I STRUCTURE and FUNCTION of the PALMITOYLTRANSFERASE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
Structure-Based Redesigning of Pentoxifylline Analogs Against
www.nature.com/scientificreports OPEN Structure‑based redesigning of pentoxifylline analogs against selective phosphodiesterases to modulate sperm functional competence for assisted reproductive technologies Mutyala Satish1,5, Sandhya Kumari2,5, Waghela Deeksha1, Suman Abhishek1, Kulhar Nitin1, Satish Kumar Adiga2, Padmaraj Hegde3, Jagadeesh Prasad Dasappa4, Guruprasad Kalthur2* & Eerappa Rajakumara1* Phosphodiesterase (PDE) inhibitors, such as pentoxifylline (PTX), are used as pharmacological agents to enhance sperm motility in assisted reproductive technology (ART), mainly to aid the selection of viable sperm in asthenozoospermic ejaculates and testicular spermatozoa, prior to intracytoplasmic sperm injection (ICSI). However, PTX is reported to induce premature acrosome reaction (AR) and, exert toxic efects on oocyte function and early embryo development. Additionally, in vitro binding studies as well as computational binding free energy (ΔGbind) suggest that PTX exhibits weak binding to sperm PDEs, indicating room for improvement. Aiming to reduce the adverse efects and to enhance the sperm motility, we designed and studied PTX analogues. Using structure‑guided in silico approach and by considering the physico‑chemical properties of the binding pocket of the PDEs, designed analogues of PTX. In silico assessments indicated that PTX analogues bind more tightly to PDEs and form stable complexes. Particularly, ex vivo evaluation of sperm treated with one of the PTX analogues (PTXm‑1), showed comparable benefcial efect at much lower concentration—slower -
Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopa
The Journal of Neuroscience, June 15, 2002, 22(12):5188–5197 Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning Tracy M. Reed,1,3 David R. Repaske,2* Gretchen L. Snyder,4 Paul Greengard,4 and Charles V. Vorhees1* Divisions of 1Developmental Biology and 2Endocrinology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229, 3Department of Biology, College of Mount St. Joseph, Cincinnati, Ohio 45233, and 4Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021 Using homologous recombination, we generated mice lack- maze spatial-learning deficits. These results indicate that en- ing phosphodiesterase-mediated (PDE1B) cyclic nucleotide- hancement of cyclic nucleotide signaling by inactivation of hydrolyzing activity. PDE1B Ϫ/Ϫ mice showed exaggerated PDE1B-mediated cyclic nucleotide hydrolysis plays a signifi- hyperactivity after acute D-methamphetamine administra- cant role in dopaminergic function through the DARPP-32 and tion. Striatal slices from PDE1B Ϫ/Ϫ mice exhibited increased related transduction pathways. levels of phospho-Thr 34 DARPP-32 and phospho-Ser 845 Key words: phosphodiesterases; DARPP-32; dopamine- GluR1 after dopamine D1 receptor agonist or forskolin stimu- stimulated locomotor activity; spatial learning and memory; lation. PDE1B Ϫ/Ϫ and PDE1B ϩ/Ϫ mice demonstrated Morris Morris water maze; methamphetamine; SKF81297; forskolin Calcium/calmodulin-dependent phosphodiesterases (CaM- (CaMKII) and calcineurin and have the potential to activate PDEs) are members of one of 11 families of PDEs (Soderling et CaM-PDEs. Dopamine D1 or D2 receptor activation leads to al., 1999;Yuasa et al., 2001) and comprise the only family that acts adenylyl cyclase activation or inhibition, respectively (Traficante ϩ as a potential point of interaction between the Ca 2 and cyclic et al., 1976; Monsma et al., 1990; Cunningham and Kelley, 1993; nucleotide signaling pathways. -
Cell, Volume 139 Supplemental Data Profiling the Human Protein-DNA
Cell, Volume 139 Supplemental Data Profiling the Human Protein-DNA Interactome Reveals ERK2 as a Transcriptional Repressor of Interferon Signaling Shaohui Hu, Zhi Xie, Akishi Onishi, Xueping Yu, Lizhi Jiang, Jimmy Lin, Hee-sool Rho, Crystal Woodard, Hong Wang, Jun-Seop Jeong, Shunyou Long, Xiaofei He, Herschel Wade, Seth Blackshaw, Jiang Qian, and Heng Zhu Supplemental Experimental Procedures Identifying Tissue-specific Motifs We developed a program to identify tissue-specific motifs. We first defined sets of tissue-specific or tissue-enriched genes by examining their gene expression profiles across multiple tissues (Yu et al., 2006). We then calculated the most over-represented single motifs (8-mers, including a wide character) in the promoters of each set of tissue-specific genes. The program then enumerated all possible combinations of the top n motifs (e.g. n = 100). For each motif pair, the program recorded the occurrence of the motif pair in the promoter sequences. We then calculated the significance score for each motif pair, which was defined as the negative logarithm of the p value, -log(p). The motif pairs with scores above a specified threshold were considered putative TF binding motif pairs in the promoter sequences. With these predicted motif pairs, we could calculate a number of partners for each motif and select a certain number of top non-redundant motifs to be tested in the protein chip experiments. Both the p values for a single motif and those for a motif pair were calculated using hypergeometric distribution. Here, we use a motif pair as an example to show the ij, procedure. -
Targets and Mechanisms Validated Trials on the Horizon Targets And
TargetsTargets and and Mechanisms Mechanisms Validated Validated TrialsTrials on on the the Horizon Horizon Research Investors Report 2011 TABLE OF CONTENTS Huntington’s Disease Research in 2011: Targets and Mechanisms Validated; Trials on the Horizon FINDING AND VALIDATING TARGETS 4 DRP1 4 Ku705 5 A CLOSER LOOK AT THE HD PROTEIN 6 HR Protein aggregates visualized 6 Form of the HD protein associated with neurodegeneration identified 7 DISCOVERING/DEVELOPING NEW DRUGS AND UNDERSTANDING THEIR MECHANISMS 10 Dantrolene appears to be neuroprotective 10 Melatonin delays onset and prolongs survival in the R6/2 Mouse 11 KMO Inhibitor developed 12 New Caspase Inhibitors identified and Optimized 14 Quinazoline derivative looks promising 15 Phosphodiesterase-10 inhibitors 16 Novel benzoxazine compounds may be neuroprotective 18 Dimethylfumarate is helpful to the YAC128 Mouse 18 IPSC Consortium creates stem cell lines 19 FINDING AND VALIDATING BIOMARKERS 21 H2AFY 21 Protein Aggregates 22 TRACK-HD 22 UNDERSTANDING THE DISEASE COURSE AND IMPROVING CLINICAL MEASURES 25 Progression of HD and MRI imaging 25 Enroll-HD 25 POTENTIAL TREATMENTS MOVING CLOSE TO CLINICAL TRIALS 27 RNAi Primate Study 27 ASOs can be made allele specific 27 Mesenchymal stem cells with BDNF 28 CLINICAL TRIALS 30 Lessons from Dimebon 30 Neurosearch -- Huntexil (ACR-16) 31 Prana Biotech Copper Chelator 31 Siena Biotech Sirt1 Inhibitor 32 THE OTHER MEMBERS OF THE RESEARCH TEAM - THE PARTICIPANTS 33 FINAL THOUGHTS 35 HD DRUG DEVELOPMENT PIPELINE CHART 36 HDSA COALITION FOR THE CURE 37 HDSA CENTERS OF EXCELLENCE 38 Cover Photo: Polarizing optical microscopy image of huntingtin peptide aggregates stained with Congo Red. Courtesy of Dr. -
Involvement of DPP9 in Gene Fusions in Serous Ovarian Carcinoma
Smebye et al. BMC Cancer (2017) 17:642 DOI 10.1186/s12885-017-3625-6 RESEARCH ARTICLE Open Access Involvement of DPP9 in gene fusions in serous ovarian carcinoma Marianne Lislerud Smebye1,2, Antonio Agostini1,2, Bjarne Johannessen2,3, Jim Thorsen1,2, Ben Davidson4,5, Claes Göran Tropé6, Sverre Heim1,2,5, Rolf Inge Skotheim2,3 and Francesca Micci1,2* Abstract Background: A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas. Methods: Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data. Results: We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set. -
Investigation of Candidate Genes and Mechanisms Underlying Obesity
Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between -
Rnase 2 Sirna (H): Sc-92235
SANTA CRUZ BIOTECHNOLOGY, INC. RNase 2 siRNA (h): sc-92235 BACKGROUND PRODUCT RNase 2 [ribonuclease, RNase A family, 2 (liver, eosinophil-derived neuro- RNase 2 siRNA (h) is a pool of 2 target-specific 19-25 nt siRNAs designed toxin)], also known as non-secretory ribonuclease, EDN (eosinophil-derived to knock down gene expression. Each vial contains 3.3 nmol of lyophilized neurotoxin), RNase UpI-2 or RNS2, is a 161 amino acid protein that belongs siRNA, sufficient for a 10 µM solution once resuspended using protocol to the pancreatic ribonuclease family. Localizing to lysosome and cytoplasmic below. Suitable for 50-100 transfections. Also see RNase 2 shRNA granules, RNase 2 is expressed in leukocytes, liver, spleen, lung and body Plasmid (h): sc-92235-SH and RNase 2 shRNA (h) Lentiviral Particles: fluids. RNase 2 functions as a pyrimidine specific nuclease, and has a slight sc-92235-V as alternate gene silencing products. preference for uracil. RNase 2 is capable of various biological activities, For independent verification of RNase 2 (h) gene silencing results, we including mediation of chemotactic activity and endonucleolytic cleavage of also provide the individual siRNA duplex components. Each is available as nucleoside 3'-phosphates and 3'-phosphooligonucleotides. The gene encoding 3.3 nmol of lyophilized siRNA. These include: sc-92235A and sc-92235B. RNase 2 maps to human chromosome 14q11.2. STORAGE AND RESUSPENSION REFERENCES Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least 1. Yasuda, T., Sato, W., Mizuta, K. and Kishi, K. 1988. Genetic polymorphism one year from the date of shipment. -
Aix-Marseille Université Vivek KESHRI
Aix-Marseille Université Faculté de Médecine de Marseille Ecole Doctorale des Sciences de la Vie et de la Santé THÈSE DE DOCTORAT Présentée par Vivek KESHRI Date et lieu de naissance: 20-Octobre-1985, Inde Evolutionary Analysis of the β-lactamase Families (Analyse évolutive des familles de β-lactamase) Soutenance de la thèse le 05-Juillet-2018 En vue de l’obtenir du grade de Docteur de l’Université d’Aix-Marseille Membres du jury de la thèse Pr Didier RAOULT Directeur de Thèse Pr Max MAURIN Rapporteur Dr Patricia RENESTO Rapporteur Pr Pierre-Edouard FOURNIER Examinateur Laboratoire d’accueil IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, France Contents Abstract .......................................................................................................................................... 1 Résumé ........................................................................................................................................... 3 Chapter-1 ....................................................................................................................................... 7 Introduction ................................................................................................................................. 7 Chapter-2 (A) .............................................................................................................................. 13 Phylogenomic analysis of β-lactamase in archaea and bacteria enables the identification of putative new members .............................................................................................................. -
GRAS Notice 653, Lysophospholipase from Aspergillus Nishimurae
GRAS Notice (GRN) No. 653 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION 000001 AB Enzymes GmbH – Feldbergstrasse 78 , D-64293 Darmstadt May 5, 2016 Office of Food Additive Safety (HFS-255), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740. RE: GRAS NOTICE FOR lysophospholipase Enzyme Preparation From Trichoderma reesei Pursuant to proposed 21 C.F.R § 170.36, AB Enzymes GmbH is providing in electronic media format (determined to be free of computer viruses), based on scientific procedures – a generally recognized as safe (GRAS) notification for lysophospholipase enzyme preparation from Trichoderma reesei for use as a processing aid used in starch processing. The lysophospholipase enzyme preparation described herein when used as described above and in the attached GRAS notice is exempt from the premarket approval requirements applicable to food additives set forth in Section 409 of the Food, Drug, and Cosmetic Act and corresponding regulations. Please contact the undersigned by telephone or email if you have any questions or additional information is required. Candice Cryne Regulatory Affairs Manager 1 647-919-3964 [email protected] 000002 ~ AB Enzymes AB Enzymes GmbH - Feldbergstrasse 78, 0 -64293 Darmstadt ... AUf'~- 3 GR ·N000(,5 {~g~~~\§\Eli] May 5, 2016 Mfl.'< 21 201S Office of Food Additive Safety (HFS-255), OFFICE OF Center for Food Safety and Applied Nutrition, FOOD ADDITIVE SAFEi'f l Food and Drug Administration, L 5100 Paint Branch Parkway, College Park, MD 20740. RE: GRAS NOTICE FOR lysophospholipase Enzyme Preparation From Trichoderma reesei Pursuant to proposed 21 C.F.R § 170.36, AB Enzymes GmbH is providing in electronic media format (determined to be free of computer viruses), based on scientific procedures- a generally recognized as safe (GRAS) notification for lysophospholipase enzyme preparation from Trichoderma reesei for use as a processing aid used in starch processing . -
Cutinases from Mycobacterium Tuberculosis
Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis Luc Dedieu, Carole Serveau-Avesque, Ste´phane Canaan* CNRS - Aix-Marseille Universite´ - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France Abstract The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production. -
Mitoxplorer, a Visual Data Mining Platform To
mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.