Launching the Future of Science and Exploration Ture
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Ares I Upper Stage Powering the Second Phase of a Rocket’S Journey to Space
National Aeronautics and Space Administration NASA’s Ares I Upper Stage Powering the Second Phase of a Rocket’s Journey to Space Going to the moon and beyond will be a stunning Shortly after J-2X engine cutoff, the Orion cap- achievement and an enduring legacy to future sule will separate from the upper stage. Orion’s generations. Supporting the agency’s mission engine then will ignite to insert the capsule into to explore, learn and progress is NASA’s Ares I low-Earth orbit. The Ares I upper stage – dor- crew launch vehicle, an in-line, two-stage rocket. mant after safe shut-down of the J-2X upper The flagship of the Constellation Program’s space stage engine – will re-enter Earth’s atmosphere facts transportation system, the Ares I will carry the and splash down in the Indian Ocean. The upper Orion spacecraft and its crew on missions to the stage and J-2X engine will not be reused. International Space Station and then later on to the moon and beyond. Upper Stage Components The entire Ares I vehicle will be 325 feet tall, with Taking the Ares I on the second phase of its jour- a liftoff mass of 2.0 million pounds and payload ney from Earth will be the spacecraft’s second, capacity of 56,200 pounds mass to low Earth or upper, stage, powered by the J-2X engine. orbit for International Space Station missions, Approximately 133 seconds after liftoff, the Ares and 55,600 pounds mass for lunar missions. I upper stage will separate from the vehicle’s first A self-supporting cylindrical structure, the Ares stage, and the J-2X will ignite. -
Human Issues Related to Spacecraft Vibration During Ascent
Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Suite NA 425 One Baylor Plaza Baylor College of Medicine Houston TX 77030-3498 1731 Sunset Blvd Houston TX 77005 713 859 1381 281 989 8721 [email protected] [email protected] Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Pogo in Liquid Fueled Rocket Motors The pogo phenomenon, or fuel pump inlet pressure fluctuation/ cavitation due to tuning feed line resonant frequencies was a major concern in the early space program. Pump tests showed that as inlet pressures were reduced toward cavitation, the pump started acting as an amplifier, causing large oscillations in the thrust chamber pressure. As the rocket engine thrust develops, liquid propellant is cyclically forced into the turbopump. This fluctuating fluid pressure is converted into an unintended and variable increase in engine thrust, with the net effect being longitudinal axis vibration that could result in spacecraft structural failure. -
Ares I Can Model by Clicking on Ares Education Program Under Contacts on the Right of the Screen
VISIT US ON THE WEB National Aeronautics and Space Administration Be sure to ask for parental assistance before get- ting online at <www.nasa.gov/ares>. Click the Ares Education link, on the left of the screen for additional information: • Print a Full-Page Color Poster and Paper Funnel Template. • View Detailed Ramp Assembly Instructions. • Send us an e-mail with comments and pictures of your Ares I Can Model by clicking on Ares Education Program under Contacts on the right of the screen. ARES I CAN MODEL National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, AL 35812 www.nasa.gov/marshall A hands-on project to help learn about and interact with NASA’s Ares I Rocket. www.nasa.gov NP-2009-06-118-MSFC 8-426227 OVERVIEW NASA plans to take humans back to the Moon, and the Ares I Crew Launch Vehicle (CLV) will help them 1 2 3 4 5 6 7 get there. The Ares I rocket is made of several parts: The recipe shows how to make these can groups. 1. Orion Crew Exploration Vehicle (CEV) 2. Instrument Unit (IU)* RECIPE DISPLAY RAMP 3. Core Stage (CS)* 1. Tape a funnel to the top of an upside down can The Human Factors Engineering Team built a ramp 4. Upper Stage Engine (USE) located within the of peppers (The peppers symbolize the propulsion to proudly display the Ares I Can Model. It is a Interstage (IS)* engine “hot zone” of the Orion Crew Exploration V-shaped ramp made of medium-density fiberboard 5. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Visions of the Universe: Four Centuries of Discovery One-Hour
Visions of the Universe: Four Centuries of Discovery One-Hour Exhibit Tour / Program “Visions of the Universe: Four Centuries of Discovery” was produced in December 2008 by the Space Telescope Science Institute, the American Library Association, and the Smithsonian Astrophysical Observatory, through funding from the National Aeronautics and Space Administration. Some guidelines from NGS standards 2nd – 4th grade: Science and Engineering Practices - Constructing Explanations and Designing Solutions - Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions. - Make observations from several sources to construct an evidence-based account for natural phenomena. Disciplinary Core Ideas The History of Planet Earth – Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. Crosscutting Concepts Stability and Change – Things may change slowly or rapidly. In this program, the educator will guide a group through the “Visions of the Universe” exhibit, which consists of 12 panels mounted on foam board. Reading the text of each poster, and showing the depictions of space objects, exploration and achievements, the educator will present a big-picture view of the history of astronomy. At certain points, depending on time and group, you may connect the concepts of a given poster to one of the suggested “Earth and Space” activities. Refer to the supplemental materials in the “Visions of the Universe” binder for the background knowledge you will need to answer any questions that may come up! I. Visions of the Universe Intro “Telescopes have transformed not only our views of the universe, but also our understanding of the planets, stars, and galaxies within it.” After reading the poster, pause to let kids look through one of our Galileoscopes. -
The New Vision for Space Exploration
Constellation The New Vision for Space Exploration Dale Thomas NASA Constellation Program October 2008 The Constellation Program was born from the Constellation’sNASA Authorization Beginnings Act of 2005 which stated…. The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations. CONSTELLATION PROJECTS Initial Capability Lunar Capability Orion Altair Ares I Ares V Mission Operations EVA Ground Operations Lunar Surface EVA EXPLORATION ROADMAP 0506 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LunarLunar OutpostOutpost BuildupBuildup ExplorationExploration andand ScienceScience LunarLunar RoboticsRobotics MissionsMissions CommercialCommercial OrbitalOrbital Transportation ServicesServices forfor ISSISS AresAres II andand OrionOrion DevelopmentDevelopment AltairAltair Lunar LanderLander Development AresAres VV and EarthEarth DepartureDeparture Stage SurfaceSurface SystemsSystems DevelopmentDevelopment ORION: NEXT GENERATION PILOTED SPACECRAFT Human access to Low Earth Orbit … … to the Moon and Mars ORION PROJECT: CREW EXPLORATION VEHICLE Orion will support both space station and moon missions Launch Abort System Orion will support both space stationDesigned and moonto operate missions for up to 210 days in Earth or lunar Designedorbit to operate for up to 210 days in Earth or lunar orbit Designed for lunar -
Alien Encounters and the Alien/Human Dichotomy in Stanley Kubrick's <Em>2001: a Space Odyssey</Em> and Andrei Tark
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 4-1-2010 Alien Encounters and the Alien/Human Dichotomy in Stanley Kubrick‘s 2001: A Space Odyssey and Andrei Tarkovsky‘s Solaris Keith Cavedo University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Cavedo, Keith, "Alien Encounters and the Alien/Human Dichotomy in Stanley Kubrick‘s 2001: A Space Odyssey and Andrei Tarkovsky‘s Solaris" (2010). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1593 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Alien Encounters and the Alien/Human Dichotomy in Stanley Kubrick‘s 2001: A Space Odyssey and Andrei Tarkovsky‘s Solaris by Keith Cavedo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of English College of Arts and Sciences University of South Florida Major Professor: Phillip Sipiora, Ph.D. Lawrence Broer, Ph.D. Victor Peppard, Ph.D. Silvio Gaggi, Ph.D. Date of Approval: April 1, 2010 Keywords: Film Studies, Science Fiction Studies, Alien Identity, Human Identity © Copyright 2010, Keith Cavedo Dedication I dedicate this scholarly enterprise with all my heart to my parents, Vicki McCook Cavedo and Raymond Bernard Cavedo, Jr. for their unwavering love, support, and kindness through many difficult years. Each in their own way a lodestar, my parents have guided me to my particular destination. -
Annual Report
The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative -
Design and Validation of a Compact Radius Centrifuge Artificial Gravity Test Platform
Design and Validation of a Compact Radius Centrifuge Artificial Gravity Test Platform by Chris Trigg B.S. Environmental Engineering Northwestern University, 2008 M.S. Environmental Engineering Stanford University, 2009 SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS AT THE MASSACHUSETTS INSTITUTE OF TEHCNOLOGY MAY 2013 ©2013 Massachusetts Institute of Technology All Rights Reserved Signature of Author: ____________________________________________________________________ Department of Aeronautics and Astronautics May 23, 2013 Certified by: __________________________________________________________________________ Prof. Laurence R. Young Apollo Program Professor of Astronautics Professor of Health Sciences and Technology Thesis Supervisor Accepted by: __________________________________________________________________________ Prof. Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Design and Validation of a Compact Radius Centrifuge Artificial Gravity Test Platform by Chris Trigg Submitted to the Department of Aeronautics and Astronautics on 23 May, 2013 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautics and Astronautics ABSTRACT Intermittent exposure to artificial gravity on a short radius centrifuge (SRC) with exercise is a promising, comprehensive countermeasure to the cardiovascular and musculoskeletal deconditioning that occurs as a result of prolonged exposure to microgravity. To date, the study of artificial gravity has been done using bedrest and SRC’s with subjects positioned radially with the head at the center of rotation. A recent proposal to put a human centrifuge on the International Space Station (ISS) highlighted the reality that near-term inflight SRC’s will likely be confined to radii shorter than has been typically used in terrestrial analogs. -
A Review of Nasa's Exploration
A REVIEW OF NASA’S EXPLORATION PROGRAM IN TRANSITION: ISSUES FOR CONGRESS AND INDUSTRY HEARING BEFORE THE SUBCOMMITTEE ON SPACE AND AERONAUTICS COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION MARCH 30, 2011 Serial No. 112–8 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 65–305PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland DAVID WU, Oregon FRANK D. LUCAS, Oklahoma BRAD MILLER, North Carolina JUDY BIGGERT, Illinois DANIEL LIPINSKI, Illinois W. TODD AKIN, Missouri GABRIELLE GIFFORDS, Arizona RANDY NEUGEBAUER, Texas DONNA F. EDWARDS, Maryland MICHAEL T. MCCAUL, Texas MARCIA L. FUDGE, Ohio PAUL C. BROUN, Georgia BEN R. LUJA´ N, New Mexico SANDY ADAMS, Florida PAUL D. TONKO, New York BENJAMIN QUAYLE, Arizona JERRY MCNERNEY, California CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, JOHN P. SARBANES, Maryland Tennessee TERRI A. SEWELL, Alabama E. SCOTT RIGELL, Virginia FREDERICA S. WILSON, Florida STEVEN M. PALAZZO, Mississippi HANSEN CLARKE, Michigan MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY SUBCOMMITTEE ON SPACE AND AERONAUTICS HON. -
FY10 Agency Mission Planning Model Acronyms
Version 6-11-09 Mission Data Sources Science Mission Directorate (SMD) submit; 5-4-09 Exploration Systems Mission Directorate (ESMD) submit; 6-11-09 Space Operations Mission Directorate (SOMD) submit; 5-27-09 Aeronautics Research Mission Directorate (ARMD) response; 5-28-09 Mission Acronyms & Definitions Mission Directorate Altair-x Lunar descent stage aka: LSAM = Lunar Surface Access Module (x-mission #) ESMD Ares 1 Crew Launch Vehicle (aka CLV) ESMD Ares V Cargo Launch Vehicle (aka CaLV) ESMD Astro-H SXS Instrument (Explorer Program Mission of Opportunity) [JAXA launch] SMD X-Air Estimated number of Aircraft Earth Science Flights SMD X-Bal Estimated number of Scientific Balloon Flights SMD BARREL Balloon Array for RBSP Relativistic Electron Losses (Two balloon campaigns of 20 flights each) SMD CaLV Cargo Launch Vehicle (aka CaLV) ESMD Chndraayn1 Discovery MoO instrument to be flown on Indian satellite Chandraayan [ELV launch] SMD CLARREO Climate Absolute Radiance and Reflectivity Observatory (see ESDS-x below) SMD CLV Crew Launch Vehicle (aka Ares I) ESMD COR-Lx Cosmic Origins Program Large class mission (x-mission #) (Flagship missions to be defined by Decadal Survey) SMD COR-Mx Cosmic Origins Program Medium class mission (x-mission #) SMD dB decibels ARMD DESDynl Deformation, Ecosystem Structure and Dynamics of Ice (see ESDS-x below) SMD Disc-xx Discovery Mission (xx- mission #) SMD ESDS-x Earth Science Decadal Survey Mission (x- mission #) Likely CLARREO and DESDynI first, order TBD SMD EX-xx Explorer mission (class undefined: Could -
N a S a Fa C Ts
National Aeronautics and Space Administration Constellation Program: America’s Fleet of Next-Generation Launch Vehicles The Ares l Crew Launch Vehicle NASA is designing, testing and evaluating these teams are designing and developing hardware and related systems for the agency’s vehicle hardware, evolving proven technolo- Ares I rocket—the vehicle that will carry a gies, and testing components and systems. new generation of space explorers safely Their work builds on powerful, reliable Saturn and reliably into orbit. and space shuttle propulsion elements, as well as nearly a half-century of NASA space-flight facts Under the goals of NASA’s exploration missions, experience and technological advances. Ares I is a chief component of the cost- effective space transportation infrastructure Ares I is an in-line, two-stage rocket topped being developed by NASA’s Constellation by the Orion capsule, its service module and Program. These transportation systems will a launch abort system. The combination of the carry human explorers back to the moon and rocket’s configuration and Orion’s launch abort other destinations in the solar system. system, which can move astronauts away quickly in case of a launch emergency, will The Ares I effort includes multiple project improve crew safety. element teams working at NASA centers and contract organizations around the nation, and The launch vehicle’s first stage is a single, is led by the Ares Projects at NASA’s Marshall five-segment reusable solid rocket booster, Space Flight Center in Huntsville, AL. Together, derived from the Space Shuttle Program’s NASA four-segment reusable solid rocket booster, which burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN).