research Groups and Minerva Fellows Dr. N.M. Förster Schreiber Humboldt Awardee Dr. S. Khochfar Prof. Dr. P. Henry, University of Hawaii (USA) Prof. Dr. H. Netzer, Tel Aviv University (Israel) MPG Fellow Prof. Dr. V. Tsytovich, Russian Academy of Sciences, Prof. Dr. A. Burkert (LMU) Moscow (Russia) Manager’s Assistant Prof. S. Veilleux, University of Maryland (USA) Dr. H. Scheingraber A. v. Humboldt Fellows Scientifi c Secretary Prof. Dr. D. Jaffe, University of Texas (USA) Dr.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • Caldwell Catalogue - Wikipedia, the Free Encyclopedia
    Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers.
    [Show full text]
  • International Ultraviolet Explorer Satellite Observations of Seven High-Excitation Planetary Nebulae (Gaseous Nebulae/Chemical Compositions/Excitation) L
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 3, pp. 1231-1234, March 1980 Astronomy International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae (gaseous nebulae/chemical compositions/excitation) L. H. ALLER AND C. D. KEYES Department of Astronomy, University of California, Los Angeles, California 90024 Contributed by Lawrence H. Aller, December 7, 1979 ABSIRACT Observations of seven hig-xcitation planetary Table 1. Basic data for observed nebulae nebulae secured with the International Ultraviolet Explorer (1UE) satellite were combined with extensive ground-based data P-Kt log HeII(4686)§ to obtain electron densities, gas kinetic temperatures, and ionic Nebula* notation F(H#)t I(H/3) C1 r"'' concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic NGC2392 197 + 1701 -10.39 0.35 0.15 22.4 concentrations must be multiplied to obtain elemental abun- NGC 2440 234 + 201 -10.45 0.60 0.63 16.4 dances. Comparison with a large sample of nebulae for which NGC 2867 278- 501 -10.57 0.265 0.47 8.6 extensive ground-based observations have been obtained shows Me 2-1 342 + 2701 -11.32 0.82 0.29 3.3 nitrogen to be markedly enhanced in some of these objects. NGC 6302 349 + 101 -10.53 0.76 1.41 22.3 Possibly most, if not all, high-excitation nebulae evolve from NGC 6741 33 - 201 -11.49 0.45 1.5: 3.9 stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.
    [Show full text]
  • The Caldwell Catalogue+Photos
    The Caldwell Catalogue was compiled in 1995 by Sir Patrick Moore. He has said he started it for fun because he had some spare time after finishing writing up his latest observations of Mars. He looked at some nebulae, including the ones Charles Messier had not listed in his catalogue. Messier was only interested in listing those objects which he thought could be confused for the comets, he also only listed objects viewable from where he observed from in the Northern hemisphere. Moore's catalogue extends into the Southern hemisphere. Having completed it in a few hours, he sent it off to the Sky & Telescope magazine thinking it would amuse them. They published it in December 1995. Since then, the list has grown in popularity and use throughout the amateur astronomy community. Obviously Moore couldn't use 'M' as a prefix for the objects, so seeing as his surname is actually Caldwell-Moore he used C, and thus also known as the Caldwell catalogue. http://www.12dstring.me.uk/caldwelllistform.php Caldwell NGC Type Distance Apparent Picture Number Number Magnitude C1 NGC 188 Open Cluster 4.8 kly +8.1 C2 NGC 40 Planetary Nebula 3.5 kly +11.4 C3 NGC 4236 Galaxy 7000 kly +9.7 C4 NGC 7023 Open Cluster 1.4 kly +7.0 C5 NGC 0 Galaxy 13000 kly +9.2 C6 NGC 6543 Planetary Nebula 3 kly +8.1 C7 NGC 2403 Galaxy 14000 kly +8.4 C8 NGC 559 Open Cluster 3.7 kly +9.5 C9 NGC 0 Nebula 2.8 kly +0.0 C10 NGC 663 Open Cluster 7.2 kly +7.1 C11 NGC 7635 Nebula 7.1 kly +11.0 C12 NGC 6946 Galaxy 18000 kly +8.9 C13 NGC 457 Open Cluster 9 kly +6.4 C14 NGC 869 Open Cluster
    [Show full text]
  • Precision Diagnostics of Pulsation and Evolution in Helium-Rich Low-Mass Stars
    Precision Diagnostics of Pulsation and Evolution in Helium-Rich Low-Mass Stars A dissertation submitted to the University of Dublin for the degree of Doctor of Philosophy Pamela Martin, B.A. (Mod). Armagh Observatory and Planetarium & Trinity College Dublin 2019 School of Physics University of Dublin Trinity College ii Declaration I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. I agree to deposit this thesis in the University's open access institutional repository or allow the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. Name: Pamela Martin Signature: ........................................ Date: .......................... Abstract In this thesis we discuss many types of low mass stars linked by their un- usually low hydrogen atmospheric abundance, usually completely replaced with helium. We begin with the hot subdwarfs; subdwarf O and B (sdB, sdO) stars are low-mass core helium burning stars with extremely low-mass hydrogen envelopes. Their atmospheres are generally helium deficient; how- ever a minority have extremely helium-rich surfaces. An additional fraction have an intermediate surface-helium abundance, occasionally accompanied by peculiar abundances of other elements. LS IV−14◦116 is a non-radially pulsating slowly-rotating chemically-peculiar helium-rich sdB with a 4 dex surface excess of zirconium, yttrium, and strontium. The pulsations are un- expected and unexplained, as the star is 6 000K hotter than the blue edge of the hot subdwarf g-mode instability strip. The presence of pulsations offers a rare opportunity to study the structure of the photosphere.
    [Show full text]
  • Noao Annual Report Fy07
    AURA/NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 Emission nebula NGC6334 (Cat’s Paw Nebula): star-forming region in the constellation Scorpius. This 2007 image was taken using the Mosaic-2 imager on the Blanco 4-meter telescope at Cerro Tololo Inter- American Observatory. Intervening dust in the plane of the Milky Way galaxy reddens the colors of the nebula. Image credit: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 NOAO Gemini Science Center .............................................................................. 2 GNIRS Infrared Spectroscopy and the Origins of the Peculiar Hydrogen-Deficient Stars...................... 2 Supermassive Black Hole Growth and Chemical Enrichment in the Early Universe.............................. 4 1.2 Cerro Tololo Inter-American Observatory (CTIO)................................................ 5 The Nearest Stars.......................................................................................................................................
    [Show full text]
  • Arxiv:1007.2659V1 [Astro-Ph.SR] 15 Jul 2010 Aeteesasecletcrnmtr N Edsrb Why Describe Stars
    The Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Evolutionary and pulsational properties of white dwarf stars Leandro G. Althaus Alejandro H. Corsico´ Jordi Isern Enrique Garc´ıa–Berro· · · Received: October 22, 2018/ Accepted: October 22, 2018 Abstract White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. Since the coolest white dwarfs are very old objects, the present popula- tion of white dwarfs contains a wealth of information on the evolution of stars from birth to death, and on the star formation rate throughout the history of our Galaxy. Thus, the study of white dwarfs has potential applications to different fields of astrophysics. In partic- ular, white dwarfs can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar popu- lations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. Last but not least, since many white dwarf stars undergo pulsational instabili- ties, the study of their properties constitutes a powerful tool for applications beyond stellar astrophysics. In particular, white dwarfs can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. These potential applications of white dwarfs have led to a renewed interest in the cal- culation of very detailed evolutionary and pulsational models for these stars.
    [Show full text]