Thesis Abstract

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Abstract Post-transcriptional Regulatory Mechanisms Controlling Development of Murine Cerebral Cortical Precursors by Gianluca Amadei A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Gianluca Amadei (2016) Post-transcriptional Regulatory Mechanisms Controlling Development of Murine Cerebral Cortical Precursors Gianluca Amadei Doctor of Philosophy Department of Molecular Genetics University of Toronto 2016 Thesis Abstract The complex neural circuitry of the mammalian nervous system arises from a small pool of neural precursors that, during development, sequentially gives rise to neurons, astrocytes and oligodendrocytes. Several molecular mechanisms and environmental stimuli regulate the expansion of the neural precursor pool and the subsequent generation of differentiated progeny. In this thesis, I sought to investigate whether post-transcriptional regulation plays a role in the development of mammalian neural precursors. In the first part of this thesis, I show that the double stranded RNA binding protein Staufen2 is part of a repressive complex, with Pumilio2 and DDX1, that prevents early differentiation of neural precursors into neurons by repressing the translation of neurogenic mRNAs such as prox1. In the second part of the thesis I show that Smaug2, a translational repressor, also prevents early generation of neurons by repressing nanos1 mRNA, which encodes another RNA-binding protein. I also show that nanos1 repression occurs by its inclusion in a P-body like granule with 4E-T, another known repressor of mRNA translation. In the last chapter I identify mRNAs associating with Smaug2 and I suggest that Smaug2 may have additional functions that are independent of nanos1 regulation and that unlike nanos1, which is regulated together by Smaug2 and 4E-T, the majority of Smaug2 mRNAs are regulated independently from 4E-T. Together, these studies suggest that several RNA-binding ii proteins are crucial regulators of cortical development and that they perform this role by forming several, largely independent, repressive RNA-protein complexes. I suggest that these repressive complexes prime neural precursors to generate progeny at the appropriate time by repressing proneurogenic mRNAs until the appropriate developmental cue. iii Acknowledgments Upon completion of this doctoral degree, I realize more than ever that this journey could not have been completed without the help of so many amazing people. First and foremost, I would like to thank my supervisors Freda and David for all their help along this PhD. Your support, mentoring, and guidance meant so much to me and your passion for science has been a constant inspiration. Thank you for taking a chance on me and letting me study in your laboratory. It has been a terrific opportunity and a life changing experience! I would like to thank my committee members Dr. Bret Pearson and Dr. Howard Lipshitz, who have constantly been evaluating my progress over the years. Your invaluable intellectual input and criticism was instrumental in guiding this thesis along and I am very grateful for all your help. Many many thanks are also due to our wonderful collaborators, Dr. Craig Smibert and Dr. Jason Dumelie. When we were not sure where to go next, you were always able to offer advice and technical expertise and I am very grateful to you for that! My gratitude also goes to my wonderful colleagues and friends in the Kaplan/Miller laboratory. I could not have asked for a more talented group of people to work with. Over the years, the incredible display of talent, dedication and passion for science that I have witnessed in each and every one of you is both humbling and inspiring. I feel every one of you, in his/her own way, has taught me something valuable and I hope to put these lessons to good use in my future work. I will always cherish our friendship and the memory of our years together. A special place in this PhD journey belongs to two wonderful people, Peter and Sally Cant. Over the past few years I have been fortunate enough to benefit from the scholarship they established to honour the memory of their son, David S. Cant and I have also had the privilege of getting to know them better on a number of occasions. It is hard to find two people who are more kind, gentle, and generous than Sally and Peter and I will never forget their commitment to supporting brain research and students. It is also thanks to the contribution of people like them that research can move forward. Peter, Sally, I will never forget you and your generosity! Last but not least, many thanks to my family and good friends. I do not know where I would be without your unwavering support. I am so fortunate to have you in my life! To all of you, thank you, thank you, thank you, from the bottom of my heart! iv Table of Contents Acknowledgments .......................................................................................................................... iv Table of Contents ............................................................................................................................ v List of Abbreviations ................................................................................................................... viii List of Tables ................................................................................................................................ xii List of Figures .............................................................................................................................. xiii Chapter 1 Literature Review ........................................................................................................... 1 1.1 Overview of thesis objectives: .................................................................................................. 1 1.2 Overview of murine cortical development: .............................................................................. 2 1.3 Neural diversity results from a heterogeneous pool of cortical precursors: ............................. 5 1.3.1 Neuroepithelial stem cells (NESCs): ..................................................................................... 5 1.3.2 Radial precursor cells (RP): ................................................................................................... 7 1.3.3 Basal or intermediate progenitor cells: .................................................................................. 8 1.3.4 Outer radial glial precursor cells: ........................................................................................... 9 1.3.5 Oligodendrocyte precursor cells: ......................................................................................... 10 1.4 Mechanisms regulating cortical neural precursor self-renewal versus differentiation: .......... 10 1.4.1 Mitotic polarity as a potential regulator of neural precursor cell fate: ................................ 11 1.4.2 RNA-binding proteins as asymmetrically-segregated determinants in stem cell biology: .. 12 1.4.2.1 The RNA-binding protein Staufen2: ................................................................................. 15 1.4.2.2 The post-transcriptional regulator Smaug2: ...................................................................... 18 1.4.2.3 The function of mammalian Smaug: ................................................................................. 22 1.4.3 A potentially conserved mRNA repression pathway: .......................................................... 27 1.4.3.1 Nanos: ............................................................................................................................... 27 1.4.3.2 4E-T: ................................................................................................................................. 28 Chapter 2 Experimental Procedures .............................................................................................. 30 Chapter 3 An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance of mammalian neural stem cells .............................................................................. 41 3.1 SUMMARY ............................................................................................................................ 42 3.2 BRIEF INTRODUCTION AND RATIONALE .................................................................... 42 3.3 RESULTS ............................................................................................................................... 43 3.3.1 Staufen2 is apically localized in embryonic radial glial precursors in the developing murine cortex ............................................................................................................................................. 43 3.3.2 Staufen2 is part of an apical RNA complex in radial glial precursors ................................. 46 3.3.3 Asymmetric localization of Staufen2 and prox1 mRNA in dividing radial glial precursors49 3.3.4 Knockdown of Staufen2 promotes neurogenesis and depletes radial glial precursors ........ 52 3.3.5 Knockdown of either Pumilio2 or DDX1 phenocopies the effects of Staufen2 knockdown ....................................................................................................................................................... 58 3.3.6 Disruption of Staufen2-RNA interactions affects prox1 mRNA localization and expression and causes differentiation of radial glial precursors
Recommended publications
  • Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
    Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations.
    [Show full text]
  • Cell, Volume 139 Supplemental Data Profiling the Human Protein-DNA
    Cell, Volume 139 Supplemental Data Profiling the Human Protein-DNA Interactome Reveals ERK2 as a Transcriptional Repressor of Interferon Signaling Shaohui Hu, Zhi Xie, Akishi Onishi, Xueping Yu, Lizhi Jiang, Jimmy Lin, Hee-sool Rho, Crystal Woodard, Hong Wang, Jun-Seop Jeong, Shunyou Long, Xiaofei He, Herschel Wade, Seth Blackshaw, Jiang Qian, and Heng Zhu Supplemental Experimental Procedures Identifying Tissue-specific Motifs We developed a program to identify tissue-specific motifs. We first defined sets of tissue-specific or tissue-enriched genes by examining their gene expression profiles across multiple tissues (Yu et al., 2006). We then calculated the most over-represented single motifs (8-mers, including a wide character) in the promoters of each set of tissue-specific genes. The program then enumerated all possible combinations of the top n motifs (e.g. n = 100). For each motif pair, the program recorded the occurrence of the motif pair in the promoter sequences. We then calculated the significance score for each motif pair, which was defined as the negative logarithm of the p value, -log(p). The motif pairs with scores above a specified threshold were considered putative TF binding motif pairs in the promoter sequences. With these predicted motif pairs, we could calculate a number of partners for each motif and select a certain number of top non-redundant motifs to be tested in the protein chip experiments. Both the p values for a single motif and those for a motif pair were calculated using hypergeometric distribution. Here, we use a motif pair as an example to show the ij, procedure.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Application to Neuroimaging Biomarkers in Alzheimer's
    The Author(s) BMC Medical Informatics and Decision Making 2017, 17(Suppl 1):61 DOI 10.1186/s12911-017-0454-0 RESEARCH Open Access Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer’s disease Dokyoon Kim1,2, Anna O. Basile2, Lisa Bang1, Emrin Horgusluoglu4, Seunggeun Lee3, Marylyn D. Ritchie1,2, Andrew J. Saykin4 and Kwangsik Nho4* From The 6th Translational Bioinformatics Conference Je Ju Island, Korea. 15-17 October 2016 Abstract Background: Rapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’sdisease(LOAD). Methods: For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype.
    [Show full text]
  • Long Noncoding RNA LYPLAL1-AS1 Regulates Adipogenic Differentiation
    Yang et al. Cell Death Discovery (2021) 7:105 https://doi.org/10.1038/s41420-021-00500-5 Cell Death Discovery ARTICLE Open Access Long noncoding RNA LYPLAL1-AS1 regulates adipogenic differentiation of human mesenchymal stem cells by targeting desmoplakin and inhibiting the Wnt/β-catenin pathway Yanlei Yang1,2,JunfenFan1,HaoyingXu1,LinyuanFan1,LuchanDeng1,JingLi 1,DiLi1, Hongling Li1, Fengchun Zhang2 and Robert Chunhua Zhao1 Abstract Long noncoding RNAs are crucial factors for modulating adipogenic differentiation, but only a few have been identified in humans. In the current study, we identified a previously unknown human long noncoding RNA, LYPLAL1- antisense RNA1 (LYPLAL1-AS1), which was dramatically upregulated during the adipogenic differentiation of human adipose-derived mesenchymal stem cells (hAMSCs). Based on 5′ and 3′ rapid amplification of cDNA ends assays, full- length LYPLAL1-AS1 was 523 nt. Knockdown of LYPLAL1-AS1 decreased the adipogenic differentiation of hAMSCs, whereas overexpression of LYPLAL1-AS1 enhanced this process. Desmoplakin (DSP) was identified as a direct target of LYPLAL1-AS1. Knockdown of DSP enhanced adipogenic differentiation and rescued the LYPLAL1-AS1 depletion- induced defect in adipogenic differentiation of hAMSCs. Further experiments showed that LYPLAL1-AS1 modulated DSP protein stability possibly via proteasome degradation, and the Wnt/β-catenin pathway was inhibited during 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; adipogenic differentiation regulated by the LYPLAL1-AS1/DSP complex. Together, our work provides a new mechanism by which long noncoding RNA regulates adipogenic differentiation of human MSCs and suggests that LYPLAL1-AS1 may serve as a novel therapeutic target for preventing and combating diseases related to abnormal adipogenesis, such as obesity.
    [Show full text]
  • Supp Table 2
    Supplementary Table 2 : Transcripts and pathways down-regulated in SLE compared to control renal biopsies Differences in (Log2-transformed, mean-centered) gene expression between lupus and control biopsies were analyzed using a moderated t test with Benjamini-Hochberg correction for multiple comparisons (p value threshold set to 0.05). Pathway analyses were performed using DAVID software. Enrichment scores are –log10 p values, calculated by modified Fisher Exact test by comparing proportions of transcripts belonging to a given pathway in the tested gene list compared to the whole transcriptome.[14, 15] Transcripts Pathways Identifier [Control] [SLE] Gene Symbol Annotation Cluster 1 Enrichment Score: 7.43 Database Pathway Count P_Value Benjamini ILMN_1751607 2.8195102 0.25910223 FOSB SP_PIR_KEYWORDS mitochondrion 52 6.80E-20 2.30E-17 ILMN_1682763 2.1716797 -0.4070203 ALB GOTERM_CC_FAT mitochondrion 60 2.70E-19 7.50E-17 ILMN_1781285 1.7535293 -0.0462692 DUSP1 GOTERM_CC_FAT mitochondrial part 42 7.40E-17 1.50E-14 ILMN_1723522 1.718832 -0.2997489 APOLD1 GOTERM_CC_FAT mitochondrial enveLope 34 3.00E-15 2.80E-13 ILMN_1765232 1.632873 0.14076953 RNLS GOTERM_CC_FAT mitochondrial inner membrane 28 8.40E-14 5.80E-12 ILMN_1662880 1.6177534 -0.1763568 FIS GOTERM_CC_FAT mitochondrial membrane 31 1.50E-13 8.60E-12 ILMN_1813361 1.6158535 0.08449265 ANGPTL7 UP_SEQ_FEATURE tranSit peptide:Mitochondrion 32 3.90E-13 2.80E-10 ILMN_2047618 1.6081884 -0.0522185 KCNE1 GOTERM_CC_FAT organeLLe inner membrane 28 4.80E-13 2.20E-11 ILMN_1711015 1.577714 -0.2619377
    [Show full text]
  • Genetics of Azoospermia
    International Journal of Molecular Sciences Review Genetics of Azoospermia Francesca Cioppi , Viktoria Rosta and Csilla Krausz * Department of Biochemical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; francesca.cioppi@unifi.it (F.C.); viktoria.rosta@unifi.it (V.R.) * Correspondence: csilla.krausz@unifi.it Abstract: Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole- Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients. Keywords: azoospermia; infertility; genetics; exome; NGS; NOA; Klinefelter syndrome; Y chromosome microdeletions; CBAVD; congenital hypogonadotropic hypogonadism Citation: Cioppi, F.; Rosta, V.; Krausz, C. Genetics of Azoospermia. 1. Introduction Int. J. Mol. Sci.
    [Show full text]
  • Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
    Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones).
    [Show full text]
  • I STRUCTURE and FUNCTION of the PALMITOYLTRANSFERASE
    STRUCTURE AND FUNCTION OF THE PALMITOYLTRANSFERASE DHHC20 AND THE ACYL COA HYDROLASE MBLAC2 A Dissertation Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Martin Ian Paguio Malgapo December 2019 i © 2019 Martin Ian Paguio Malgapo ii STRUCTURE AND FUNCTION OF THE PALMITOYLTRANSFERASE DHHC20 AND THE ACYL COA HYDROLASE MBLAC2 Martin Ian Paguio Malgapo, Ph.D. Cornell University 2019 My graduate research has focused on the enzymology of protein S-palmitoylation, a reversible posttranslational modification catalyzed by DHHC palmitoyltransferases. When I started my thesis work, the structure of DHHC proteins was not known. I sought to purify and crystallize a DHHC protein, identifying DHHC20 as the best target. While working on this project, I came across a protein of unknown function called metallo-β-lactamase domain-containing protein 2 (MBLAC2). A proteomic screen utilizing affinity capture mass spectrometry suggested an interaction between MBLAC2 (bait) and DHHC20 (hit) in HEK-293 cells. This finding interested me initially from the perspective of finding an interactor that could help stabilize DHHC20 into forming better quality crystals as well as discovering a novel protein substrate for DHHC20. I was intrigued by MBLAC2 upon learning that this protein is predicted to be palmitoylated by multiple proteomic screens. Additionally, sequence analysis predicts MBLAC2 to have thioesterase activity. Taken together, studying a potential new thioesterase that is itself palmitoylated was deemed to be a worthwhile project. When the structure of DHHC20 was published in 2017, I decided to switch my efforts to characterizing MBLAC2.
    [Show full text]
  • Genomic and Expression Profiling of Human Spermatocytic Seminomas: Primary Spermatocyte As Tumorigenic Precursor and DMRT1 As Candidate Chromosome 9 Gene
    Research Article Genomic and Expression Profiling of Human Spermatocytic Seminomas: Primary Spermatocyte as Tumorigenic Precursor and DMRT1 as Candidate Chromosome 9 Gene Leendert H.J. Looijenga,1 Remko Hersmus,1 Ad J.M. Gillis,1 Rolph Pfundt,4 Hans J. Stoop,1 Ruud J.H.L.M. van Gurp,1 Joris Veltman,1 H. Berna Beverloo,2 Ellen van Drunen,2 Ad Geurts van Kessel,4 Renee Reijo Pera,5 Dominik T. Schneider,6 Brenda Summersgill,7 Janet Shipley,7 Alan McIntyre,7 Peter van der Spek,3 Eric Schoenmakers,4 and J. Wolter Oosterhuis1 1Department of Pathology, Josephine Nefkens Institute; Departments of 2Clinical Genetics and 3Bioinformatics, Erasmus Medical Center/ University Medical Center, Rotterdam, the Netherlands; 4Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; 5Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; 6Clinic of Paediatric Oncology, Haematology and Immunology, Heinrich-Heine University, Du¨sseldorf, Germany; 7Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, United Kingdom Abstract histochemistry, DMRT1 (a male-specific transcriptional regulator) was identified as a likely candidate gene for Spermatocytic seminomas are solid tumors found solely in the involvement in the development of spermatocytic seminomas. testis of predominantly elderly individuals. We investigated these tumors using a genome-wide analysis for structural and (Cancer Res 2006; 66(1): 290-302) numerical chromosomal changes through conventional kar- yotyping, spectral karyotyping, and array comparative Introduction genomic hybridization using a 32 K genomic tiling-path Spermatocytic seminomas are benign testicular tumors that resolution BAC platform (confirmed by in situ hybridization).
    [Show full text]
  • View Full Page
    The Journal of Neuroscience, June 15, 2016 • 36(24):6431–6444 • 6431 Cellular/Molecular Identification of PSD-95 Depalmitoylating Enzymes Norihiko Yokoi,1,3* Yuko Fukata,1,3*,‡ Atsushi Sekiya,1,3 Tatsuro Murakami,1,3 Kenta Kobayashi,2,3 and Masaki Fukata1,3‡ 1Division of Membrane Physiology, Department of Molecular and Cellular Physiology and 2Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), and 3Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan Postsynaptic density (PSD)-95, the most abundant postsynaptic scaffolding protein, plays a pivotal role in synapse development and function. Continuous palmitoylation cycles on PSD-95 are essential for its synaptic clustering and regulation of AMPA receptor function. However,molecularmechanismsforpalmitatecyclingonPSD-95remainincompletelyunderstood,asPSD-95depalmitoylatingenzymes remain unknown. Here, we isolated 38 mouse or rat serine hydrolases and found that a subset specifically depalmitoylated PSD-95 in heterologous cells. These enzymes showed distinct substrate specificity. ␣/␤-Hydrolase domain-containing protein 17 members (ABHD17A, 17B, and 17C), showing the strongest depalmitoylating activity to PSD-95, showed different localization from other candi- dates in rat hippocampal neurons, and were distributed to recycling endosomes, the dendritic plasma membrane, and the synaptic fraction. Expression of ABHD17 in neurons selectively reduced PSD-95 palmitoylation and synaptic clustering of PSD-95 and AMPA receptors. Furthermore, taking advantage of the acyl-PEGyl exchange gel shift (APEGS) method, we quantitatively monitored the palmi- ␣ toylation stoichiometry and the depalmitoylation kinetics of representative synaptic proteins, PSD-95, GluA1, GluN2A, mGluR5, G q , and HRas.
    [Show full text]